
Creating Human Readable
Path Constraints from
Symbolic Execution

Tod Amon (
Tim Loffredo (
Sandia National Laboratories

2/23/2020

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525. SAND # XXXXXXXXXXX Unlimited
Unrestricted Release

1

SAND2020-2220C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Background
• Path Constraints:

• An inherent component of symbolic execution;

• When execution is conditional upon symbolic variables,
multiple states arise, with different path constraints

• Constraints stored in SMT solver

• Example: symbolic execution on the binary for this function with "x"
setup as a symbolic 32 bit little endian integer yields two
states, with resulting path-constraints and return values

int abs(int x) {

if (x < 0) f

return -x;

}

}

return x;

When <Bool x_intle:32_13_32[31:31] != 0>

Result is <BV32 Oxffffffff * x intle:32 13 32>

When <Bool x_intle:32 13 32[31:31] == 0>

Result is <BV32 x inte:2 13 32>_ _ _

2

Readability
• Human-tool cooperation is currently the fastest
approach for thoroughly analyzing programs

• Path constraints often contain useful information
• For both tools *and* humans

• Simple questions should have simple answers

• The bit-vector domain is precise, but often obscures results.

• Some common questions when symbolically
debugging and reverse engineering binaries:
• How do I get here? or How did I get here?

• Did I set up my symbolic variables correctly?

• Is the path constraint satisfiable?

• What does this function do?

• What is this meaning of this complex bit-vector constraint?

3

Contributions
• Our paper presents several examples that demonstrate

the usefulness of path constraints and the need for them
to be human readable

• Our tools demonstrate the feasibility of transforming
Boolean bit-vector constraints into the integer domain

• We present several novel ideas

• Including the use of logic synthesis tools to put constraints into specific
forms.

• Including an alternative approach to type inferencing based simply on
finding patterns in path-constraints.

4

Basics

• We are using "angr" for symbolic execution

• We are using Z3

• We are using python

• Our artifacts are available here:
<URL will be inserted later>

5

Example #1:
• Help vulnerability researchers study functions.

• Access to both source code and binary

• Leverage SMT solvers to handle complex bit-vector issues

• Toy problem: When does this function return y-2 ?

int sub1or2(int

int x = y;

x--;

if (x > 5)

x--;

return x;

}

• Solution:

y) {

400526: push rbp

400527: mov rbp,rsp

40052a: mov DWORD PTR [rbp-0x14],eci

40052c: mov eax,DWORD PTR [rbp-0x14]

400530: mov DWORD PTR [rbp-Ox4],eax

400533: sub DWORD PTR [rbp-Ox4],0x1

400537: cmp DWORD PTR [rbp-Ox4],0x5

40053b: jle 400541 <sub1or2+0x1b>

40053c: sub DWORD PTR [rbp-Ox4],0x1

400541: mov eax,DWORD PTR [rbp-Ox4]

400544: pop rbp

400545: ret

• Two states are obtained from symbolic execution, one has the return value as

Claripy: <BV32 Oxfffffffe + y intle:32 >
Z3 sexpr: (bvadd #xfffffffe 1 y intle 32 _, 1)

• Print this state's path-constraint to get the answer

6

Ugly Path Constraints

• Claripy:
. [<Bool (Oxffffffff + y intle:32 13 32 - Ox5[31:31] ^ Oxffffffff +

y intle:32 13 32[31:31] & (Oxffffffff + y intle:32 13 32[31:31] ^

Oxffffffff + y intle:32 13 32 - Ox5[31:31]) 1 (if Oxffffffff +

y intle:32 13 32 - Ox5 == Ox0 then 1 else 0)) == 0>]

• Z3 string (simplified using ctx-solver-simplify):
• And((Extract(31, 31, 4294967290 + y intle:32) == 1) ==

Not(Or(Extract(31, 31, 4294967290 + y intle:32) == 1, Extract(31,

31, 4294967295 + y intle:32) == 0)), Not(y intle:32 == 6))

• Z3 sexpr:
. (let ((a!1 (bvxor ((extract 31 31) (bvacc #xffffffff y))

((extract 31 31) (bvsub (bvadc #xffffffff y) #x00000005))))

(a!3 (ite (= #x00000000 (bvsub (bvadc #xffffffff y) #x00000005)) #bl

#b0))) (let ((a!2 (bvxor ((extract 31 31) (bvsub (bvacc #xffffffff y)

#x00000005)) (bvanc ((extract 31 31) (bvadc #xffffffff y)) a!1))))

(and (= #b0 (bvor a!2 a!3)))))

7

Why?

