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Abstract—Advances in constraint solving have led to a pros-
perous time for static analysis. Powerful static analysis techniques
like symbolic execution can now approach the scale of analyzing
real commercial binaries - partly due to the efficient solving of
symbolic constraints, which returns a satisfying variable assign-
ment to those constraints or indicates that no such assignment
is possible. While these advances have made automated machine
analysis more scalable, the symbolic path constraints extracted
from real commercial binaries and from toy problems are
often unreadable for human analysts, who play an irreplaceable
role in real-world binary analysis today. The work presented
in this paper explores the problem of where path-constraints
come from and how we might make symbolic path constraints
easier for human analysts to digest and manipulate. This paper
also presents a novel technique for automatically simplifying
constraints based on conversion from the machine-centric bit-
vector domain to the analyst-centric mathematical integer domain.

In this paper we describe an impediment standing in
the way of our building automated tools to assist humans
performing binary analysis when using powerful tools like
symbolic execution and SMT solvers: human readability of
path constraints. Constraint solving is a core component of
symbolic execution, and numerous advances in the field of
binary analysis rely on these techniques[7]. Quite a lot of
research effort is taking place to strengthen solvers, improve
their efficiency, and extend the reach of tools upon which
they are based. At Sandia National Laboratories, we are using
symbolic execution and SMT solvers for a variety of missions
in cyber security, such as vulnerability analysis, mitigating
security threats, and strengthening application security.

This paper is informed by multiple efforts that aim to
lean on skilled humans who interact with static analysis tools.
Although we believe that the human analysts that work with
our tools may be computer scientists that have taken courses
in reverse engineering and will have some knowledge of
assembly language, we do not necessarily expect them to
understand all of the intricacies of symbolic execution, SMT
solvers, and internal representations for different instruction
set architectures. We want to enable our users to interact with
tools that use these approaches without having to understand
how to implement them.

Our key contributions: 1) The presentation of several
detailed examples highlighting existing challenges in path
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constraint readability; 2) The development of a prototype based
on pattern matching that illustrates the feasibility of converting
bit-vector constraints into the integer domain; 3) A brief study
showing the usefulness of logic synthesis algorithms for both
simplifying and transforming formulas and the development
of software that will allow others to experiment and build
upon these ideas; 4) A demonstration showing the value of the
information contained in the path constraints and a discussion
of the benefits of making them more human readable.

I. EXAMPLES

This paper is organized around three key examples which
we present here and reference throughout the paper. The
examples are small but are exemplars for the types of problems
we have encountered and are attempting to solve with the
tools we are building, in order to allow analysts to benefit
from symbolic execution. All three examples contain path
constraints that contain valuable information that a human
analyst would like to know and would also likely believe
should be available to them in human readable form.

Our first example: program analysis for a simple function,
demonstrates that even for very simple problems, human
readability of path constraints is problematic. Our second
example: network protocol extraction, demonstrates the value
of the path constraints that arise when symbolically executing
code whose input consists of symbolic byte arrays. Our last
example features a problem we have often encountered, the
difficulty of understanding a symbolic path constraint for a
string not being equal to a specific value. This example is used
later when we discuss why logic synthesis algorithms can be
of value.

All of our tools use angr [18] to perform symbolic execu-
tion of an X86 binary created from our source-code. We use
Z3 [12] as the back-end constraint solver for Claripy [3] which
wraps Z3. All of the examples, results, and code described in
this paper is publicly available [4].

A. Program Analysis for a Simple Function Example

Consider the simple function shown in in Listing 1 that we
analyze using symbolic execution. The corresponding assem-
bly language is shown in Listing 2. We carefully use Claripy
to set up “y” as a symbolic variable that is structured as a
32-bit value that represents a 32 bit little-endian integer, see

Listing 3.
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0000000000400526 <sublor2>:

400526: push rbp

400527: mov rbp, rsp

40052a: mov DWORD PTR [rbp-0x14],edi
40052d: mov eax,DWORD PTR [rbp-0x14]
400530: mov DWORD PTR [rbp-0x4],eax
400533: sub DWORD PTR [rbp-0x4],0x1
400537: cmp DWORD PTR [rbp-0x4],0x5
40053b: jle 400541 <sublor2+0xlb>
40053d: sub DWORD PTR [rbp-0x4],0x1
400541 : mov eax,DWORD PTR [rbp-0x4]
400544: pop rbp

