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Motivation: decomposition of =
large-scale tensors
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= Generalized canonical polyadic (GCP) tensor decomposition
= D. Hong, T. Kolda, J. Duersch, SIAM Review, 2019
= Finds low-rank approximation of sparse tensors
= Uses general loss function to better represent variety of tensor data
" |mplementations available
= TensorToolbox (Bader and Kolda) — Matlab
= GenTen (Phipps and Kolda) — multicore CPU and GPU (via Kokkos)

= Very large tensors can exceed available memory in single-
node systems

= S|JAM CSE19: Scalable, distributed-memory, MPI-based
implementation of CP-ALS using the Trilinos solver framework

= Today: Distributed memory, MPI-based implementation of
GCP building from Trilinos/CP-ALS implementation




Canonical Polyadic (CP) Tensor

Decomposition

= CANDECOMP / PARAFAC (CP) decomposition

= F. Hitchcock (1927); J.D. Carroll & J-J Chang (1970);
R. Harshman (1970)

= Seek low-rank approximation of tensor data
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Data Low-KFank Model

“Tensor Decompositions and Applications,” T. Kolda & B. Bader, SIAM Review, 2009




Find CP decomposition by solving
optimization problem
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= Generalized CP (GCP) decomposition (Hong, Kolda, Duersch,
2018) takes user-defined loss function f(x;;, m;)
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“Generalized Canonical Polyadic Tensor Decomposition,” D. Hong, T. Kolda & J. Duersch, SIAM Review, 2019




Generalized loss functions represent
variety of tensor data
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= For example, CP-ALS (alternating least squares) uses Normal
loss function; good for Gaussian data:

Optimization Problem: min||X — M|* = S: y: S:(%‘k — miji)’

7k

= QOther loss functions better represent other types of data:
= Binary data
= Count data

= Non-negative data

“Generalized Canonical Polyadic Tensor Decomposition,” D. Hong, T. Kolda & J. Duersch, SIAM Review, 2019




Previous work: Distributed-memory =
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CP-ALS using Trilinos

= Trilinos Solver Framework: Software for scientific
applications with MPI+X parallelism

= Linear algebra; linear, nonlinear, eigen solvers; discretization;
meshing; load balancing; optimization

= Built on Kokkos for on-node performance portability
Weak Scaling, Random, 64M nz per process
B CP-ALS time B MTTKRP time

16 128

1024 8192
Number of Processes (One node = 16 prgcesses)

N
o

= Tpetra parallel matrix, vector,
communication classes

= MultiVectors: dense storage, norms,
etc. for factor matrices

[
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o

Time per CP-ALS Iteration (secs)

= Maps: parallel distribution of tensor
and factor matrix

= |mport/Export: communication of 12.6 Terabyte tensor on

factor matrix entries 8192 MPI processes
(624 B nonzeros)




MTTKRP uses Trilinos’ SpMV
communication pattern
X(]_)(C @ B) = xijk b]r Cier, TV — 1, o, R

gk /NI
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For each local tensor ...use R entries of factor
nonzero Xy ... matrices B and C to compute
R contributions to MTTKRP

= Matricized Tensor Times Khatri-Rao
Product (MTTKRP) is most expensive

Expand
part of CP-ALS computation =
= Expand: Sends input factor matrix /1/1/1/1/1/1/1/1/1/1/1/"
entries to processors with A /////////////
corresponding tensor entries — - - = /; C
* Fold: accumulates local = | x| [x[ [x :/%
contributions into output gy — i - a%yd
factor matrix Fold lllll < |x x| x /Expand




MTTKRP is key kernel of GCP direct

optimization

mXmnxp

Goal is to minimize: F'(A,B, C)

Repeat until converged...
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Gradient tensor f' is the derivative of
loss function f with respect to m,
evaluated elementwise

MTTKRP using gradient tensor

“Generalized Canonical Polyadic Tensor Decomposition,” D. Hong, T. Kolda & J. Duersch, SIAM Review, 2019




Solve GCP Optimization via Stochastic
Gradient Descent
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= Sample both tensor nonzeros and tensor zeros

= Stratified sampling (sampling without replacement)
Ensure an entry (nonzero or zero) is sampled at most once per iteration

= Semi-stratified sampling (sampling with replacement)
Allow duplicate samples of an entry

= Sampling to compute loss for convergence test
= Sample <10% of tensor entries
5 n ¢
F = Z —f (xijieo mijic) + Z —f (Xijk, Mjj)
P < 4
Xijk*0 Xijk=0
= 71/p = number of nonzeros in tensor / number of nonzero samples

= {/q = number of zeros in tensor / number of zero samples

= Sampling to compute stochastic gradients

= Sample <1% of tensor entries in each iteration

“Stochastic Gradients for Large-Scale Tensor Decomposition,” T. Kolda and D. Hong, arXiv, 2019



Processor bounding boxes simplify =
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sampling in distributed memory L

