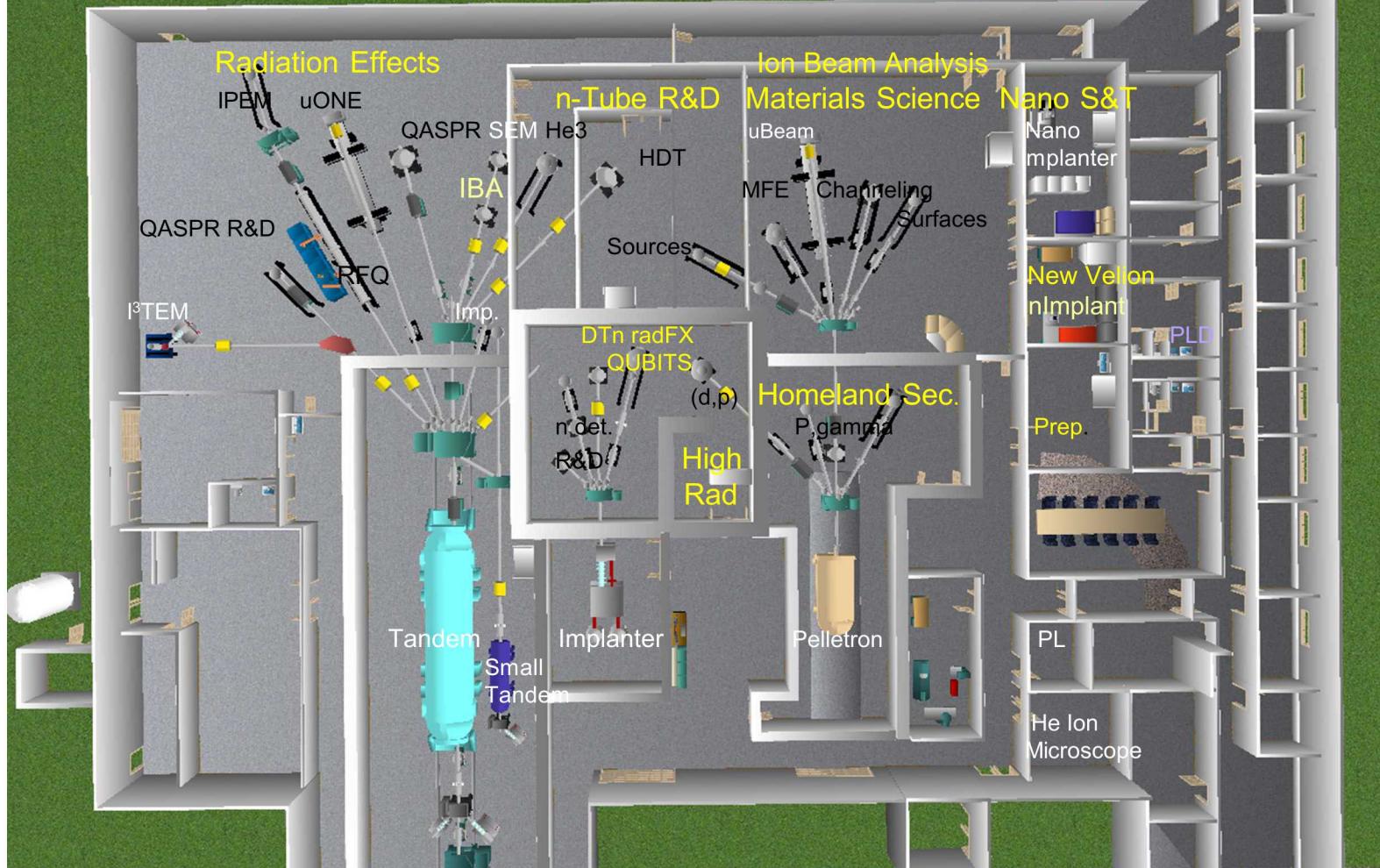


Ion Beam Analysis Activities at the Sandia Ion Beam Laboratory

William R. Wampler

Sandia National Laboratories, Albuquerque NM


**Consultancy Meeting in Support of the New Coordinated Research Project
on Development and Application of Ion Beam Techniques for Materials
Irradiation and Characterization Relevant to Fusion Technology**