400545: ret

Listing 2: Assembly language for Listing 1

y = claripy.BvVS("y", 32)

symbolic_integer_le = claripy.Concat (
claripy.Extract(7,0,v),
claripy.Extract (15,8,y),
claripy.Extract (23,16,y),
claripy.Extract (31,24,y))

call state = project.factory.call_state(
0x400526, symbolic_integer_le,

9

Listing 3: Python code for symbolic “y” parameter

int sublor2(int y) {
int x = y;
X=—;
if (x > 5)
X——;
return x;

Listing 1: A simple function for analysis

We then perform our symbolic execution, stepping angr a
single instruction at a time. We can ask angr for the values
of variables at various points in the execution. For example,
after stepping past the instruction at 0x400533 we can ask
angr the value of “x” using the code in Listing 4 to obtain
the symbolic results shown in Expression 1 to see that “x” is

“y_ln:

state.memory. load(
state.solver.eval (state.regs.rbp) -4, 4,
endness=archinfo.Endness.LE)

Listing 4: Code to examine “x” after first decrement

printing symbolic values and constraints. Claripy is formatted
nicely and does an especially good job of handling issues
involving endness when symbolic values are not properly
structured (e.g., it supports “Reverse” ). Both methods use
infix notation and at times hide some of the details in the
expression, for example the difference between bit vector
addition and integer addition. Both also truncate extremely
lengthy outputs. In this paper we report most results using
the Z3 formatter that creates s-expressions. An s-expression
is a general purpose way to represent a nested list of data
[15]. S-expressions use prefix notation and in Z3 often contain
substitutions, as can be seen in Expression 2 in its declaration
of “a!l” “a!2”, and “a!3”. For humans readability an s-
expression may be the least human readable but in this paper
the expressions are shorter and more precise. In cases where
an equivalent expression is noticeably more readable when
formatted using a string method, we have done so using Z3.

If we run until function exit (i.e., 0x400544) and examine
the two symbolic states that result from symbolic execution, we
can examine the EAX register to obtain results similar to those
shown in Expression 1 (e.g., showing that the function returns
“y—1” or “y-2"), and we can examine the path constraints
to see under what conditions these values are returned. For
example, the path constraint when the function returns “y—2"
is shown as a Z3 s-expression in Expression 2

Note that the path-constraint uses bit operations, an if-
then-else, and several extracts of the sign bit of bit-vector
arithmetic results. As such, this path constraint is very difficult
to read. How long might it take someone to manually verify
that “y > 67 is a simpler equivalent expression for this path
constraint? Could the authors have even intentionally added a
mistake to this representation of the condition, just to prove
that no one would notice? Using two simplification tactics that
are built into Z3 (i.e., “simplify”, and “ctx-solver-simplify”),
we can create many different expressions that are equivalent
to Expression 2, but none of them are easily understood or
noticeably smaller.

For readers interested in knowing where this path constraint
comes from, we give a brief summary. The path constraint
is “True” until angr symbolically executes the instruction at
0x40053b . The instruction is symbolically executed using
angr’s intermediate representation VEX [17] (which allows
angr to support multiple architectures). The VEX statements
shown in Listing 5 are difficult to fully understand without
context, but show that the path constraint originates from the
check on tO, which is derived from t5, which is obtained

in Claripy: <BV32 Oxffffffff + y>
as 723 s-expr: (bvadd #xffffffff y)
as 723 __str__: 4294967295 + y

@ 9

Expression 1: Symbolic value of “x” using Listing 4 printed
in three different formats.

The three expressions shown in Expression 1 are equiv-
alent but were printed using three different methods. For all
three, and throughout this paper, we first remove angr’s name
mangling of symbolic variables. Both Claripy and Z3 provide
Python string methods (i.e. they implement “___str__ ) for

(let ((a!l (bvxor ((_ extract 31 31)

(bvadd #xffffffff y)) ((_ extract 31 31)

(bvsub (bvadd #xffffffff y) #x00000005))))
(a!3 (ite (= #x00000000

(bvsub (bvadd #xffffffff y)

#x00000005)) #bl #bO0)))

(let ((a!2 (bvxor ((_ extract 31 31)

(bvsub (bvadd #xffffffff y) #x00000005))

(bvand ((_ extract 31 31)

(bvadd #xffffffff y)) a'!l))))

(and (= #b0 (bvor a!2 a'!3)))))

