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Background
• Path Constraints:

• An inherent component of symbolic execution;

• When execution is conditional upon symbolic variables,
multiple states arise, with different path constraints

• Constraints stored in SMT solver

• Example: symbolic execution on the binary for this function with "x"
setup as a symbolic 32 bit little endian integer yields two
states, with resulting path-constraints and return values

int abs(int x) {

if (x < 0) f

return -x;

}

}

return x;

When <Bool x_intle:32_13_32[31:31] != 0>

Result is <BV32 Oxffffffff * x intle:32 13 32>

When <Bool x_intle:32 13 32[31:31] == 0>

Result is <BV32 x inte:2 13 32>_ _ _
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Readability
• Human-tool cooperation is currently the fastest
approach for thoroughly analyzing programs

• Path constraints often contain useful information
• For both tools *and* humans

• Simple questions should have simple answers

• The bit-vector domain is precise, but often obscures results.

• Some common questions when symbolically
debugging and reverse engineering binaries:
• How do I get here? or How did I get here?

• Did I set up my symbolic variables correctly?

• Is the path constraint satisfiable?

• What does this function do?

• What is this meaning of this complex bit-vector constraint?
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Contributions
• Our paper presents several examples that demonstrate

the usefulness of path constraints and the need for them
to be human readable

• Our tools demonstrate the feasibility of transforming
Boolean bit-vector constraints into the integer domain

• We present several novel ideas

• Including the use of logic synthesis tools to put constraints into specific
forms.

• Including an alternative approach to type inferencing based simply on
finding patterns in path-constraints.
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Basics

• We are using "angr" for symbolic execution

• We are using Z3

• We are using python

• Our artifacts are available here:
<URL will be inserted later>
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Example #1:
• Help vulnerability researchers study functions.

• Access to both source code and binary

• Leverage SMT solvers to handle complex bit-vector issues

• Toy problem: When does this function return y-2 ?

int sub1or2(int

int x = y;

x--;

if (x > 5)

x--;

return x;

}

• Solution:

y) {

400526: push rbp

400527: mov rbp,rsp

40052a: mov DWORD PTR [rbp-0x14],eci

40052c: mov eax,DWORD PTR [rbp-0x14]

400530: mov DWORD PTR [rbp-Ox4],eax

400533: sub DWORD PTR [rbp-Ox4],0x1

400537: cmp DWORD PTR [rbp-Ox4],0x5

40053b: jle 400541 <sub1or2+0x1b>

40053c: sub DWORD PTR [rbp-Ox4],0x1

400541: mov eax,DWORD PTR [rbp-Ox4]

400544: pop rbp

400545: ret

• Two states are obtained from symbolic execution, one has the return value as

Claripy: <BV32 Oxfffffffe + y intle:32 >
Z3 sexpr: (bvadd #xfffffffe 1 y intle 32 _, 1 )

• Print this state's path-constraint to get the answer
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Ugly Path Constraints

• Claripy:
. [<Bool (Oxffffffff + y intle:32 13 32 - Ox5[31:31] ^ Oxffffffff +

y intle:32 13 32[31:31] & (Oxffffffff + y intle:32 13 32[31:31] ^

Oxffffffff + y intle:32 13 32 - Ox5[31:31]) 1 (if Oxffffffff +

y intle:32 13 32 - Ox5 == Ox0 then 1 else 0)) == 0>]

• Z3 string (simplified using ctx-solver-simplify):
• And((Extract(31, 31, 4294967290 + y intle:32) == 1) ==

Not(Or(Extract(31, 31, 4294967290 + y intle:32) == 1, Extract(31,

31, 4294967295 + y intle:32) == 0)), Not(y intle:32 == 6))

• Z3 sexpr:
. (let ((a!1 (bvxor (( extract 31 31) (bvacc #xffffffff y))

(( extract 31 31) (bvsub (bvadc #xffffffff y) #x00000005))))

(a!3 (ite (= #x00000000 (bvsub (bvadc #xffffffff y) #x00000005)) #bl

#b0))) (let ((a!2 (bvxor (( extract 31 31) (bvsub (bvacc #xffffffff y)

#x00000005)) (bvanc (( extract 31 31) (bvadc #xffffffff y)) a!1))))

(and (= #b0 (bvor a!2 a!3)))))
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Why?