IAEA Vienna, Austria 2/24/2020

Outline

- Overview of experimental facilities at the Sandia IBL
 - Accelerators
 - End stations
- Experimental methods used for MFE, illustrated by a few projects
 - DiMES in DIII-D
 - He3 NRA for light-element depth profiling

Sandia's Ion Beam Laboratory (IBL)

- Seven accelerators producing ions ranging in energy from a few keV to 380 MeV
- >20 specialized end-stations

Ion Accelerators

- HVE-Pelletron EN Tandem (6 MV) and negative ion sources for various ion types
- Single-ended NEC Pelletron (3 MV) Model 3UH-2 (MFE)
- Small Tandem (1MV)
- HVEE 300 kV implanter
- Nano implanters
 - A&D 10-100 kV, 150-10 nm beam
 - Raith Velion 5-35 kV, ~ 6 nm beam @ 10 kV (New)
- He ion microscope (New)

End Stations

- IBA for MFE, RBS/NRA on probes or whole tiles from DIII-D (16 x 26 cm translation)
- Irradiation to produce displacement damage, high dpa or short pulsed (>10ns)
- Microbeams (~ 1-5 μm depending on count rate)
- Nanobeams for single ion implantation (QBIT research)
- I³TEM – TEM with heavy ions from tandem and low-energy light ions (H & He) from Colutron
- Ion Channeling (with UHV, AES, LEED, and gas dosing)
- He ERD for HDT depth profiling
- DLTS to characterize carrier emission rate from defects in semiconductors
- 14 MeV DT neutron production (~5x10⁸ n/cm²/s) to test semiconductor device response

MFE end station

Work for MFE at the Sandia IBL is long-standing and broad in scope

- DIII-D DiMES Erosion/Redeposition
- EAST/MAPES Erosion/Redeposition for ITER
- W in WEST
- He³ NRA for light-element depth profiling
- C¹³ methane injection in DIII-D
- Li and D retention in NSTX
- Enhanced retention of DT at displacement damage in W
- Kinetics of HDT uptake & release, surface recombination & effect of contaminants
- He ERD for HDT profiling

IBA is used to study PWI in Tokamaks

- To measure changes in near-surface composition of PFCs, providing insight into material erosion/transport/redeposition by the plasma, and data for development and validation of codes used to extrapolate plasma-material response to reactor conditions.
- Main limitation is that IBA is ex-situ and hence not real-time. Analysis of PFCs are typically either:
 - on tiles from many locations removed after long exposure to various plasma conditions, or
 - on probes exposed to well-defined plasma conditions, but only at one location.

ION BEAM ANALYSIS TABLE OF THE ELEMENTS

1	3	H
1	2	H
1	1	H
1	1	E 432 N 543
3	7	Li Be
R 332 E 432 N 543	R 332 E 432 N 432	R 332 E 432 N 432
11	23	Na Mg
N 632 R 332	R 332 P 333 K 1.254	R 332 P 333 K 1.254
19	39	K Ca
H 52 R 432 P 444	H 62 R 432 P 544	K 3.691 K 4.090
37	85.5	Rb Sr
H 72 R 432 P 644	H 72 R 432 P 644	K 13.394 K 14.164 K 14.957 K 15.774
55	133	Cs Ba
H 82 R 532 P 444	H 82 R 532 P 444	L 4.286 L 4.467
87	223	Fr Ra
H 82 R 532 P 644	H 82 R 532 P 644	L 12.029 L 12.338
88	226	Ac
		L 12.050

Table of Selected Nuclear Reactions

Z A Reaction

- 1 H 1 (19F,γ)
- 1 H 2 (3He,p)
- 1 H 3 (p,ν)
- 2 He 3 (3He,pp')
- 2 He 4 (11B,n)
- 3 Li 7 (p,γ)
- 4 Be 9 (p,γ)
- 5 B 11 (p,γ)
- 6 C 12 (3He,p)
- 7 N 14 (p,γ)
- 9 F 19 (p,γ)
- 10 Ne 20 (p,γ)
- 11 Na 23 (p,γ)
- 13 Al 27 (p,γ)
- 15 P 31 (p,γ)

