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Motivation: decomposition of
large-scale tensors
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■ Generalized canonical polyadic (GCP) tensor decomposition

■ D. Hong, T. Kolda, J. Duersch, SIAM Review, 2019

■ Finds low-rank approximation of sparse tensors

■ Uses general loss function to better represent variety of tensor data

■ Implementations available

■ TensorToolbox (Bader and Kolda) — Matlab

■ GenTen (Phipps and Kolda) — multicore CPU and GPU (via Kokkos)

■ Very large tensors can exceed available memory in single-
node systems

■ SIAM CSE19: Scalable, distributed-memory, MPI-based
implementation of CP-ALS using the Trilinos solver framework

■ Today: Distributed memory, MPI-based implementation of
GCP building from Trilinos/CP-ALS implementation
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Canonical Polyadic (CP) Tensor

Decomposition
• CANDECOMP / PARAFAC (CP) decomposition

• F. Hitchcock (1927); J.D. Carroll & J-J Chang (1970);
R. Harshman (1970)

• Seek low-rank approximation of tensor data
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"Tensor Decompositions and Applications," T. Kolda & B. Bader, SIAM Review, 2009



Find CP decomposition by solving
optimization problem

• Generalized CP (GCP) decomposition (Hong, Kolda, Duersch,
2018) takes user-defined loss function f(xuk, muk)
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A, B, C

f (x , m) provided by user 

f( jkl jk)

j rb

"Generalized Canonical Polyadic Tensor Decomposition," D. Hong, T. Kolda & J. Duersch, SIAM Review, 2019



Generalized loss functions represent
variety of tensor data

• For example, CP-ALS (alternating least squares) uses Normal
loss function; good for Gaussian data:

Optimization Problem: min X - M
3
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• Other loss functions better represent other types of data:

• Binary data

• Count data

• Non-negative data
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"Generalized Canonical Polyadic Tensor Decomposition," D. Hong, T. Kolda & J. Duersch, SIAM Review, 2019



Previous work: Distributed-memory

CP-ALS using Trilinos

• Trilinos Solver Framework: Software for scientific
applications with MPI+X parallelism

• Linear algebra; linear, nonlinear, eigen solvers; discretization;
meshing; load balancing; optimization

• Built on Kokkos for on-node performance portability
Weak Scaling, Random, 64M nz per process

• CP-ALS time MTTKRP time
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MaNOS

• Tpetra parallel matrix, vector,
communication classes

• MultiVectors: dense storage, norms,
etc. for factor matrices

• Maps: parallel distribution of tensor

and factor matrix

• Import/Export: communication of
factor matrix entries

1
16 128 1024 8192

Number of Processes (One node = 16 pr cesses)

12.6 Terabyte tensor on
8192 MP1 processes
(524 B nonzeros)

"Parallel sparse tensor decomposition with the Trilinos parallel linear algebra ramewor .
K. Devine T. Kolda E. Phi R Rs SIAM SE1 •



MTTKRP uses Trilinos' SpMV

communication pattern
\ 1

X(1)(C 0 B) 2.1 Xi jk bjr Ckr, r= 1,...,R
tik i _ _

For each local tensor
nonzero xi* ...

• Matricized Tensor Times Khatri-Rao

Product (MTTKRP) is most expensive

part of CP-ALS computation

• Expand: Sends input factor matrix
entries to processors with A

corresponding tensor entries

• Fold: accumulates local

contributions into output
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4-

*

4

4

4

Sandia
National
Laboratories

...use R entries of factor
matrices B and C to compute
R contributions to MTTKRP

Expand
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MTTKRP is key kernel of GCP direct

optimization
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Goal is to minimize: F(A, B, C)

Repeat until converged...
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"Generalized Canonical Polyadic Tensor Decomposition," D. Hong, T. Kolda & J. Duersch, SIAM Review, 2019



Solve GCP Optimization via Stochastic

Gradient Descent
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• Sample both tensor nonzeros and tensor zeros

• Stratified sampling (sampling without replacement)
Ensure an entry (nonzero or zero) is sampled at most once per iteration

• Semi-stratified sampling (sampling with replacement)
Allow duplicate samples of an entry

• Sampling to compute loss for convergence test

• Sample <10% of tensor entries

—./- Vijk,Tilijk) + .1 Xijk)nlijk)
_r iP E 17 ri

n P
Xijk~u Xijk=u

n q

• rdp= number of nonzeros in tensor / number of nonzero samples

• (1q= number of zeros in tensor / number of zero samples

• Sampling to compute stochastic gradients

• Sample <1% of tensor entries in each iteration

"Stochastic Gradients for Large-Scale Tensor Decomposition," T. Kolda and D. Hong, arXiv, 2019



Processor bounding boxes simplify
sampling in distributed memory

■ Assume block-based distribution of tensor
■ Bounding boxes do not overlap

■ Bounding boxes cover entire index space of tensor

■ Each processor knows bounding box of its block

■ Processors sample within their bounding boxes
■ Enables efficient searching for duplicate samples in stratified sampling