= Assume block-based distribution of tensor

---------------

= Bounding boxes do not overlap

= Bounding boxes cover entire index space of tensor

= Each processor knows bounding box of its block pxXqgxr=3x2x2

_ . . rocessor layout
" Processors sample within their bounding boxes P Y

= Enables efficient searching for duplicate samples in stratified sampling

= Maintains alighed communication pattern for expand/fold

= For s samples globally, select s/np indices on
each of np processors (for load balance)

= Sample nonzeros proportionally to
number of nonzeros in box (to prevent skew)

= Note: CP-ALS does not require bounding boxes; can use
arbitrary tensor distributions




Uniform boxes prevent skew in
sampling

Medium grain distribution:

= Each box has equal number of nonzeros,
unequal number of zeros — great for CP-ALS

For uniform sampling, sample equal number of
nonzeros in each box

For load balance, sample equal number of zeros in
each box

Can over/under sample zeros in each box

Uniform boxes:
= Equal number of indices (nonzero + zero) per box

= Within a box, sample proportionally to number of
nonzeros and zeros in the box
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Tensor distributions with
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Error computation is adapted to
bounding boxes

. n ¢
F = z Z;f(xijk»mijk)-l' z af(xijk'mijk)

xijkio xijk=0
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= 7/p =# of nonzeros in tensor / # of nonzero samples
= (/q =# of zeros in tensor / # of zero samples

= Replace n, {,p, g with on-processor values from bounding boxes

= Local number of nonzeros, zeros, samples

" |f zeros and nonzeros are perfectly balanced across processors,
ratios don’t change from global values

= |f imbalanced, account for density of sampling within a
processor



Solve GCP Optimization via Stochastic Gradient s,
Descent (ADAM)

“ADAM: a method for stochastic optimization,” D. Kingma & J. Ba, ICLR 2015

STOCHASTIC GRADIENT DESCENT
Randomly initialize A, B, C
Estimate loss F = Y 5y f (Xiji, M)
While not converged

Foa = K

For T iterations

Compute stochastic gradients G, = Z—Z; Gp; G,
Compute A, B, C using G, Gz, G- and step size
Estimate loss function F' = iy f (i Mijie)

If F > Fold , backup and reduce step size
Return A, B, C

“Stochastic Gradients for Large-Scale Tensor Decomposition,” T. Kolda and D. Hong, arXiv, 2019



Solve GCP Optimization via Stochastic Gradient ) s,

Descent (ADAM)

STOCHASTIC GRADIENT DESCENT
Randomly initialize A, B, C

Estimate loss F = Y ixy f (Xiji, M) <

While not converged
Fou=F
For T iterations

Compute stochastic gradients G
Compute A, B, C using G 5, G¢ and step size
Estimate loss function ' = Z{ijk}f(xl-jk, Mijk)
If F > Fold , backup and reduce step size
Return A, B, C
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Use fixed stratified
sampling to
estimate loss
(<10% of tensor
indices);

construct sampled
tensor only once

“Stochastic Gradients for Large-Scale Tensor Decomposition,” T. Kolda and D. Hong, arXiv, 2019



Solve GCP Optimization via Stochastic Gradient

Descent (ADAM)
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COMPUTE STOCHASTIC GRADIENTS
Sample nonzero and zero indices {ijk}

Construct gradient tensor Y with

of ..
Yijk = 5. (xijk; mijk) for samples {ijk}

OF
G, = — = MTTKRP(Y, B, C)

~ 94
i

Gy = = = MTTKRP(Y, €, 4)
O

Ge = =~ = MTTKRP(Y, 4, B)

“Stochastic Gradients for Large-Scale Tensor Decomposition,” T. Kolda and D. Hong, arXiv, 2019




Solve GCP Optimization via Stochastic Gradient

Descent (ADAM)

Use stratified or semi-stratified
sampling (<1% of tensor indices)
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TOCHAST RADIENT DESCENT
| nly initialize , {
Estimae | =3
hile | 2
) Iteration
| > St i dien
| A, using C ¥
Fstimate | ﬂ —
CKl 1NQA |
otu

COMPUTE STOCHASTIC GRADIENTS
Sample nonzero and zero indices {ijk}

Construct gradient tensor Y with
of ..
Yijk = 5. (xijk; mijk) for samples {ijk}

OF
G = - = MTTKRP(Y, B, ()

OF
Gy = o= MTTKRP(Y, C, 4)

OF
G = =~ = MTTKRP(Y, 4, B)

“Stochastic Gradients for Large-Scale Tensor Decomposition,” T. Kolda and D. Hong, arXiv, 2019




Distributed memory GCP Optimization via T
Stochastic Gradient Descent

Sample within bounding boxes;
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no communication needed

