This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 2220C

Creating Human Readable

Path Constraints from
Symbolic Execution

Tod Amon ()
Tim Loffredo ()
Sandia National Laboratories

2/23/2020

Sandia National Laboratories is a multimission laboratory managed and operated by -

National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. SAND # XXXXXXXXXXX Unlimited

Unrestricted Release
1

Background

. Path Constraints:

= An inherent component of symbolic execution;

« When execution is conditional upon symbolic variables,
multiple states arise, with different path constraints

= (Constraints stored in SMT solver

* Exa m ple - symbolic execution on the binary for this function with “x”
setup as a symbolic 32 bit little endian integer yields two
states, with resulting path-constraints and return values

int abs(int x) {
if (x < 0) |
return -X;

}

return X;

AN

When <Bool x intle:32 13 32([31:31] != 0> When <Bool x intle:3Z2 13 32[31:31] == D>
Result ig <BV32 (xfLfffffff * x intleyd2 13 32> Fegult iz <BV32 x intles32 13 32>

Readability

- Human-tool cooperation is currently the fastest
approach for thoroughly analyzing programs

. Path constraints often contain useful information

For both tools *and* humans
Simple questions should have simple answers
The bit-vector domain is precise, but often obscures results.

- Some common questions when symbolically
debugging and reverse engineering binaries:

How do | get here”? or How did | get here?

Did | set up my symbolic variables correctly?

|s the path constraint satisfiable?

What does this function do?

What is this meaning of this complex bit-vector constraint?

Contributions

- Our paper presents several examples that demonstrate
the usefulness of path constraints and the need for them
to be human readable

- QOur tools demonstrate the feasibility of transforming
Boolean bit-vector constraints into the integer domain

- We present several novel ideas

Including the use of logic synthesis tools to put constraints into specific
forms.

Including an alternative approach to type inferencing based simply on
finding patterns in path-constraints.

Basics

- We are using “angr” for symbolic execution
- We are using Z3
- We are using python

. Qur artifacts are available here:
<URL will be inserted later>

Example #1:

- Help vulnerability researchers study functions.

= Access to both source code and binary

» Leverage SMT solvers to handle complex bit-vector issues
- Toy problem: When does this function return y-2 ?

int sublor2 (int vy)
int x = y;
X==;
if (x > 5)
X==;
return x;

}

Solution:

{

400526:
400527 :
40052a:
40052d:
400530:
400533
400537:
40053b:
40053d:
400541:
400544:
400545:

push rbp

mov rbp, rsp

mov DWORD PTR [rbp-0x14],edi
mov eax, DWORD PTR [rbp-0x14]
mov DWORD PTR [rbp-0x4],eax
sub DWORD PTR [rbp-0x4],0x1
cmp DWORD PTR [rbp-0x4],0x5
Jle 400541 <sublor2+0xlb>
sub DWORD PTR [rbp-0x4],0x1
mov eax, DWORD PTR [rbp-0x4]
pop rbp

ret

Two states are obtained from symbolic execution, one has the return value as

Claripy: <Bv32 0Oxfffffffe + y intle:32 13 32>
Z3 sexpr: (bvadd #xfffffffe [y intle 32 13 32])

= Print this state’s path-constraint to get the answer

Ugly Path Constraints

. Claripy:

[<Bool (Oxffffffff + y intle:32 13 32 - 0x5[31:31] ~ Oxffffffff +
y intle:32 13 32[31:31] & (OxEffffffff + y intle:32 13 32[31:31] *
Oxffffffff + y intle:32 13 32 - 0x5[31:31]) | (i1f Oxffffffff +

y intle:32 13 32 - 0x5 == 0x0 then 1 else 0)) == 0>]

. /3 string (simplified using ctx-solver-simplify):

And ((Extract (31, 31, 4294967290 + y intle:32) == 1) ==
Not (Or (Extract (31, 31, 4294967290 + y intle:32) == 1, Extract (31,
31, 4294967295 + y intle:32) == 0)), Not(y intle:32 == 0))

extract 31 31) (bvsub (bvadd #xffffffff y) #x00000005))))
al3 (ite (= #x00000000 (bvsub (bvadd #xffffffff y) #x00000005)) #bl
#00))) (let ((a!2 (bvxor ((extract 31 31) (bvsub (bvadd #xffffffff vy)
#x00000005)) (bvand ((extract 31 31) (bvadd #xffffffff y)) al!ll))))
(and (= #b0 (bvor a'!2 al!3)))))

(let ((a!l (bvxor ((extract 31 31) (bvadd #xffffffff vy))
((
(

Why?