Expression 2: Path Constraint when “y—2" is returned




______ IMark (0x40053b, 2, 0)

01 | t1l = GET:1I64 (cc_op)

02 | t2 = GET:164 (cc_depl)

03 | £t3 = GET:164 (cc_dep2)

04 | t4 = GET:164 (cc_ndep)

05 | t5 = amd64g_calculate_condition (
AMD64CondLE,
tl,t2,t3,t4):Ity_I64

06 | t0 = 64tol(thH)

07 | if (t0) { PUT(rip) = 0x400541;

Ijk_Boring }

technique may be to inspect the resultant expressions (i.e., path
constraints and values) looking for patterns that suggest types.
We present an example that casts I-A as this type of problem,
i.e., in Listing 7 we introduce marshalling and buffers into
Listing 1.

Listing 5: VEX code used when symbolically executing the
code in Listing 2 at 0x40053b

ULong amd64g_calculate_condition (
ULong/+AMD64Condcode+/ cond,
ULong cc_op,

ULong cc_depl,
ULong cc_dep?2,
ULong cc_ndep ) {
ULong rflags;
rflags = amd64g_calculate_rflags_all_ WRK(
cc_op, cc_depl, cc_dep2, cc_ndep);
ULong of,sf,zf,ct,pf;
ULong inv = cond & 1;

Sl

= rflags >> AMD64G_CC_SHIFT_S;
of = rflags >> AMD64G_CC_SHIFT_O;
zf = rflags >> AMD64G_CC_SHIFT_Z;

return 1 & (inv ~ ((sf = of) | zf)); }

unsigned char inbuf[4];
unsigned char outbuf[4];

read (0, inbuf, 4);
int xri = (int«*)&inbuf[0];
int x = *ri;
Xy
if (x > 5) {
X——y
}
int xwi = (int~)&outbuf[0];
*wWwi = x;
write(l, outbuf, 4);

Listing 6: Calculation of t5 in Listing 5 is dependent upon
three register flags

by calculating the less-than-or-equal conditions for the jump
instruction. This in turn is based on an evaluation of the
register flags arising from a comparison. The return value of
the function shown in Listing 6 is the path constraint and a
comparison of the code structure and the structure of the path
constraint in Expression 2 shows a direct correspondence. The
path-constraint s-expression contains “(bvor a!2 a!3)”
and the code contains “ (sf ~ of) | =zf)” To summarize,
“a!3” corresponds to the zero-flag, and “a!2” is the xor of
the sign-flag and overflow flag.

B. Read-to-Write Analysis Example

One of our applications for symbolic execution involves
analyzing execution paths from buffer reads to buffer writes to
support network protocol extraction. Our approach to this prob-
lem isolates individual paths (or sets of paths) and attempts
to describe how, and under what conditions, what is written
is related to what is read. Our buffers are initialized using
sequences of symbolic byte variables (e.g., “sym0”, “syml1”,
“sym2” ,...). For this problem, we do not have source code
(unless we create our own examples), and one of our goals is to
assist an analyst in creating a succinct summary of the path-
constraint, which will often depend on elements of the read
buffer (e.g., the message format). To do this, we can at times
infer types for some elements of the symbolic byte sequences
by looking at known function signatures. We believe a valuable

Listing 7: Similar to Listing 1 with marshalling

When we symbolically execute the binary for
Listing 7 the symbolic expressions for the output
buffer are based on the input buffer. For example,
one of the symbolic states has “outbuf[3]” equal to
“((_ extract 31 24) (bvadd #xfffffffe

(concat sym3 sym2 syml symQ)))” and this
symbolic value weakly hints that “inbuf” and “outbuf”
may both be little-endian. The path constraint, shown in
Expression 3 and simplified in Expression 4 is, as we saw
with Expression 2 , muddled by precise but unreadable bit
vector operations. However, the presence of four symbolic
bytes in a concat sequence that is applied in an arithmetic
expression provides stronger evidence that we may have
discovered an integer value, and in little-endian order because
the sequence is descending (e.g., from “sym3” to “sym0”).