• Path constraints are added when evaluating a conditional
branch in the intermediate representation used by
symbolic execution.

40053b: jle 400541 <sub1or2+0x1b>

vex for Ox40053b:

IRSB {

tO:Ity Il tl:Ity 164 t2:Ity 164 t3:Ity 164 t4:Ity 164 t5:Ity 164 t6:Ity 164

}

00   IMark(0x40053b, 2, 0)  

01 tl = GET:I64(cc op)

02 t2 = GET:I64(cc depl)

03 t3 = GET:I64(cc dep2)

04 t4 = GET:I64(cc ndep)

05 t5 amd64g calculate concition(0x000000000000000e,t1,t2,t3,t4):Ity 164

06 tO = 64to1(t5)

07 if (t0) { PUT(rip) = Ox400541; Ijk Boring }

NEXT: PUT(rip) = Ox000000000040053d; Ijk Boring
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Why?
• Path constraints are added when evaluating a conditional

branch in the intermediate representation used by symbolic
execution.

ULong amd64g calculate condition (

• • •

return 1 & (inv A ( (sf ^ of) I zf) ) ;

(let ((a!1 (bvxor (( extract 31 31) (bvacc #xffffffff y))

(( extract 31 31) (bvsub (bvadc #xffffffff y) #x00000005))))

(a!3 (ite (= #x00000000 (bvsub (bvadc #xffffffff y) #x00000005))

#bl #b0) ))(let ((a!2 (bvxor (( extract 31 31) (bvsub (bvadc #xffffffff y)

#x00000005)) (bvanc (( extract 31 31) (bvadc #xffffffff y)) a!1) )))

(and (= #b() (bvor a!2 a!3)))))

• Path constraints are simpler if vex is optimized
• Our tools typically execute a single instruction at a time, for blocks the constraints are

simpler
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A Better Result
• Using type information and tools that transform

patterns in bit-vector-domain to integer-domain

(let ((a!1 (or (one (not (<= 1 ly intle:32I)) (not (<= 6 intle:32I)))
(and (>= ly intle:321 1) (<= 6 ly intle:32I))

(>= ly intle:32I 1))))
(let ((a!2 (or (= intle:32 6)

(and (< (+ (- 6) intle:321) 0) a!1)

(and (>= (+ (- 6) ly intle:321) 0) (not a!1)))))
(not a!2))) N

No longer bvand, bvsub, bvadd, etc.

• Then use ctx-solver-simplify (or other approaches):
And(Not(y intle:32 == 6), 6 <= y intle:32)

• We are nearly there! (Z3 avoids strict inequalities)
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A Better Result
• A lot of work to discover that when y > 6

our function returns y-2

int sublor2 (int y) {

int x = y;

x--;

if (x > 5)

x--;

return x;

And(Not(y intle:32 == 6), 6 <= y intle:32)

• Aloco, the translation into the integer-domain may not be
precise, e.g., in some cases it could ignore overflow or other
bit-vector effects
• E.g., if we switch x++ to x- the result, that our function returns y+2 when y >

4 is not precise in that there are some possible values of y that do not return
y+2

• See our tools for methods to check equivalence of statements in the same
domain,
or potentially cross domain, in the presence of constraints
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Example #2

• Tools to support network protocol extraction
• Identify paths from Source (e.g., read) to Sink (e.g., write)

• Configure Source as a symbolic byte array (network input)

• Sink deliver bytes to network

• How is what is written related to what is read?

• Add marshalling to previous example:
read(0, in

•••

ouf, 64)

int *ri = (int*) nbuf[0];

int x = *ri;

x--;

if(x > 5) {

x--;

•

}

int *wi = (int*)&outbuf[0];

*wi = x;

write(1, outbuf, 4);

return outbuf;

Configured as array of symbolic oytes:

[symO, syml, sym2, sym3, ...]