• Path constraints are added when evaluating a conditional
branch in the intermediate representation used by
symbolic execution.

40053b: jle 400541 <sub1or2+0x1b>

vex for Ox40053b:

IRSB {

tO:Ity Il tl:Ity 164 t2:Ity 164 t3:Ity 164 t4:Ity 164 t5:Ity 164 t6:Ity 164

}

00 IMark(0x40053b, 2, 0)

01 tl = GET:I64(cc op)

02 t2 = GET:I64(cc depl)

03 t3 = GET:I64(cc dep2)

04 t4 = GET:I64(cc ndep)

05 t5 amd64g calculate concition(0x000000000000000e,t1,t2,t3,t4):Ity 164

06 tO = 64to1(t5)

07 if (t0) { PUT(rip) = Ox400541; Ijk Boring }

NEXT: PUT(rip) = Ox000000000040053d; Ijk Boring

8

Why?
• Path constraints are added when evaluating a conditional

branch in the intermediate representation used by symbolic
execution.

ULong amd64g calculate condition (

• • •

return 1 & (inv A ((sf ^ of) I zf)) ;

(let ((a!1 (bvxor ((extract 31 31) (bvacc #xffffffff y))

((extract 31 31) (bvsub (bvadc #xffffffff y) #x00000005))))

(a!3 (ite (= #x00000000 (bvsub (bvadc #xffffffff y) #x00000005))

#bl #b0)))(let ((a!2 (bvxor ((extract 31 31) (bvsub (bvadc #xffffffff y)

#x00000005)) (bvanc ((extract 31 31) (bvadc #xffffffff y)) a!1))))

(and (= #b() (bvor a!2 a!3)))))

• Path constraints are simpler if vex is optimized
• Our tools typically execute a single instruction at a time, for blocks the constraints are

simpler

9

A Better Result
• Using type information and tools that transform

patterns in bit-vector-domain to integer-domain

(let ((a!1 (or (one (not (<= 1 ly intle:32I)) (not (<= 6 intle:32I)))
(and (>= ly intle:321 1) (<= 6 ly intle:32I))

(>= ly intle:32I 1))))
(let ((a!2 (or (= intle:32 6)

(and (< (+ (- 6) intle:321) 0) a!1)

(and (>= (+ (- 6) ly intle:321) 0) (not a!1)))))
(not a!2))) N

No longer bvand, bvsub, bvadd, etc.

• Then use ctx-solver-simplify (or other approaches):
And(Not(y intle:32 == 6), 6 <= y intle:32)

• We are nearly there! (Z3 avoids strict inequalities)

10

A Better Result
• A lot of work to discover that when y > 6

our function returns y-2

int sublor2 (int y) {

int x = y;

x--;

if (x > 5)

x--;

return x;

And(Not(y intle:32 == 6), 6 <= y intle:32)

• Aloco, the translation into the integer-domain may not be
precise, e.g., in some cases it could ignore overflow or other
bit-vector effects
• E.g., if we switch x++ to x- the result, that our function returns y+2 when y >

4 is not precise in that there are some possible values of y that do not return
y+2

• See our tools for methods to check equivalence of statements in the same
domain,
or potentially cross domain, in the presence of constraints

11

Example #2

• Tools to support network protocol extraction
• Identify paths from Source (e.g., read) to Sink (e.g., write)

• Configure Source as a symbolic byte array (network input)

• Sink deliver bytes to network

• How is what is written related to what is read?

• Add marshalling to previous example:
read(0, in

•••

ouf, 64)

int *ri = (int*) nbuf[0];

int x = *ri;

x--;

if(x > 5) {

x--;

•

}

int *wi = (int*)&outbuf[0];

*wi = x;

write(1, outbuf, 4);

return outbuf;

Configured as array of symbolic oytes:

[symO, syml, sym2, sym3, ...]