U.S. DOE User Facility 975

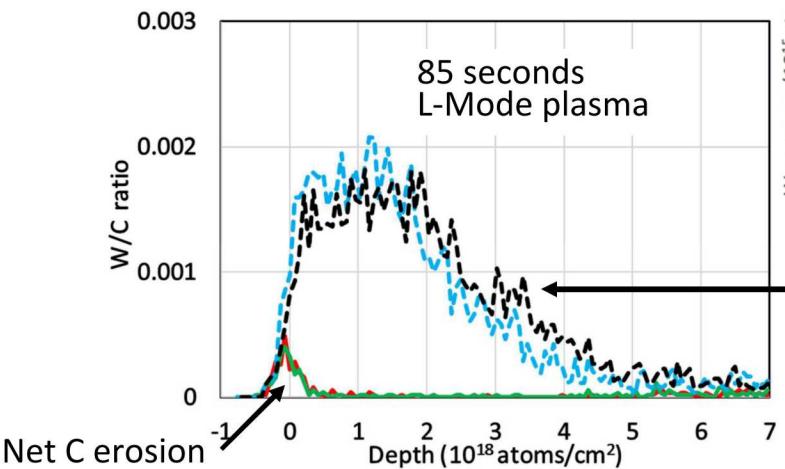
ION BEAM MATERIALS RESEARCH LAB
Sandia National Laboratories

Contact:

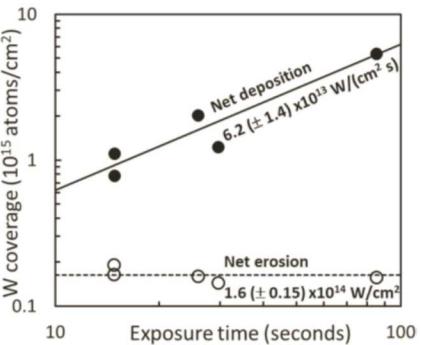
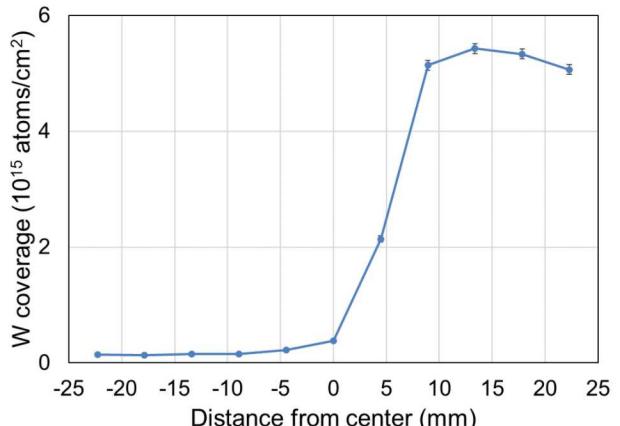
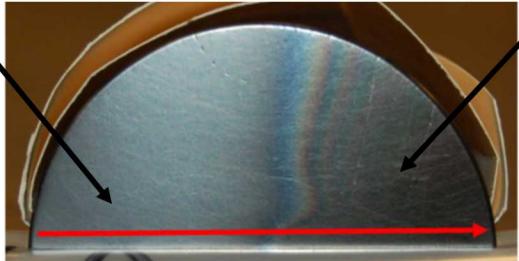
Ed Bielejec 505-284-9256
Barney Doyle 505-844-7568
Bill Wampler 505-844-4114
George Vizkelethy 505-284-3120

2	3	He
N 333 E 432	R 332 E 432 N 232	R 332 E 432 N 332
5	10.8	B
R 332 E 421 N 433	R 432 E 421 N 342	R 432 E 421 N 342
13	27	Al
N 53.1 R 332 P 433	R 332 P 433 K 1.487	R 332 P 444 K 1.740
32	17	Si
R 332 P 433	R 332 P 444 K 2.015	R 332 P 444 K 2.308
16	32	P
R 332 P 433	R 332 P 444 K 2.622	R 332 P 444 K 2.957
7	14	C
R 332 E 421 N 433	R 432 E 421 N 342	R 432 E 421 N 342
8	16	O
R 332 E 421 N 433	R 432 E 421 N 342	R 232 N 643 R 332 N 332
19	20	F
R 332 E 421 N 433	R 432 E 421 N 342	R 232 N 332
34	79	Ne
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 11.923
35	80	Kr
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444
75	34	Ge
R 332 P 444	R 332 P 444 K 9.855	R 332 P 444 K 11.221
76	35	As
R 332 P 444	R 332 P 444 K 10.543	R 332 P 444 K 11.923
77	36	Se
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
84	36	Br
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444
112	54	Kr
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444
122	53	Br
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
128	53	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
127	54	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
119	51	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
122	52	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
119	51	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
122	52	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
128	53	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
127	54	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
119	51	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
128	53	Sn
R 332 P 444	R 332 P 444 K 11.221	R 332 P 444 K 12.648
127	54	Sb
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
128	53	Te
R 332 P 444	R 332 P 444 K 12.648	R 332 P 444 K 11.111
127	54	I
R 332 P 444	R 332 P 444 K 11.923	R 332 P 444 K 12.648
122	52	Xe
R 332 P 444	R 332<br	