Vv

Communicate (expand) —
A, B, C entries corresponding
to samples in Y

Communicate (fold) in MTTKRP

COMPUTE STOCHASTIC GRADIENTS
Sample nonzero and zero indices {ijk}

Construct gradient tensor Y with

of ..
Yijk = 5. (xijk» mijk) for samples {ijk}

OF
G, = — = MTTKRP(Y, B, C)

~ 94
i

Gy = = = MTTKRP(Y, C, 4)
O

Ge = =~ = MTTKRP(Y, 4, B)

Majority of communication is in computing stochastic gradients




Distributed memory GCP Optimization via 7 i
Stochastic Gradient Descent
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STOCHASTIC GRADIENT DESCENT Communicate
Randomly initialize A, B, C (exp_and) A, B, C
R for fixed samples;
Estimate loss F' = Xy [ (X, Mijie) 4 Allreduce
While not converged
Foa = K
For T iterations
: : OF
Compute stochastic gradients G~ Y Gp; G, TR
Compute A, B, C using G, ,%63, G¢ and step size4— G,, G, G,
Estimate loss function F = X, iy f (k) Mijic) Z‘ SBa'g‘? Y
If F > Fold , backup and reduce step size n; c,om,munication
Return A, B, C needed here




Best-case strong scaling is good ) .

6000
= Best case:

5000 perfect balance,
7 alignment; small
8 4000 factor matrices
o
J"”3000
E = 52.7x speedup
o on 64 processors
Y 2000
o.

O
O
1000 I
1 2 4 8 16 32 64

Number of Processors

= 4D Random tensor: 1000x1000x500x500; 256M nonzeros; rank=16
=  5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor
= SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)




Best-case strong scaling is good ).

6000

= Best case:

5000 perfect balance,
alignment; small
factor matrices

= 52.7x speedup
on 64 processors
373 seconds on 16 processors;
- Fastest GenTen method with
. / 16 threads: 306 seconds
1 2 4 8

H =
16 32 64

D
o
(=}
o

N
(=]
=]
o

GCP-SGD Time (s) (5 Epochs)
S
o
o

Number of Processors

= 4D Random tensor: 1000x1000x500x500; 256M nonzeros; rank=16
= 5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor
= SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)




Most time spent in stochastic
gradient computation

6000

5000

4000

3000

2000

GCP-SGD Time (s) (5 epochs)

1000

= 4D Random tensor: 1000x1000x500x500; 256M nonzeros

<
T
1 2

B Miscellaneous set-up

® Initialize and copy ktensors

Fixed tensor sampling and construction
B Stoc Grad: Sampled tensor construction
B Stoc Grad: Build maps and communicate

B Stoc Grad: dF/dM
M Stoc Grad: MTTKRP

B Local ktensor operations

B Compute loss function
H Roll back bad iteration

4

! =
8 16

Number of processors

I
32

64

= 5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor

= SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)
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Many kernels
scaling well

= Sampled tensor
construction

= MTTKRP
= Derivative
computation

Costs for building
maps and
communicating
are small but grow
with number of
processors
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More variability seen in real tensors

3000 B Miscellaneous set-up - Benefit from
M Initialize and copy ktensors
more processors,

Fixed tensor sampling and construction

—== [l Stoc Grad: Sampled tensor construction tensor tOO Iarge

2500
B Stoc Grad: Build maps and communicate
lStocGrad: dF/dM for single shared-
%’2000 lStoc Grad: MTTKRP memory node
8 W Local ktensor operations
§1500 B Compute loss function | Bu||d|ng ma pS,
= W Roll back bad iteration . :
z communicating
=
1000 are more
expensive
500
. . With 2048 procs,
0 ~4K samples/proc
1024 2048

Number of Processors
= 3D Amazon-reviews tensor: 4.8M x 1.7M x 1.8M; 1.7B nonzeros; rank=16

= 83M samples in Fixed tensor; 8.3M samples in Stoc Grad tensor
= SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)

“FROSTT: The Formidable Repository of Open Sparse Tensors and Tools” Smith, Choi, et al. http://frost.io



Uniform-box distribution benefits =
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performance

4500

4000

3500 = Medium-grained distribution
« 3000 " Uniform-box distribution
2
' 2500
S
= 2000
()
£
= 1500 |

1000 |

0
128 256 512 1024 2048

Number of processors

= 3D Amazon-reviews tensor: 4.8M x 1.7M x 1.8M; 1.7B nonzeros; rank=16
= 83M samples in Fixed tensor; 8.3M samples in Stoc Grad tensor
= SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)




Conclusions and Future Work ) S,

= Distributed memory implementation of GCP-SGD is scalable
and feasible for decomposition of very large tensors

= Bounding box of processor’s indices aids in efficient distributed-
memory sampling

= Trilinos’ Tpetra data structures manage communication and factor
matrix operations

= Small sample sizes challenge strong scaling

= Next step: integration of on-node parallelism
= Use capabilities in GenTen (Phipps, Kolda), such as on-node MTTKRP

= MPI-based code soon to be released on gitlab.com:
GentenMPI