12

Example #2
• Users and tools have only the binary (no source)

• Path constraint when we decrement twice:

13

• Path constraint suggests that our symbolic
byte sequence contains a 32 bit integer in little endian

• Substitute each symbolic byte with an expression showing
it as a piece in a hypothesized type
. sym0 -> ((extract 31 24) Isym[0-3]-? intle:321)

syml -> ((extract 23 16) Isym[0-3]-? intle:321)
sym2 -> ((extract 15 8) Isym[0-3]-? intle:321)
sym3 -> ((extract 7 0) Isym[0-3]-? intle:321)

• Then apply domain conversion, and simplification to obtain:
• Anc

sion showing
it as a piece in a hypothesized type
. sym0 -> ((extract 31 24) Isym[0-3]-? intle:321)

syml -> ((extract 23 16) Isym[0-3]-? intle:321)
sym2 -> ((extract 15 8) Isym[0-3]-? intle:321)
sym3 -> ((extract 7 0) Isym[0-3]-? intle:321)

• Then apply domain conversion, and simplification to obtain:
(6 <= sym[0-3]-? intle:32, Not(sym[0-3]-? intle:32 == 6))• Anc

13

(6 <= sym[0-3]-? intle:32, Not(sym[0-3]-? intle:32 == 6))

Methodology

• Convert from bit-vector domain to integer domain

• Use examples to discover constraint patterns such as:
- If-then-else checks on a sign-bit gets converted to inequality
- And-of-equality-on-extracts gets converted to actual value
- Concat-with-zero/s gets converted to multiplication

• Examples that fail suggest more patterns to understand

• Preliminary results testing on constraints from toy problems that
are simplified using different strategies was very promising

14

Methodology

• Use logic synthesis tools with gate-libraries created
for human readability for tailored situations.
• Example — path constraints when symbolic bytes are not equal to a string

char inbuf[64];

num bytes =

int authreq

reac (0, inbuf, 64);

= (inbuf[0]=='A' &&

inbuf[1]=='U' &&

inbuf[2]=='T' &&

inbuf[3]== 'H');

int good passworc = (inbuf[4]=='T' &&

inbuf[5]=='0' &&

inbuf[6]=='D' &&

inbuf[7]-0);

if (authreq && !good passworc) {

... // senc authentication rejection

}

If we combine the constraints for the four
paths that lead to authentication rejection:

We can use SIS on a gate library biased
to avoid "Or" gates to obtain:

And(sym0==65, sym1==85, sym2==84, sym3==72, sym[0:3] ==

Not(And(sym4==84,sym5==79,sym6==68,sym7==0))) sym[4:7] !=

sym2==

sym2==

Or(

And(sym0

Not (sy

And(sym0

sym4==

And(sym0

sym4==

And(sym0

sym4==

—65, sym1==85,

m4==84)),

—65, sym1==85,

84, Not(sym5==79)),

—65, sym1==85, sym2==

84, sym5==79, Not(sym6

—65, sym1==85, sym2==

84, sym3==72,

84, sym3==72,

84, sym3==72,

==68)),

84, sym3==72,

84, sym5==79, sym6==68, Not(sym7==0)))

"AUTH" anc

"TOD\O")

15

Results
• Existing tools perform amazing analyses

but are insufficient with regards to human readability:
. Z3 str and Z3.sexpr() are useful at times but often misleading /

dense

. Claripy readability is an improvement over Z3 (and handles end-ness
issues quite nicely) but the structure of the constraints are still unwieldy

. Constraint simplification algorithms exist primarily for efficiency

• There exist many promising techniques:
• Pattern-matching when symbolic variables are annotated with type

• Logic synthesis algorithms for simplifying and structuring

• Claim: readability of path-constraints is a largely
unexplored and important aspect of automated analysis

• See our paper and code / artifacts for more details

16

A Difficult Task
• "Don't attempt to understand anything after

you've given it to an SMT solver"
• Indeed, the problem does appear challenging

• So to is the problem of understanding a binary
(never meant for consumption by anything other than hardware)

• "Please don't make me try and understand
that"
• Humans need software to simplify things for their consumption

• "Use something other than symbolic
execution"
• Yes! But we do need multiple approaches, and humans can

more easily leverage the power of symbolic execution and SMT
solvers

17

Future Work

• Formalize the notion of human-readability
• Score answers so we can choose good ones

• Quantitative Evaluation of our ideas

• Analysis on real binaries

• Work further upstream?

• Extend ideas to more data-types

• Extend ideas to other domains
• E.g., strings

18

Thank You

19