RBS and He³ NRA are the principle IBA techniques used for MFE


Factors influencing measurement precision for RBS & NRA

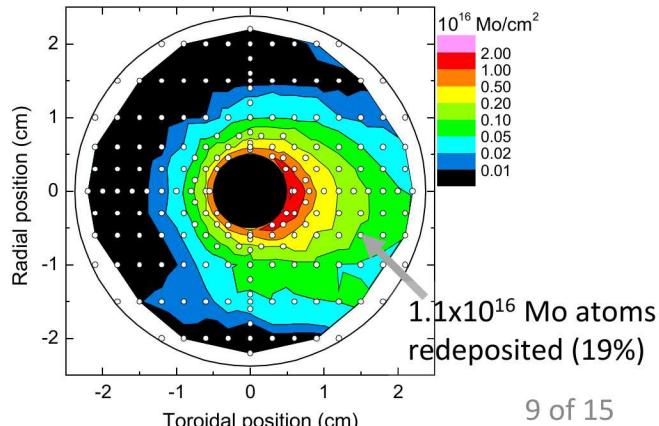
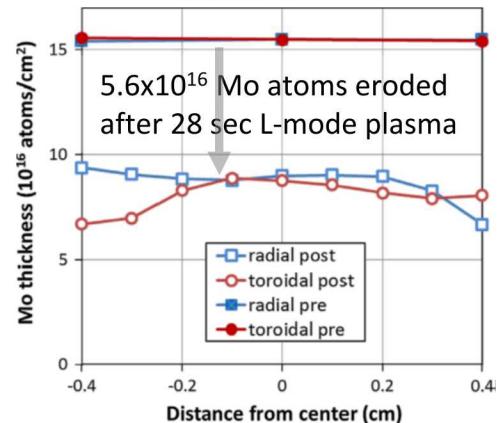
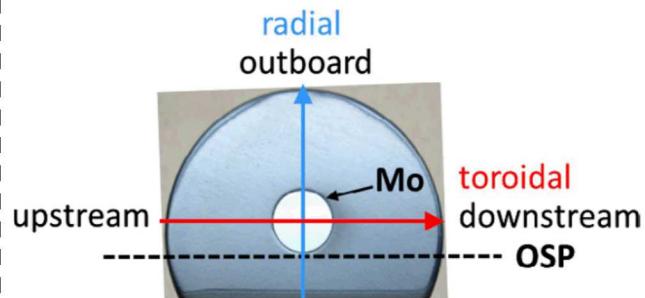
- Spectrum analysis is simpler if thin-target approximation is adequate.
Otherwise, SIMNRA with energy dependent cross section and stopping may be adequate.
- Best to use RBS for heavy elements on light substrates, NRA for light elements.
- Coverage ratios are more accurate than absolute quantities since some uncertainties cancel.
- For absolute quantities, need reaction cross section, number of incident particles (from integrated beam current) and detector solid angle. Good practice to also use a thin-film reference sample of known coverage, which becomes the only option when the cross section is unknown.
- Cross sections for RBS are more likely to be accurate when they are near Rutherford, which limits the incident ion energy and depth of analysis.
- Thickness of a surface-layer may be determined from reaction or scattering yield, or from ion energy loss if composition is known.




