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Why do modeling? •

"The most that can be expected from any model is that it
can supply a useful approximation to reality: all models are
models are wrong; some models are useful?' — George

George Box, 2005

Water network models are useful for water flow and
water quality approximations — as long as we

recognize the limitations and account for them.



Modeling a Water Distribution System (WDS)

Two core types of models
Conceptual or structural models

Represent physical objects, places, connections, etc.
Describe behavior; e.g., usage of water

- Numerical models
Equations for physical processes; e.g., reactions
Statistical models of behaviors or processes

■



Modeling a Water Distribution System (WDS)

WDS conceptual & structural models
Network model
Pipes, tanks, valves, etc., and how they connect

0 Operations model
Demand (usage) and rules/controls for equipment

Water quality
What is the chemical and where did it start

Combined, often called "the system model"

•



Modeling a Water Distribution System (WDS)

The numerical models
Hydraulic model
Flow rates, pressures, statuses
Reaction model

to Chemical reactions and/or biological growth
0 Transport model
Where does the mass go in the system?

•



Modeling a Water Distribution System (WDS)

Solvers
) Free/open source
EPANET the standard workhorse

Commercial solvers
Numerous companies offer very good products
with their own special tools or features

•



EPANET 2 - Netlinp
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Rossman, L. (2000), EPANET 2 Users Manual, EPA/600/R-00/057.
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Network Model

Network"Net6"

Water Quality
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Rossman, L. (2000), EPANET 2 Users Manual, EPA/600/R-00/057.
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Sources of uncertainty (hydraulics)

What are the approximations and limitations?

Are the pipes, valves, pumps, nodes located
correctly?

Are the parameters (diameter, roughness,
power) of the elements correct?

3. Water Usage (Demands)!



Sources of uncertainty (water quality) •

What are the approximations and limitations?

Where is the source of contamination?

What is it?

When did it start?

Where did it go?



Uncertainty analyses

Two scenarios:
Where did contaminant go?

Overlapping areas are
definitely contaminated

Other two areas may, or
may not, be affected x1

•



Sources of uncertainty studied

Possible hydraulic
parameters
Demand at nodes

O Pipe roughness

O Network topology
(valve closures)

O Pump curves

O Initial conditions (tanks,
valves)

O Solver discretization

Possible water quality
parameters
) Bulk reaction rate

o Wall reaction rate

O Chemical interactions

Source location

so Source mas.,

Injection start time

Injection duration

•



13 Experimental design

Design of experiments (DOE)

Three levels per parameter, any
junction with a demand

50 stochastic realizations per
factorial parameter combo.

Just under 18 million water quality
simulations for a full-factorial
experiment.

Parameter 1 Values
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rc

0, 0.2, 0.4

0, 0.0025, 0.005

0, -0.1, -5.0

see map

24, 32, 40 hrs

1, 12, 24 hours

0.1 to 10-4 mg/L
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Most important parameters

The most important factor is the source location

The next most important factors were:
Network topology errors (unknown valve statuses, for
ex.)

Rate of contamination or initial contamination mass
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Where does Al fit? •

Source identification requires lots of
simulations combined with field samples

BUT

We can use Al to pick the most likely and
important simulations to focus sampling and
speed up identification
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Resources - Open Source Software and Tools

EPANETApplication for Modeling DrinkingWater Distribution
Systems
EPAN ET 2.0: https://www.epa.gov/water-research/epanet

EPANET 2.2:
https://github.com/OpenWaterAnalytics/EPANET/releases/tag/v2.2

Analysis and research tools
Anaconda (Python for scientists): https://www.anaconda.com/distribution/

WNTR (water network tool for resilience):
https://github.com/USEPA/WNTR

Pecos (event detection): https://github.com/sandialabs/pecos

Other community resources (EPANET and SWMM)
Open Water Analytics: http://wateranalytics.org/
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