(let ((a!l (bvadd #xffffffff (concat

(concat (concat sym3 sym2) syml) sym0O))))

(let ((a'!'2 (bvand ((_ extract 31 31) a!l)
(bvxor ((_ extract 31 31) a'l)

((_ extract 31 31)

(bvsub a!l #x00000005))))))
(let ((a!3 (bvor (bvxor ((_ extract 31 31)
(bvsub a!l #x00000005)) al!2)
(ite (= #x00000000 (bvsub a!l #x00000005))
#bl #b0)))) (= #b0 a!3))))

Expression 3: Path Constraint for Listing 7

and (= a!l (not (or a!l al!2)))
not (and (= sym0 #x06)
= sym2 #x00)

(= syml #x00)
(= sym3 #x00)))))

(let ((a'!'l (= ((_ extract 31 31)
(bvadd #xfffffffa

(concat sym3 sym2 syml sym0Q))) #bl))
(a!2 (= ((_ extract 31 31)

(bvadd #xffffffff

(concat sym3 sym2 syml symO))) #b0)))
(

(

(=

Expression 4: Simplified Path Constraint for Listing 7




C. Authentication Example:

The example shown in Listing 8 also comes from network
protocol extraction. Due to short-circuiting, there are four
distinct paths in the symbolic execution of the binary that lead
to an authentication rejection outcome. Our analysis combines
these four paths and the resultant path-constraint is shown in
Expression 5 formatted as a Z3 string.

char inbuf[64];

num_bytes = read (0, inbuf, 64);

int authreq = (inbuf[0]=='A' &&
inbuf[1l]=='U"' &&
inbuf[2]=="T"' &&
inbuf[3]== 'H'");

int good_password = (inbuf[4]=="T' &&

inbuf[5]=="0"' &&
inbuf[6]=='D"' &&
inbuf[7]==0);

if (authreq && !good_password) {

// send authentication rejection

Listing 8: Authentication example

Or (

And (sym0==65, sym1==85, sym2==84, sym3==72,
Not (sym4==84)),

And (sym0==65, sym1l==85, sym2==84, sym3==72,
sym4==84,Not (sym5==79) ),

And (sym0==65, sym1==85, sym2==84, sym3==72,
symé4==84, sym5==79, Not (sym6==68) ),

And (sym0==65, sym1==85, sym2==84, sym3==72,
sym4==84, sym5==79, sym6==68, Not (sym7==0) ) )

Expression 5: Rejection Path Constraint for Listing 8

II. OUR APPROACH

Today’s solvers are powerful highly optimized tools that are
very good at answering questions such as “Is this expression
satisfiable?” and, if so, “Provide a model assignment”. Existing
tools leverage these capabilities and put them to good use.
However, these solvers are not well suited to having people
read and interpret their results. Simplification algorithms exist,
but the motivation for these algorithms for the most part is
to improve performance. Our examples allow us to illustrate
many points:

e When working in the bit-vector domain, negative
numbers are ignored, making string representations of
73 constraints very difficult to read (i.e., 4294967295
instead of -1 using Python Z3’s __str__ method as
shown in Expression 1). For this reason, we have
reported most of our results using s-expressions.

e Even very simple statements in the integer domain,
when expressed as bit vectors, become nearly impos-
sible for humans to read. The presence of concat,
extract, if-then-else, and complex tests on the sign bit,
and other more complex logical constructs, result in
statements that are not readable. This is true even for
expressions like “y > 67 .

Of course binary analysis of real programs will only compli-
cate matters further, and a very reasonable conclusion would
simply be that one should never attempt to make sense of
bit-vector expressions. As such, humans may interrogate the
solver, but not examine what the solver knows. We reject this
perspective for a number of reasons:

e  For small academic “toy” problems, researchers them-
selves (i.e., as opposed to other analyst users) need the
ability to read constraints.

e  When working to build tools that put humans in the
loop, we believe strongly that simple problems should
have simple answers, even if complex problems do
not.

o  The expressions held by the solvers are sometimes the
precise answers being sought.

e It seems strange for a community dedicated to mak-
ing sense of a binary (i.e., the byproduct of human
engineering that one could argue was never intended
for consumption by anything other than hardware) to
argue that one should not attempt to make sense of a
solver’s constraints.

e  These are hard problems, and solutions will inevitably
rely on multiple approaches and, in many cases, on
finding agreement across multiple techniques. Thus,
analysis of the constraints themselves is an alternative
and potentially fruitful activity.

Thus we believe:

e  Humans should have the ability to say to the computer
“Spend some time (e.g., as much as 30 minutes)
looking at this constraint and see if you can explain
it more clearly”

e  Working in the bit-vector domain is precise, but hu-
mans need to be able to tie the bit-vector statement
back to other domains, even if the statement in the
other domain is not precise.

e Humans also need to be able to ask solvers to com-
pare domains for equality and/or to test domains for
equality.