DIII-D DiMES Erosion/Redeposition (RBS)

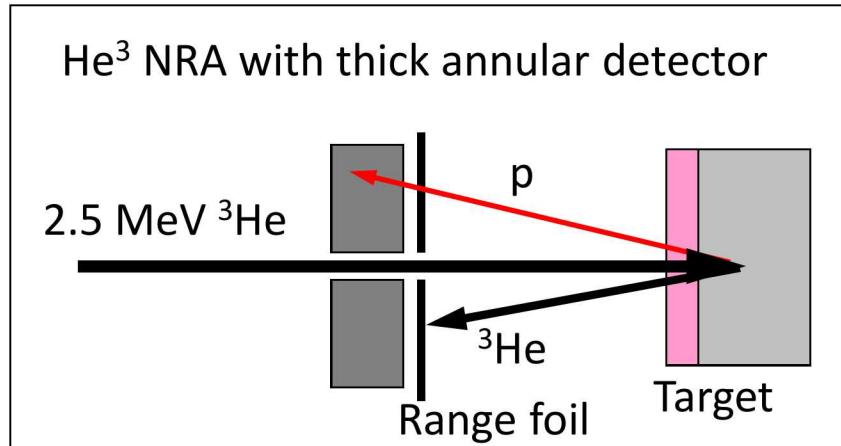
Toroidal Tungsten Ring Experiment

Phys. Scr. T170 (2017) 014041 PFMC16

Net C erosion on inboard side. W coverage quickly reaches steady-state.

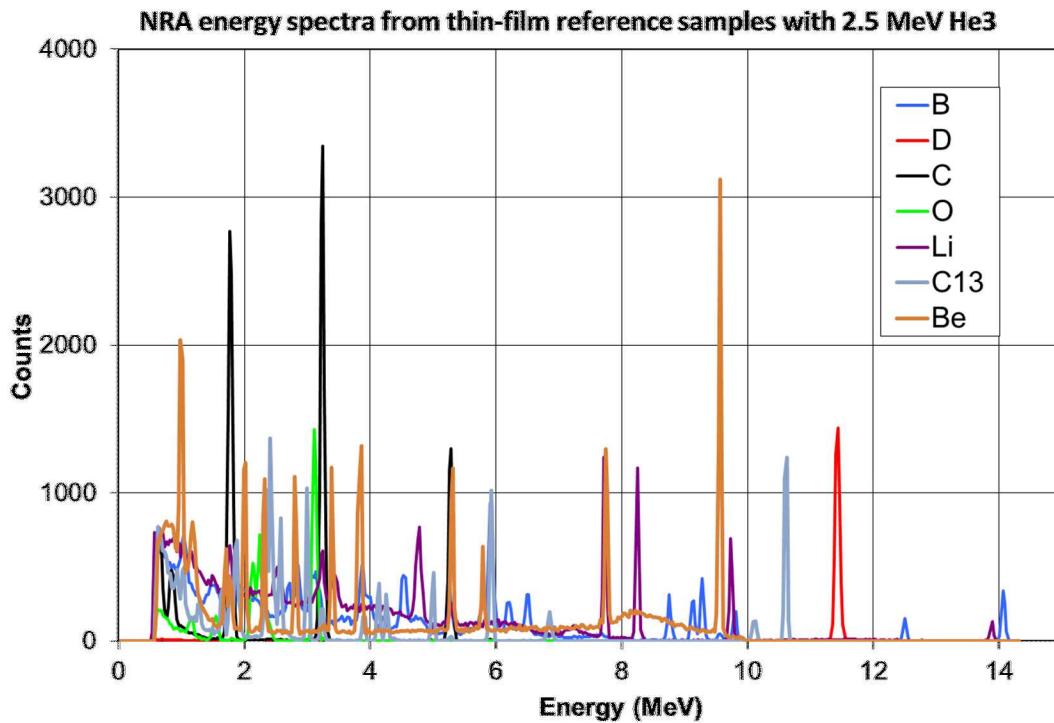




Net deposition on outboard side. Thickness & W coverage increase with exposure.