12



Example #2
• Users and tools have only the binary (no source)

• Path constraint when we decrement twice:

13

• Path constraint suggests that our symbolic
byte sequence contains a 32 bit integer in little endian

• Substitute each symbolic byte with an expression showing
it as a piece in a hypothesized type
. sym0 -> (( extract 31 24) Isym[0-3]-? intle:321)

syml -> (( extract 23 16) Isym[0-3]-? intle:321)
sym2 -> (( extract 15 8) Isym[0-3]-? intle:321)
sym3 -> (( extract 7 0) Isym[0-3]-? intle:321)

• Then apply domain conversion, and simplification to obtain:
• Anc

sion showing
it as a piece in a hypothesized type
. sym0 -> (( extract 31 24) Isym[0-3]-? intle:321)

syml -> (( extract 23 16) Isym[0-3]-? intle:321)
sym2 -> (( extract 15 8) Isym[0-3]-? intle:321)
sym3 -> (( extract 7 0) Isym[0-3]-? intle:321)

• Then apply domain conversion, and simplification to obtain:
(6 <= sym[0-3]-? intle:32, Not(sym[0-3]-? intle:32 == 6))• Anc

13

(6 <= sym[0-3]-? intle:32, Not(sym[0-3]-? intle:32 == 6))



Methodology

• Convert from bit-vector domain to integer domain

• Use examples to discover constraint patterns such as:
- If-then-else checks on a sign-bit gets converted to inequality
- And-of-equality-on-extracts gets converted to actual value
- Concat-with-zero/s gets converted to multiplication

• Examples that fail suggest more patterns to understand

• Preliminary results testing on constraints from toy problems that
are simplified using different strategies was very promising
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Methodology

• Use logic synthesis tools with gate-libraries created
for human readability for tailored situations.
• Example — path constraints when symbolic bytes are not equal to a string

char inbuf[64];

num bytes =

int authreq

reac (0, inbuf, 64);

= (inbuf[0]=='A' &&

inbuf[1]=='U' &&

inbuf[2]=='T' &&

inbuf[3]== 'H');

int good passworc = (inbuf[4]=='T' &&

inbuf[5]=='0' &&

inbuf[6]=='D' &&

inbuf[7]-0);

if (authreq && !good passworc) {

... // senc authentication rejection

}

If we combine the constraints for the four
paths that lead to authentication rejection:

We can use SIS on a gate library biased
to avoid "Or" gates to obtain:

And(sym0==65, sym1==85, sym2==84, sym3==72,  sym[0:3] ==

Not(And(sym4==84,sym5==79,sym6==68,sym7==0))) sym[4:7] !=

sym2==

sym2==

Or(

And(sym0

Not (sy

And(sym0

sym4==

And(sym0

sym4==

And(sym0

sym4==

—65, sym1==85,

m4==84)),

—65, sym1==85,

84, Not(sym5==79)),

—65, sym1==85, sym2==

84, sym5==79, Not(sym6

—65, sym1==85, sym2==

84, sym3==72,

84, sym3==72,

84, sym3==72,

==68)),

84, sym3==72,

84, sym5==79, sym6==68, Not(sym7==0)))

"AUTH" anc

"TOD\O")
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Results
• Existing tools perform amazing analyses

but are insufficient with regards to human readability:
. Z3 str and Z3.sexpr() are useful at times but often misleading /

dense

. Claripy readability is an improvement over Z3 (and handles end-ness
issues quite nicely) but the structure of the constraints are still unwieldy

. Constraint simplification algorithms exist primarily for efficiency

• There exist many promising techniques:
• Pattern-matching when symbolic variables are annotated with type

• Logic synthesis algorithms for simplifying and structuring

• Claim: readability of path-constraints is a largely
unexplored and important aspect of automated analysis

• See our paper and code / artifacts for more details
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A Difficult Task
• "Don't attempt to understand anything after

you've given it to an SMT solver"
• Indeed, the problem does appear challenging

• So to is the problem of understanding a binary
(never meant for consumption by anything other than hardware)

• "Please don't make me try and understand
that"
• Humans need software to simplify things for their consumption

• "Use something other than symbolic
execution"
• Yes! But we do need multiple approaches, and humans can

more easily leverage the power of symbolic execution and SMT
solvers
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Future Work

• Formalize the notion of human-readability
• Score answers so we can choose good ones

• Quantitative Evaluation of our ideas

• Analysis on real binaries

• Work further upstream?

• Extend ideas to more data-types

• Extend ideas to other domains
• E.g., strings
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Thank You
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