■ Maintains aligned communication pattern for expand/fold

■ For s samples globally, select s/np indices on
each of np processors (for load balance)

■ Sample nonzeros proportionally to
number of nonzeros in box (to prevent skew)

■ Note: CP-ALS does not require bounding boxes; can use
arbitrary tensor distributions
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pxqxr=3x2x2
processor layout
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Uniform boxes prevent skew in
sampling

■ Medium grain distribution:

■ Each box has equal number of nonzeros,

unequal number of zeros — great for CP-ALS

■ For uniform sampling, sample equal number of
nonzeros in each box

■ For load balance, sample equal number of zeros in

each box

■ Can over/under sample zeros in each box

■ Uniform boxes:

■ Equal number of indices (nonzero + zero) per box

■ Within a box, sample proportionally to number of
nonzeros and zeros in the box
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Tensor distributions with
pxqxr=6x4x2

processor layout

"A medium-grained algorithm for distributed sparse tensor factorization," S Smith, G Karypis, IPDPS16



Error computation is adapted to
bounding boxes

P E /11 A.• i
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• rilp = # of nonzeros in tensor / # of nonzero samples

• (/q =# of zeros in tensor / # of zero samples
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• Replace ri, , p, q with on-processor values from bounding boxes
• Local number of nonzeros, zeros, samples

• If zeros and nonzeros are perfectly balanced across processors,
ratios don't change from global values

• If imbalanced, account for density of sampling within a
processor
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Solve GCP Optimization via Stochastic Gradient

Descent (ADAM)
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"ADAM: a method for stochastic optimization," D. Kingma & J. Ba, ICLR 2015

STOCHASTIC GRADIENT DESCENT 

Randomly initialize A, B, C

Estimate loss P - EfiJk} f (xiJk, mi./0
While not converged

F old = P
For T iterations

Compute stochastic gradients GA = 
aF 

/ • G • Gaji B / c

Compute A, B, C using GA, GB, Gc and step size

Estimate loss function P = Eft _pc} f (xijk,mijk)

If P > Fold , backup and reduce step size
Return A, B, C

"Stochastic Gradients for Large-Scale Tensor Decomposition," T. Kolda and D. Hong, arXiv, 2019 13



Solve GCP Optimization via Stochastic Gradient

Descent (ADAM)

STOCHASTIC GRADIENT DESCENT 

Randomly initialize A, B, C

Estimate loss P - Eti ;kJ f (xiJk, mi./0
While not converged

Fold = P
For T iterations

Compute stochastic gradients GA = 
OF 

/ • G • Gaji B / c

Compute A, B, C using GA, GB, Gc and step size

Estimate loss function P = EfiJk} f(xijk, mijk)

If P > Fold , backup and reduce step size
Return A, B, C
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Use fixed stratified
sampling to
7 estimate loss

(<10% of tensor
indices);
construct sampled
tensor only once

"Stochastic Gradients for Large-Scale Tensor Decomposition," T. Kolda and D. Hong, arXiv, 2019



Solve GCP Optimization via Stochastic Gradient

Descent (ADAM)
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STOCHASTIC GRADIENT DESCENT 

Randomly initialize A, B, C

Estimate loss P = E{i jk} f ()CU/0 inijk
While not converged

F old = P
For T iterations

COMPUTE STOCHASTIC GRADIENTS 

Sample nonzero and zero indices {ijk}

Construct gradient tensor y with
)7 

a f 
ijk = (xijk, mijk) for samples {ijk}

F
GA = = 

aA 
 MTTKRP(y B, C)

OF
= = MTTKRP C, A)

ÖF
G
c 
= —
ac 
= MTTKRPM,A,B)

Compute stochastic gradients GA =
b
 ; G GaA B • C

Compute A, B, C using GA, GB, Gc and step size

Estimate loss function P = E{ijk} f(xijk, mijk)

If P > Fold , backup and reduce step size
Return A, B, C

"Stochastic Gradients for Large-Scale Tensor Decomposition," T. Kolda and D. Hong, arXiv, 2019 15



Solve GCP Optimization via Stochastic Gradient

Descent (ADAM)

Use stratified or semi-stratified
sampling (<1% of tensor indices)
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STOCHASTIC GRADIEN`i DESCENT 

Randomly initialize A, B, C

Estimate loss P = jk} f ()CU/0 inijk
While not converged

F old = P
For -/- iterations

COMPUTE STOCHASTIC GRADIENTS 

Sample nonzero and zero indices {ijk}

Construct gradient tensor y with

Y ijk = 
a f 
,r7i(xijk,rilijk) for samples {ijk}

GA =
oF 
Tel = MTTKRPM,
OF

GB = TE3 = MIITKRP(Y, C, A)
ÖF

Gc = = MTTKRPCy, A, B)

Compute stochastic gradients GA =
b 

aA; GB • GC

Compute A, B, C using GA, GB, Gc and step size

Estimate loss function P = E{ijk} f(xijk, mijk)

If P > Fold , backup and reduce step size
Return A, B, C

"Stochastic Gradients for Large-Scale Tensor Decomposition," T. Kolda and D. Hong, arXiv, 2019