Mo erosion study

JNM 438 (2013) S822 PSI20

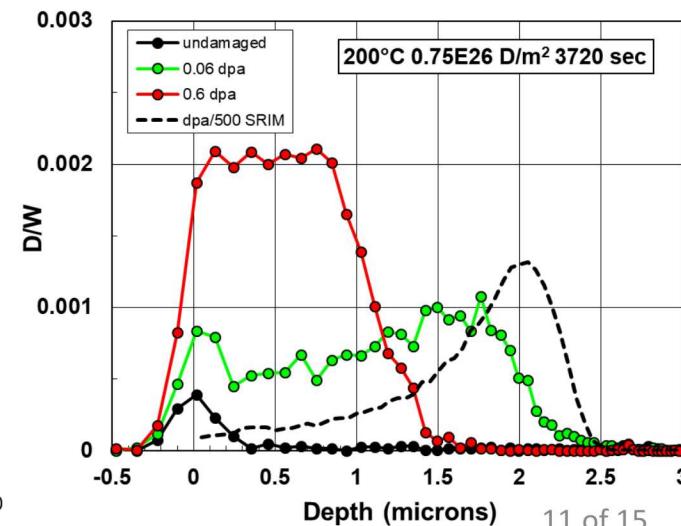
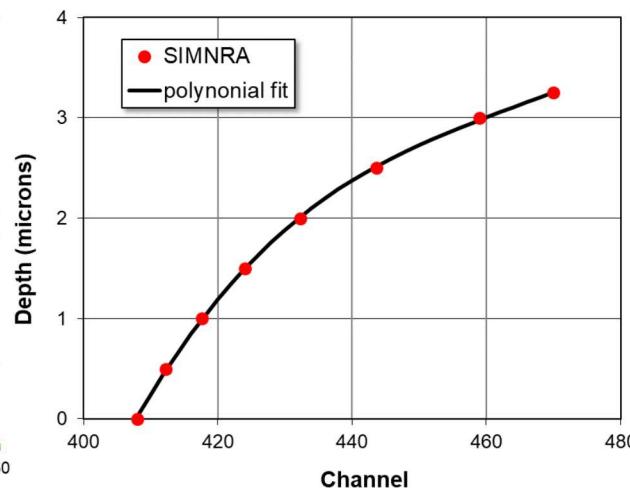
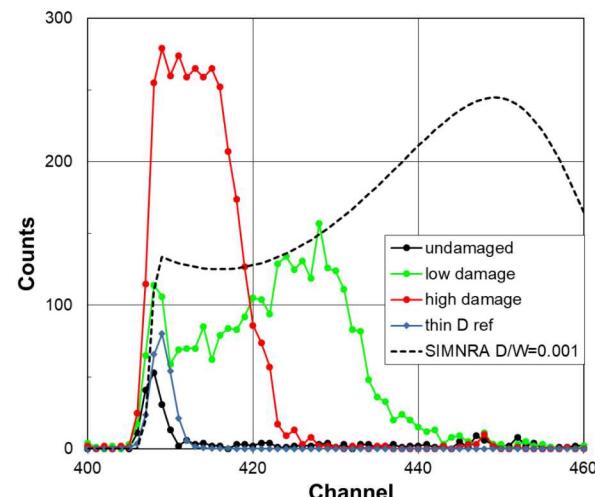
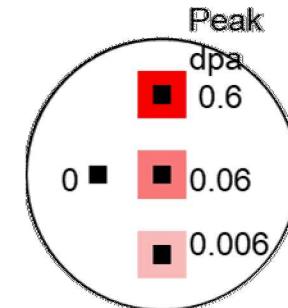


He³ NRA for light element depth profiling

Detector must be:

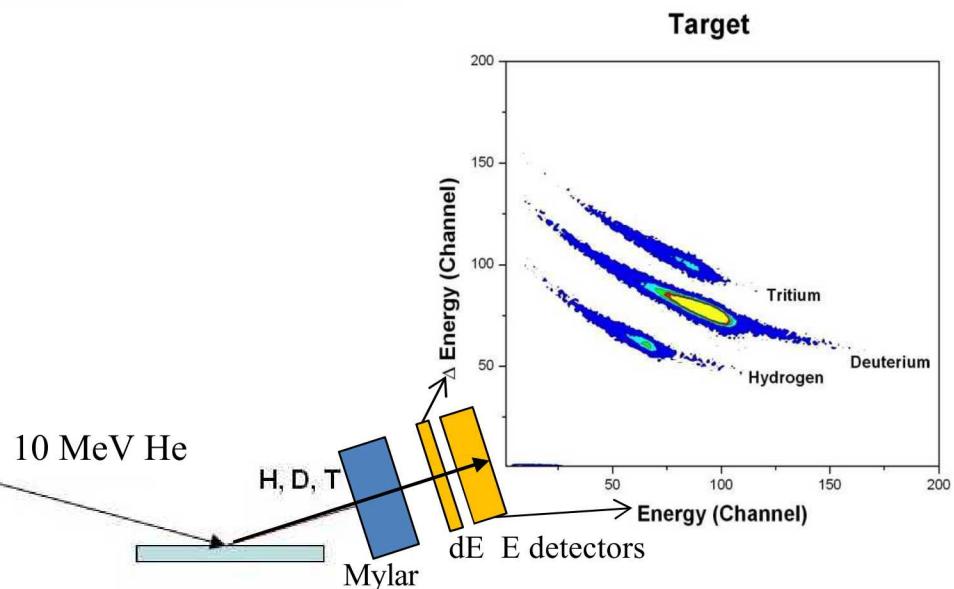
- Annular to maximize sensitivity and minimize kinematic energy broadening.
- Thick to measure full particle energy ($> 1\text{mm}$ for 12 MeV proton from He^3D)