For some of the problems we are interested in, we have type
information, for example when we knew that RBP was a frame
pointer that could be used to access a 32-bit little-endian value
in Listing 2. For our work in network protocol abstraction,
we hope to provide a high level abstraction of the network
protocol; and, for this, type information is essential but will
have to be inferred because we do not have source code.

A. Rough Prototype for Domain Translation

We have built a rough prototype for domain translation
using the Python Z3 library that essentially performs type-
influenced pattern matching on Z3 internal expressions. The
prototype was built as a proof of concept and consists of a few
thousand lines of Python code. Variables are annotated with
type information, e.g., using definitions in [2]. We anticipate at
some point rewriting this library in Z3 C++ or writing the li-
brary as a fully independent tool that takes and produces SMT-
LIB 2 expressions. Fundamentally, the rewriter has a simple



goal: replace bit-vector constructs with higher level constructs,
e.g., given a bit-vector constraint with type information:

(and (= ((_ extract 31 24) |y_intle:32]|) #xfe)
(= ((_ extract 23 16) |y_intle:32|) #xff)
(= ((_ extract 15 8) |y_intle:32]|) #xff)
(= ((_ extract 7 0) |y_intle:32]) #xff))

We can convert from the bit-vector domain to the integer
domain (in this case “y = -2” ). We do this by recogniz-
ing concats of extracts and searching for patterns where a
conversion is sensical, even if it is not precise. For example,
we have patterns that understand that concatenation with 0 is
multiplying by two, that checking a sign bit and comparing it
to an if-then-else on a condition yielding O or 1 is a statement
about the condition and an inequality. Some of the patterns
are quite simple, such as those that transform arithmetic or
inequalities.

Our prototype [4] is at present very simple, but it has
proven capable of handling many examples that arise in our
problem domains. On occasion constraint simplification can
make pattern recognition more difficult (e.g., when only some
bits of a larger bit-vector are present in a path constraint). To
some extent, we have invested time in understanding complex
bit-vector expressions with the hope that at some point we
can save others from having to do so. For now, we have
demonstrated feasibility, but much more work is needed to
handle additional data types and to develop a working tool.

B. Using Logic Synthesis Tools

In order to make path constraints more readable, we intend
to take advantage of logic synthesis tools, which can both
simplify and manipulate boolean expressions.

We are currently using the logic synthesis tool SIS [16].
Using algorithms that attempt to minimize the number of
literals in a solution, as well as algorithms that map solutions
to specific component libraries, we can have SIS automatically
generate solutions that we believe have been optimized for
human readability, or are ready for domain translation. It
is interesting that the replacement tool for SIS, ABC [9],
may not be as ideally suited because it has less focus on
“Advanced combinational logic synthesis (extraction of shared
logic, don’t-care based optimization, Boolean decomposition,
etc)” [1].

The need for “don’t care” based optimizations is rooted in
work done over twenty years ago by one of the authors on
simplifying symbolic timing constraints for human readability
[6]. In combinational logic, “don’t cares” allow a user to
specify input values that will never occur (in Karnaugh maps
one marks the output with an “X”).

We provide a simple example to demonstrate how
logic synthesis can minimize boolean expressions con-
taining integer inequalities. Given “(y > 6 or y = 6)
and not (y = 6)” we can rewrite this expression as a
simple combinational logic expression over two literals:
“(a+b)b"'” where “a” is label for “y > 6” and “b” is a
label for “y = 6” . Furthermore, we can supplement our
knowledge by having the solver prove unsatisfiability for the
product “ab” which is thus a “don’t care”, i.e., it is not possible

for “y > 6” and “y = 6” to both be true. We can then
formulate the constraint simplification problem as choosing
the best implementation for the truth table:

=
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Which, in this case, is just “a” , i.e., our expression can be
simplified to just “y > 6” . The formal underpinnings of this
approach are described in [14]. We have recently implemented
this algorithm in Python using Z3 and are evaluating its
potential to simplify complex path constraints (in both the bit-
vector and integer domains). The constraint solver is used to
find don’t cares and thus the approach can be computationally
expensive if one examines all combinations of literals in an
expression, but in practice most don’t cares involve just a few
literals.