Distributed memory GCP Optimization via

Stochastic Gradient Descent

Sample within bounding boxes;
no communication needed

Communicate (expand)
A, B, C entries corresponding
to samples in y

Communicate (fold) in MTTKRP
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i._

COMPUTE STOCHASTIC GRADIENTS 

Sample nonzero and zero indices {ijk}

Construct gradient tensor y with

yijk = 
Of 
am (xi jk, mi jk) for samples {ijk}

oF
GA = 

ail 
= MTTKRP(y,B,C)

OF
GB = iB = MTTKRP(y, C, A)

ÖF
G
c 
= 
ac 
= MTTKRP(y, A, B)

Majority of communication is in computing stochastic gradients
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Distributed memory GCP Optimization via

Stochastic Gradient Descent

STOCHASTIC GRADIENT DESCENT 

Randomly initialize A, B, C

Estimate loss P — Etipc) f(xiJk, miJk)
While not converged

F old = p
For T iterations

Compute stochastic gradients GA = 
OF 

1 • GB ;Gc.9,4 
Compute A, B, C using GA/B, Gc and step size4 

Estimate loss function P = EfiJk} f(xijk, mijk)

lf P > Fold , backup and reduce step size
Return A, B, C
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Communicate
(expand) A, B, C
for fixed samples;
Allreduce

Distribute
GA, GB, Gc
in same way as
A, B, C;
no communication
needed here
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Best-case strong scaling is good
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• 4D Random tensor: 1000x1000x500x500; 256M nonzeros; rank=16

• 5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor

• SkyBridge cluster (2.6 GHz Intel Sandy Bridge with lnfiniband)
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• Best case:
perfect balance,
alignment; small
factor matrices

• 52.7x speedup
on 64 processors
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• Best case:
perfect balance,
alignment; small
factor matrices

• 52.7x speedup
on 64 processors

/ 
373 seconds on 16 processors;
Fastest GenTen method with
16 threads: 306 seconds

4 8

Number of Pr,.....c3au. a

• 4D Random tensor: 1000x1000x500x500; 256M nonzeros; rank=16

• 5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor

• SkyBridge cluster (2.6 GHz Intel Sandy Bridge with lnfiniband)
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Most time spent in stochastic
gradient computation
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• Miscellaneous set-up

• Initialize and copy ktensors

• Fixed tensor sampling and construction

• Stoc Grad:

• Stoc Grad:

• Stoc Grad:

• Stoc Grad:

Sampled tensor construction

Build maps and communicate

dF/d M

MTTKRP

• Local ktensor operations

• Compute loss function

• Roll back bad iteration

I
4 8

Number of processors

• 4D Random tensor: 1000x1000x500x500; 256M nonzeros

• 5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor

• SkyBridge cluster (2.6 GHz Intel Sandy Bridge with lnfiniband)

64
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• Many kernels
scaling well

• Sampled tensor

construction

• MTTKRP

• Derivative

computation

• Costs for building
maps and
communicating
are small but grow

with number of
processors

21
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• Miscellaneous set-up

• Initialize and copy ktensors

• Fixed tensor sampling and construction

• Stoc Grad: Sampled tensor construction

• Stoc Grad: Build maps and communicate

• Stoc Grad: dF/dM

• Stoc Grad: MTTKRP

• Local ktensor operations

• Compute loss function

• Roll back bad iteration.
L
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Benefit from
more processors;
tensor too large
for single shared-
memory node

Building maps,
communicating
are more
expensive

With 2048 procs,
-4K samples/proc

• 3D Amazon-reviews tensor: 4.8M x 1.7M x 1.8M; 1.7B nonzeros; rank=16

• 83M samples in Fixed tensor; 8.3M samples in Stoc Grad tensor

• SkyBridge cluster (2.6 GHz Intel Sandy Bridge with lnfiniband)

"FROSTT: The Formidable Repository of Open Sparse Tensors and Tools" Smith, Choi, et al. http://frosti 22



Uniform-box distribution benefits
performance
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Medium-grained distribution

Uniform-box distribution

128 256 512 1024 204;

Number of processors

• 3D Amazon-reviews tensor: 4.8M x 1.7M x 1.8M; 1.7B nonzeros; rank=16

• 83M samples in Fixed tensor; 8.3M samples in Stoc Grad tensor

• SkyBridge cluster (2.6 GHz Intel Sandy Bridge with lnfiniband)
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Conclusions and Future Work

■ Distributed memory implementation of GCP-SGD is scalable
and feasible for decomposition of very large tensors

■ Bounding box of processor's indices aids in efficient distributed-
memory sampling

■ Trilinos' Tpetra data structures manage communication and factor

matrix operations

■ Small sample sizes challenge strong scaling

■ Next step: integration of on-node parallelism
■ Use capabilities in GenTen (Phipps, Kolda), such as on-node MTTKRP

■ MPI-based code soon to be released on gitlab.com:
GentenMPI

Sandia
National
Laboratories

24