He³ NRA for light element depth profiling

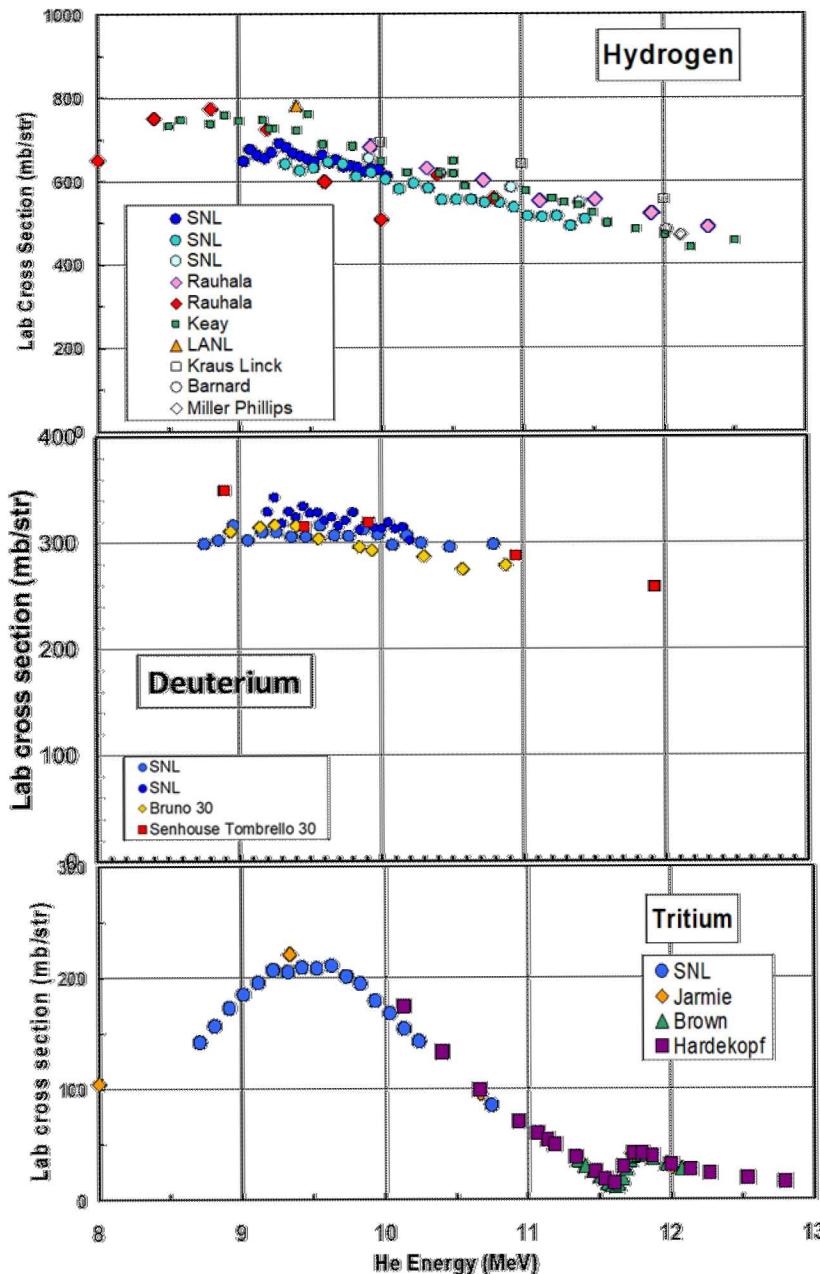




- Particle energy spectrum is measured at a single incident energy.
- Energy scale is transformed to a depth.
- Yield (counts/channel) is transformed to a concentration.
- Transforms obtained from SIMNRA with reaction cross section & stopping power.
- This method was developed at the Sandia IBL is used often for MFE.
- Simpler than alternative method of deconvoluting yield vs incident particle energy.

