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3 | Introduction — High Entropy Alloys (HEA)

10° 5 B. Gludaovtaz, et al., Science., 2014
3 High Entrapy
Allovs

Stable solid solution microstructure

Fracture Toughness, K_ (J\.‘]Pa-m'm)

D-D T T T T T T T T T T 1 IIIUO | o I”]I‘I}l | o ”1'02 | o Illll[}s
5 Temperature (K) T Yield Strength (MPa)
D. Miracle et al., Entropy, 2014
Benefits: Challenges:
» HExceptional properties exceeding most » All composition ranges may not
conventional alloys, suggesting improved promote solid solution
resistance to faillures AM defects
> 1 hich q » Increasing elemental composition
Inilprov(i g 1 tfl:mperatin:e properties compare increases the achievable phase complexity
to the individual elemental constituents requiring significant experimental efforts

Additive manufacturing provides a means to rapidly explore the composition/phase
space of new HEA’s.




Introduction - Refractory Metals
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Benefits: Challenges:
» Exceptional mechanical properties at high » Scarcity

service temperatures

»High costs
»Withstand radiation bombardment without rapid : 1
J : »High temperature oxidation
egradation

- : » Ranot hani i
» Resistance to corrosion anging mechanical properties



s 1 Objective

Explore the phase space of Rf CoCtFeMnNi high entropy alloys
utilizing a high-throughput additive manufacturing approach to
establish microstructural/mechanical property relationships.

Why graded HEAs with Rfs?

Metallurgical/Science Impact:

Why Rf? — sufficiently different atomic
characteristics (electronegativity, size, valence,
etc.) — for phase stability analysis

Connecting process-structure properties, etc.

Engineering impact:
High temperature facing materials
Brittle to ductile interfaces

Tailored properties to meet site specific
performance

Refractory metals chosen for
this study:

Nb — Lightest of Rf metals with low
strength high ductility (strength
improved by alloying.

ductility and low ductile to brittle
transition temperature.

Ti-6Al-4V — Non-traditional defined

Ta — Good room temperature I
Rf metal due to low creep resistance.



¢ I High-throughput Alloy Screening
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Rapid Microstructure/Mechanical Analysis:

> Single pass thin wall structures fabricated from equiatomic CoCrFeMnNi with incrementally
increasing Rf content

»SEM-EDS performed across entire height to assess the elemental distribution

» Micro-hardness measurements taken across the entire height




Nb, CoCrFeMnNi - Microstructure

]

2 mm

| : Typical Cantor coarse grain AM microstructure (FCC)
2:Two phases present — fine Nb-rich particulate/lamellar + Nb-rich coarse dendritic structure
3:Three phases Insufficiently fused Nb particles with intermetallic phases

4:Two phases Complete fusion of Nb with coarse Nb-rich phases and fine lamellar
interdendritic structure



s I Nb,;CoCrFeMnNi,; — SEM-EDS |

(f) Mn-Ko |

(e) Fe-Ka

» Light Phase: Nb
» Dark Phase: Cr-Fe-Mn-Ni
» Even: Co

{2) Ni-Ka (g) Nb-Rich

Segregation of Nb occurs
early and solid solution never
formed




s I Nb,;CoCrFeMnNi; — SEM-EDS

(a) R1: Nb < 2% (b) R2: Nb ~ 8%

() R3: Nb ~22% (c) R4: Nb ~ 12%

Insufficiently melted Nb particle from R3

EBSD Layered Image 31

» Intermetallic phases formed around unmelted Nb
particles

» Complete fusion occurred after Nb content failed to
increase near top
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o I Nb,CoCrFeMnNi — Hardness Map
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» >30% Nb not achieved due to poor flowability of Nb powder

» Hardness increased to over 800 HV near equiatomic regime indicating
impressive strengths of Nb-HEA can be achieved



EBSD Layered Image 31

1 I Nb,CoCrFeMnNi

=

10um

= =CoCrFeMnNi = -Niobium (Nb) —Entropy.AS_, .
1.0 - - 2.0 ¢
= Hardness, HV
=
= L 15 & 880
8" T F
> B
£ B
E 0.5 - 1.0 ;
3 S 550
c 2
- - 0.5 E
0.0 S | = £ 100 3 185

0 5 10 15 20
Specimen Height (mm)

» Intermetallic phases formed near the equiatomic regime

» Maximum hardness occurred after equiatomic regime at high configurational entropy




Ta, CoCrFeMnNi

—
2 mm

|: Single phase —Typical Cantor microstructure

2:Two phases present — transitions from fine particulate to lamellar

3:Three phases — Insufficiently fused Ta particles with intermetallic phase, fracture occurs
4:Single phase — Complete fusion of Ta with apparent single phase region

5: Reappearance of two-phase — dendritic/lamellar

6: Mix of coarse Ta-rich regions with fine two-phase lamellar microstructure



(b) Ta-La (¢) Co-Kat

(d) Cr-Ka (¢) Fe-Ka (N Mn-Ka

—

2 mm

Light Phase: Ta-Ni

Dark Phase: Cr-Mn-Fe
Even: Co

Ta segregated through most regions, solid solution not formed at equiatomic regime

Single phase appears to have been achieved in region directly after fracture
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Ta, CoCrFeMnNi — Hardness Map
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» Hardness increased to
1200 HV near 50|50 Ta-
Cantor region but was
very brittle in this regime
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Ta, CoCrFeMnNi
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» Intermetallic phases formed near the equiatomic regime

» Maximum hardness occurred at the 50|50 Ta-Cantor region at relatively low configuration
entropy



e I Tib4xCoCrFeMnNi

2 mm

|: Single phase —Typical Cantor microstructure

2:Three phases present — Cracking begins to occur (refined multiphase structure)

3: Two-phases — Lamellar structure appears

4:Two phases — Large grains with intergranular second phase

5:Two phases — Intergranular second phase diminishes to mostly large equiaxed grains
6: Single phase —Typical /o’ AM microstructure




7 I Ta;;CoCrFeMnNi,,

(a) BSE (b) Ti-Ka (c) Cr-Ka
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(g) Ni-Ka

2 mm

Intermetallic

Solid solution appears to form at equiatomic region

Higher resolution EBSD reveals interdendritic intermetallic phase is present
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Ti64,,CoCrFeMnNi

» Bright Phase: Cr-Mn

» Light Phase: Ti64-Cr-Mn-Fe
» Dark Phase: Ni-Al

» Even: Co-V
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Ti64,CoCrFeMnNi
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Ti64 powder image coming
soon...
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» Ti64-HEA did reach purity

» Hardness reached up to
960 HV at near
equiatomic regime
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» Intermetallic phases were not observed at any composition

» Maximum hardness occurred near the equiatomic region at the higher end of the
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21 I You have crazy chemistry.... so what??

What did we do?

Showed that AM can provide opportunity for site-specific property control
Achieve unusual mechanical property combinations that cannot be achieved with base metals alone

Screen through large portions of phase space within single specimens
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2 | Summary & Conclusions

» Rapid high-throughput microstructural/mechanical evaluation

through the large composition range was achieved for the
RfxCoCrFeMnNi1 alloys

>Regions that promote high strengths were identified and the
accompanying microstructure analyzed

|
»The high-throughput analysis indicate that both microstructure 7
and configurational entropy contribute to the regions with

exceptionally high strengths I

» Highly brittle regions incapable of fabrication utilizing the
process conditions investigated were identified and correlated to
presence of intermetallic phases



Thank you for your attention

Questions?