Logic synthesis tools can also be used to manipulate
boolean expressions into specific forms using gate libraries that
bias solutions towards the use of specific logic gates. We intend
to implement multiple mapping strategies but at present have
tested a mapping designed to expose constraints that contain
two components — a string being equal to some value, and a
string being not equal to some value, like we see in Listing 7
and Expressions 3 and 4.

Using logic synthesis tools as a base allows us to construct
algorithms with the property that humans can adjust how much
time is spent performing simplifications and transformation
looking for better answers. This is an important principle for
our approach.

III. PRELIMINARY RESULTS

For example I-A, our tools are able to transform the
bit-vector path constraint shown in Expression 2 into the
integer domain path constraint shown in Expression 6. This
expression can be simplified using Z3 tactics (e.g., repeat and
ctx-solver-simplify) to “And (6 <= y, Not(y == 6))”
This result is Z3’s preferred answer because it avoids strict
inequalities, viewing them as a detriment to performance. This
expression can be further simplified using either additional
pattern recognition or simplification using logic synthesis to
what a human would consider a readable answer “y > 6.

Not (Or (Or (And (-6 + yv < 0, Or(y >= 1,
And (Not (1 <= y), Not(6 <= vy)),

And(y >= 1, 6 <=1vy))), And(-6 + y >= 0,
Not (Or(y >= 1, And(Not(l <= vy),

Not (6 <= vy)), And(y >= 1, 6 <=1y))))),
y == 6))

Expression 6: Expression 2 translated to integer domain

We are able to obtain this result for many different variants
of Expression 2 that we constructed by changing the order in
which we repeatedly apply Z3 simplify and the ctx-solver-
simplify tactic.




Combining this with our analysis of the contents of EAX,
we achieve a totally correct statement: “when y > 6 the
output is y — 27 . For the other path, “when y < 6” the
output is y — 1”7 . This statement is correct in the integer
domain, but it is not totally sound due to the possibility
of underflow. Our perspective is that analysts will want this
answer to get a general sense of the constraint, as well as
a more detailed and simplified bit-vector answer if they are
investigating bit-vector effects and potential vulnerabilities that
might arise as a result.

For example I-B, a structural analysis of the path-constraint
detects a concat sequence from “sym3” to “sym0” . When
we see this expression used in an arithmetic expression, we
record a strong hypothesis that it represents a 32-bit little-
endian integer. We then replace individual symbolic bytes with
an extract of a new 32-bit symbolic variable that we create,
and see if our tools can find a possible domain translation. For
this example we report:

And (6 <= sym_[0-3]-?_intle:32,
Not (sym_[0-3]-?_1intle:32 == 6))

One thing we can do with some success is use the
solver to see if our conversion from one domain to an-
other is sound. Given a variable relationship and a value
relationship, we ask the solver to see if it can satisfy the
variable relationship while breaking the value relationship.
Using the code in Listing 9 we can have the solver check the
satisfiability of “variablesP and not valuesP” and
because this is solvable, we know there are values in the
bit-vector domain where the result is not equivalent to the
integer domain result. The solver can provide a model, i.e.,
“i_y =4294967295, bv_y = #xffffffff”.

#a i1s a label for 'symO==65' (A),
#b is a label for 'syml==85' (U),
#c is a label for 'sym2==84' (T),
#d is a label for 'sym3==72' (H),
fe i1s a label for 'sym4==84' (T),
#f is a label for 'sym5==79' (0),
#g is a label for 'sym6==68' (D),
#h is a label for 'sym7==0"'

INORDER = a b ¢ d e £ g h;
OUTORDER = f1;

fl = (abcde'") +
(a bcdefg") +

(abcdef'") +
(a bcde fgh');

Listing 10: Input file for SIS for Expression 5

gates. SIS was able to find a solution involving only “And”
and “Not” as shown in Listing 11. As a Z3 expression, the
solution is:

And (sym0==65, syml==85, sym2==84, sym3==72,
Not (And (sym4==84, sym5==79, sym6==68, sym7==0) ) )

This representation seems amenable to string conversion (e.g.,
“sym[0:3]="AUTH' and sym[4:7]!="TOD\0"'” ). We
believe that in many circumstances when analyzing protocols
the path constraints will contain expressions for message fields
that are checked for string equality or inequality.