Study of D retention at displacement damage in W

Wampler and Doerner, Nuclear Fusion 49 (2009) 115023

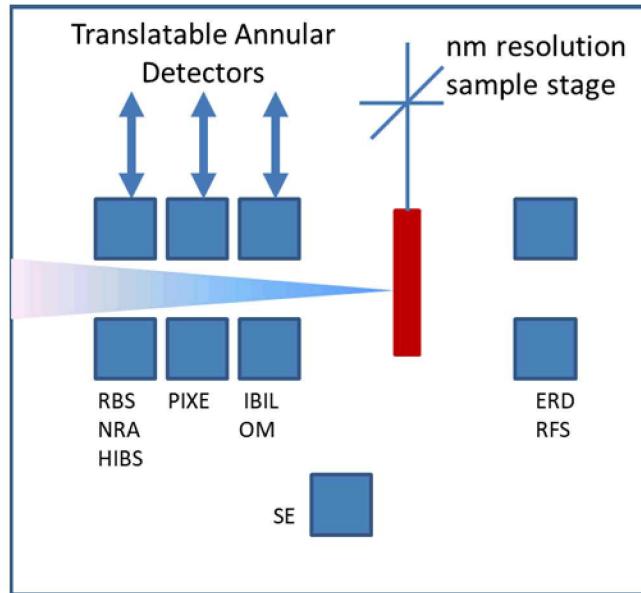

Wampler, Physica Scripta T180 (2020)

- W damaged with 12 MeV Si ions at the IBL
- Exposed to D plasma in PISCES-A at UCSD.
- Energy spectrum of protons from D(He³,p)α measured at the IBL
- Counts vs channel transformed to concentration vs depth.
- Detection limit D/W ~ 10 appm, depth resolution ~ 0.3 μm.
- Many experiments were done including exposure in DIII-D.

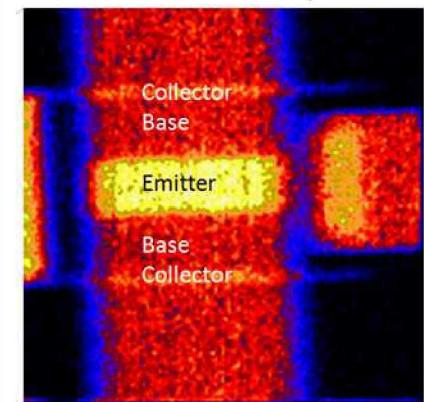

The HDT System can depth profile all three H isotopes in solids to depths of several microns

The HDT system uses 10 MeV He Elastic Recoil Detection (invented in the IBL) to quantify the concentration of H, D and T in solids. Best with smooth surfaces.

ERD cross sections for HDT were measured at the Sandia IBL in 2002



Scattering angle = 30°


Used metal-hydride thin-film samples fabricated at Sandia in which the quantity of H,D,T was independently measured by thermal desorption with mass spec analysis.

Microbeam

The micro-beam on the Pelletron provides a capability of quantitatively measuring the composition with high sensitivity in 3D at micron lateral resolution and submicron depth resolution.

5 μ m Au on HBT
emitter 10x50 μ m

- Annular detectors provide large solid angles, enabling high sensitivity
- OM-40 “Annular” optical microscope used to position samples and for IBIL
- PIXE detector developed by Rontec and Sandia
- RBS detector also used for NRA and HIBS

Summary

- The Sandia IBL has a broad range of experimental capabilities used for many application including IBA.
- These are used for a broad range of programs which include support for the US MFE program.
- Although a small program, the IBL has done most of the IBA for the US MFE program for decades.
- The IBL has broad experience with IBA methods and some unique equipment and capabilities for MFE:
 - End station for IBA on large objects (e.g. whole Tokamak tiles)
 - Depth profiling of light-elements by He3 NRA
 - Simulation of neutron damage by heavy-ion irradiation
- Other capabilities that have not been used extensively for MFE, but could be, include:
 - System for depth profiling HDT by He ERD (can analyze samples which contain tritium)
 - Microbeams
 - I³TEM
 - 14 MeV DT neutron source