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3 I Introduction — High Entropy Alloys (HEA)

Stable solid solution microstructure
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>Exceptional properties exceeding most
conventional alloys, suggesting improved
resistance to failures AN- defects

>Improved high temperature properties compared
to the individual elemental constituents
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Challenges:

>All composition ranges may not
promote solid solution

>Increasing elemental composition
increases the achievable phase complexity
requiring significant experimental efforts

Additive manufacturing provides a means to rapidly explore the composition/phase

space of new HEA's.



4 Introduction - Refractory Metals
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>Exceptional mechanical properties at high
service temperatures

>Withstand radiation bombardment without rapid
degradation

>Resistance to corrosion
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• Refractory metals

7 Wider definition of refractory rrietalsill

https://sites.google.com/site/concentrationofminerals/i
ndustrial-classification-of-metals/refractory-metals

Challenges:

Scarcity

High costs

>High temperature oxidation

>Ranging mechanical properties



1
5 I Objective

Explore the phase space of RcCoCrFeMnNi high entropy alloys
utilizing a high-throughput additive manufacturing approach to
establish microstructural/mechanical property relationships.

Why graded HEAs with Rfs?

Metallurgical/Science Impact:

Why Rf? — sufficiently different atomic
characteristics (electronegativity, size, valence,
etc.) — for phase stability analysis

Connecting process-structure properties, etc.

Engineering impact:

High temperature facing materials

Brittle to ductile interfaces

Tailored properties to meet site specific
performance

Refractory metals chosen for
this study:

Nb — Lightest of Rf metals with low
strength high ductility (strength
improved by alloying.

Ta — Good room temperature
ductility and low ductile to brittle
transition temperature.

Ti-6AI-4V — Non-traditional defined
Rf metal due to low creep resistance.
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6 High-throughput Alloy Screening

Refractory 1.0  _l% Rf
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Rapid Microstructure/Mechanical Analysis:

>Single pass thin wall structures fabricated from equiatomic CoCrFeMnNi with incrementally
increasing Rf content

>SEM-EDS performed across entire height to assess the elemental distribution

>Micro-hardness measurements taken across the entire height



7  Nb.CoCrFeMnNi - Microstructure

,

I:Typical Cantor coarse grain AM microstructure (FCC)

2:Two phases present — fine Nb-rich particulate/lamellar + Nb-rich coarse dendritic structure

3:Three phases Insufficiently fused Nb particles with intermetallic phases

4:Two phases Complete fusion of Nb with coarse Nb-rich phases and fine lamellar

interdendritic structure



8  Nb17CoCrFeMnNi17 — SEM-EDS

Light Phase: Nb
➢ Dark Phase: Cr-Fe-Mn-Ni
➢ Even: Co

Segregation of Nb occurs
early and solid solution never
formed

- • IA -1011.M. -1.1.M.E.

.(3)1,1SE (0 Co-Ku



9 Nb17CoCrFeMnNi17 — SEM-EDS

Insufficiently melted Nb particle from R3

EBSD Layered Image 31

(a) R1: Nb < 2% (b) R2: Nb 8%

(c) R3: Nb 22%

➢ lntermetallic phases formed around unmelted Nb
particles

➢ Complete fusion occurred after Nb content failed to
increase near top

10µrn



io Nb.CoCrFeMnNi — Hardness Map
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➢>30% Nb not achieved due to poor flowability of Nb powder

1

1

➢ Hardness increased to over 800 HV near equiatomic regime indicating
impressive strengths of Nb-HEA can be achieved



Nb.CoCrFeMnNi

1 0 rn

EBSD Layered Image 31
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lntermetallic phases formed near the equiatomic regime

Maximum hardness occurred after equiatomic regime at high configurational entropy



12 TaxCoCrFeMnNi

I: Single phase —Typical Cantor microstructure
2:Two phases present — transitions from fine particulate to lamellar
3:Three phases — Insufficiently fused Ta particles with intermetallic phase, fracture occurs
4: Single phase — Complete fusion of Ta with apparent single phase region
5: Reappearance of two-phase — dendritic/lamellar
6: Mix of coarse Ta-rich regions with fine two-phase lamellar microstructure



I 3 Ta17CoCrFeMnNi17

(d)Cr-Ka

➢ Light Phase:Ta-Ni
➢ Dark Phase: Cr-Mn-Fe
➢ Even: Co

(b) Ta-La

(c) Fc-Ka

(c) Co-Ka

Ta segregated through most regions, solid solution not formed at equiatomic regime

Single phase appears to have been achieved in region directly after fracture

•



14 I Ta.CoCrFeMnNi — Hardness Map
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Ta
7.69

(42.9)

42.9

(2.5)

24.18
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Ta-HEA did not reach pure Ta
again related to flowability

➢ Hardness increased to
1200 HV near 50150 Ta-
Cantor region but was
very brittle in this regime



15 Ta.CoCrFeMnNi
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16  Ti64xCoCrFeMnNi

5

: Single phase —Typical Cantor microstructure
2:Three phases present — Cracking begins to occur (refined multiphase structure)
3:Two-phases — Lamellar structure appears
4:Two phases — Large grains with intergranular second phase
5:Two phases — lntergranular second phase diminishes to mostly large equiaxed grains
6: Single phase —Typical a/a' AM microstructure



17 Ta17COCrFeMnNi17
(b) Ti-Ka (c) Cr-Ka

(c) Fe-Ka (f) Co-Ka

(h) V-Ka (i)AI-Ka

(a) BSE

50 am

(d) Mn-Ka

(g) N1-Ka

(j) SEM-FSD
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intermetallic

Solid solution appears to form at equiatomic region

Higher resolution EBSD reveals interdendritic intermetallic phase is present

•



18 Ti6422CoCrFeMnNi 1 5

➢ Bright Phase: Cr-Mn
➢ Light Phase:Ti64-Cr-Mn-Fe
➢ Dark Phase: Ni-Al
➢ Even: Co-V



19 Ti64.CoCrFeMnNi
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Ti-6A1-4V 
6.81 26.6 13.93

(2.1) (0.9) (1.5)

Ti64-HEA did reach purity

➢ Hardness reached up to
960 HV at near
equiatomic regime



20 Ti64.CoCrFeMnNi
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➢ lntermetallic phases were not observed at any composition

➢ Maximum hardness occurred near the equiatomic region at the higher end of the
configurational entropy



2 I You have crazy chemistry.... so what??

What did we do?

•

Showed that AM can provide opportunity for site-specific property control

Achieve unusual mechanical property combinations that cannot be achieved with base metals alone

Screen through large portions of phase space within single specimens
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22 Summary & Conclusions

>Rapid high-throughput microstructural/mechanical evaluation
through the large composition range was achieved for the
RfxCoCrFeMnNi alloys

>Regions that promote high strengths were identified and the
accompanying microstructure analyzed

>The high-throughput analysis indicate that both microstructure
and configurational entropy contribute to the regions with
exceptionally high strengths

>Highly brittle regions incapable of fabrication utilizing the
process conditions investigated were identified and correlated to
presence of intermetallic phases



Thank you for your attention

Questions?