[152] = e £f gh
[220] = [152]"
{f1} = [220] a b c d

iy = z3.Int('y")
bv_y = z3.BitVec('ybe32',32)

variablesP = (z3.BV2Int (bv_y) == i_y)
i_value = i_y + 1

bv_value = bv_y + z3.BitVecVal(l,32)
valuesP = (z3.BV2Int (bv_value) == 1i_value)

Listing 9: Python code for checking domain equivalence for
an increment in bit vector and integer domains.

Domain equivalence may not in general hold, but
we often have constraints upon our variables (e.g.,
“y > 6 or y < 6”), and these constraints can be applied
when checking for domain equivalence. Thus, for Listing 1 for
any “y” input satisfying “y > 6”7 ,we know that “y - 27 1is
the result. Unfortunately, checking these equivalences is very
computationally expensive. Thus, we provide the ability to
check using values, e.g., the user supplies a value to see if it
can be used to prove that the expressions in different domains

are not precisely equivalent.

For example I-C, we created 8 labels for each equality
expression in Expression 5 that states that a symbolic byte has
a specific (ASCII) value. We then asked SIS to simplify the
.eqn file shown in Listing 10

We ran a simple SIS script that did a “full_simplify”, a
“decomp -g” followed by a “map” operation on a gate library
we constructed that biased the solution to not use any OR

Listing 11: Output from SIS script on Listing 10

IV. PREVIOUS WORK

The SMT logics we are most interested in include closed
quantifier-free formulas over the theory of fixed-size bit-
vectors (QF-BV) and quantifier-free integer arithmetic (QF-
NIA). We refer readers to [8], and specifically the description
of logics [5].

Most of our work is based on Z3 [12]. Simplification
routines are present in most SMT libraries, however, “the scal-
ability of many static analysis techniques requires controlling
the size of the generated formulas throughout the analysis”
[13], and thus support for simplification is provided in order for
the solver to be more performant. Some solvers mention human
readability, e.g., KLEE [10] has a few options to make SMT-
LIB 2 statements easier to read (e.g., ‘-smtlib-human-readable’
) but no existing tools provide support for deep analysis aimed
at simplifying constraints for human readability. We have
come across online posts that discuss the notion of converting
between domains (e.g., from QF_ABV to AUFNIRA) but
are aware of no tools that attempt to perform these types of
conversions.

The selective symbolic execution tool S2E is supported
by a bitfield-theory expression simplifier that performs limited
types of conversion using both bottom-up and top-down anal-
ysis of the expression trees and “is an example of applying
domain-specific logic to reduce constraint solving time” [11].




V. SUMMARY

In this paper we presented several examples to demon-
strate our belief that tools to create human readable path-
constraints would be very valuable contributions to the static
analysis community. We also presented evidence suggesting
that such tools can be created. We can do better than having
every individual project contemplate the implementation of
“domain-specific” simplification strategies (while possible, we
have found it difficult to find individual projects that have
undertaken such an effort). Instead, we believe that many
general purpose techniques can be developed for broad use,
and that, for many problems in static binary analysis, it will
be possible to create human readable path constraints that can
be used for many different mission problems.

We believe that when simple solutions are available, it is
imperative that tools present simple answers. We do not advo-
cate that humans become experts at interpreting complex solver
constraints — rather we want to make available algorithms that
humans can choose to use to analyze constraints to expose
simple facts when they have been accumulated (e.g., using
tools like symbolic execution). When answers are complex,
we anticipate humans not wanting closed-form solutions, but
rather the ability to query a complex solution in order to
facilitate additional analysis.

There are many future research directions suggested by
our initial investigations into creating human readable path-
constraints. A formal definition of “human readability” and the
development of metrics would allow us to score path-constraint
expressions and penalize ones that are deemed less readable.
The score could be based on the elements of the expression
(e.g., a penalty for use of ’bvxor’), the depth and complexity
of the expression, etc. Instead of working with the patterns
that arise from symbolic execution of the constraints, we could
work further upstream and alter the constraints that are created
within angr when symbolically executing a VEX instruction,
e.g., as shown in the origin of the path constraint in section
I-A.

It may be that by injecting constraints that are easier for
humans to read for a given instruction, we can create more
readable path constraints and trade off some efficiency to
achieve this goal. It is also quite likely that by examining the
constraints that are added we can enrich our understanding
of the patterns we need to recognize. It is also possible that
focusing on the readability of the bit-vector path-constraints
would be another viable approach for most of our tools and
allow us to stay in the bit-vector domain.
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