- Path constraints are added when evaluating a conditional
branch in the intermediate representation used by
symbolic execution.

40053b: jJle 400541 <sublor2+0xl1b>

vex for 0x40053b:
IRSB {
tO0:Ity I1 tl:Ity I64 t2:Ity Io4 t3:Ity Io64 t4:Ity I64 t5:Ity I64 to:Ity Io4

00 | —-——=——- IMark (0x40053b, 2, 0) -—-—-———-

01 | t1l = GET:Io04(cc op)

02 | t2 = GET:I64 (cc _depl)

03 | t3 = GET:I64 (cc _dep2)

04 | t4 = GET:I64 (cc ndep)

05 | t5 = amdb4g calculate condition (0x000000000000000e,tl,t2,t3,t4) :Ity I64
06 | t0 = 64tol (th)

07 | 1f (t0) { PUT(rip) = 0x400541; Ijk Boring }

NEXT: PUT (rip) = 0x000000000040053d; Ijk Boring

Why?

- Path constraints are added when evaluating a conditional
branch in the intermediate representation used by symbolic
execution.

ULong amdé64g calculate condition (

return 1 & (inv ° ((sf ~ of) | zf));

(let ((a!l (bvxor ((extract 31 31) (bvadd #xffffffff y))

((_ extract 31 31) (bvsub (bvadd #xffffffff y) #x00000005))))

(a!3 (ite (= #x00000000 (bvsub (bvadd #xffffffff y) #x00000005))

#bl #b0))) (let ((a!2 (bvxor ((extract 31 31) (bvsub (bvadd #xffffffff y)
#x00000005)) (bvand ((extract 31 31) (bvadd #xffffffff y)) all))))

(and (= #b0 (bvor al!2 al!3)))))

.- Path constraints are simpler if vex is optimized

Our tools typically execute a single instruction at a time, for blocks the constraints are
simpler

A Better Result

. Using type information and tools that transform
patterns in bit-vector-domain to integer-domain

(let ((a!l (or (and (not (<=1 |y intle:32])) (not (<= 6 |y intle:32])))
and (>= |y intle:32] 1) (<= 6 |y 1intle:32]))
>= |y intle:32| 1))))

(
(
(
(let ((al!2 (or (= |y intle:32]| 6)
(
(

and (< (+ (- 6) |y intle:32]) 0) all)
and (>= (+ (- 6) |y intle:32(|) 0) (not al!l)))))
(not al!2))) ‘\\

No longer bvand, bvsub, bvadd, etc.

- Then use CtX-Solver-SimpIify (or other approaches).

And (Not (y intle:32 == 6), 6 <= y 1ntle:32)

- We are nearly there! (Z3 avoids strict inequalities)

10

A Better Result

- A lot of work to discover that when v > 6
our function returns y-2

int sublor2 (int y) {
int x = y;
R And (Not (y intle:32 == 6), 6 <= y intle:32)

return Xx;

. Aléo, the translation into the integer-domain may not be
precise, e.g., in some cases it could ignore overflow or other

bit-vector effects

E.g., if we switch x++ to x— the result, that our function returns y+2 when y >
4 is not precise in that there are some possible values of y that do not return

2.

See our tools for methods to check equivalence of statements in the same

domain,
or potentially cross domain, in the presence of constraints

11

Example #2

- Tools to support network protocol extraction

|dentify paths from Source (e.g., read) to Sink (e.g., write)
Configure Source as a symbolic byte array (network input)

Sink deliver bytes to network
How is what is written related to what is read?

» Add marshalling to previous example:

read (0, inbuf, 64)

int *ri = (int*)&inbuf[0];
int x = *ri;

X——y

if(x > 5) |

Configured as array of symbolic bytes:

} o [sym0O, syml, symZ, sym3, ..]
int *wl = (i1nt*) &outbuf[0];
*wli = X3

write (1, outbuf, 4);
return outbuf;

12

Example #2

Users and tools have only the binary (no source)
Path constraint when we decrement twice:

((a!l (= ((extract 31 31) (bvadd #xfffffffa (concat sym3 sym2 syml sym0O))) #bl))
(= ((extract 31 31) (bvadd #xffffffff (concat sym3 sym2 syml symO))) #Db0))

(= ((extract 31 31) (bvadd #xffffffff (concat sym3 sym2 syml symO))) #bl)))
((al!4 (or (= al!l (or a'!'2 (= al!l3 all)))

(= symO #x06) (= syml #x00) (= sym2 #x00) (= sym3 #x00))))) (not a'!d)))

Path constraint suggests that our symbolic
byte sequence contains a 32 bit integer in little endian

Substitute each symbolic byte with an expression showing
It as a piece in a hypothesized type

symO -> ((extract 31 24) |sym[0-3]-? intle:32])
syml -> ((extract 23 16) |sym[0-3]-? intle:32])
sym2 -> ((extract 15 8) |[|sym[0-3]-7? 1ntle:32])
sym3 -> ((extract 7 0) [sym[0-3]-? intle:32])

Then apply domain conversion, and simplification to obtain:
And (6 <= sym[0-3]-? intle:32, Not(sym[0-3]-? intle:32 == 0))

13

Methodology

. Convert from bit-vector domain to integer domain

Use examples to discover constraint patterns such as:

- If-then-else checks on a sign-bit gets converted to inequality
- And-of-equality-on-extracts gets converted to actual value

- Concat-with-zero/s gets converted to multiplication

Examples that fail suggest more patterns to understand

Preliminary results testing on constraints from toy problems that
are simplified using different strategies was very promising

14

Methodology

- Use logic synthesis tools with gate-libraries created
for human readability for tailored situations.

- Example — path constraints when symbolic bytes are not equal to a string

char inbuf[64d];

r}um_bytis rea{i(gr figbuf;;‘l)f If we combine the constraints for the four
b et = T paths that lead to authentication rejection:
inbuf[2]=="T" &&
inbuf[3]== "H"); or (
int good password = (inbuf[4]=="T' &&
- inbuf[5]=="0" && And (sym0O==65, syml==85, sym2==84, sym3==72,
inbuf[6]=="D" && Not (sym4==84)),
inbuf [7]1==0); And (sym0O==65, syml==85, sym2==84, sym3==72,
if (authreq && !good password) { sym4==84, Not (symb==79)),
. // send authentication rejection And (sym0==65, syml==85, sym2==84, sym3==72,
J symd4==84, sym5==79, Not (sym6==68)),

And (sym0O==65, syml==85, sym2==84, sym3==72,

We can use SIS on a gate library biased symd==84, sym5==79, sym6==68, Not (sym7==0)))

to avoid “Or” gates to obtain:
And (sym0O==65, syml==85, sym2==84, sym3==72, ‘ sym[0:3] == "AUTH” and
Not (And (sym4==84, sym5==79, sym6==68, sym7==0))) sym[4:7] != “TOD\0”)

15

Results

» EXisting tools perform amazing analyses
but are insufficient with regards to human readability:

Z3 _str_and Z3.sexpr() are useful at times but often misleading /
dense

Claripy readability is an improvement over Z3 (and handles end-ness
Issues quite nicely) but the structure of the constraints are still unwieldy

Constraint simplification algorithms exist primarily for efficiency

« There exist many promising techniques:

Pattern-matching when symbolic variables are annotated with type

Logic synthesis algorithms for simplifying and structuring

« Claim: readability of path-constraints is a largely
unexplored and important aspect of automated analysis

« See our paper and code / artifacts for more details

16

A Difficult Task

- "Don’t attempt to understand anything after
you've given it to an SMT solver”

Indeed, the problem does appear challenging

So to is the problem of understanding a binary
(never meant for consumption by anything other than hardware)

- "Please don’'t make me try and understand
that”

Humans need software to simplify things for their consumption

. “Use something other than symbolic
execution”

Yes! But we do need multiple approaches, and humans can
more easily leverage the power of symbolic execution and SMT
solvers

17

Future Work

- Formalize the notion of human-readability

» Score answers so we can choose good ones

- Quantitative Evaluation of our ideas
- Analysis on real binaries

- Work further upstream?

- Extend ideas to more data-types

. Extend ideas to other domains
- E.g., strings

18

Thank You

