

A Distributed-Memory Generalized Sparse Tensor Decomposition

Karen Devine, Sandia National Laboratories

Grey Ballard, Wake Forest University

Tammy Kolda, Sandia National Laboratories

With thanks to

*Eric Phipps, Chris Siefert, Mark Hoemmen,
James Elliott (SNL)*

Srinivas Eswar, Rich Vuduc (GA Tech)

Shaden Smith (SPLATT)

Sandia
National
Laboratories

*Exceptional
service
in the
national
interest*

February 15, 2020

U.S. DEPARTMENT OF
ENERGY

NNSA
National Nuclear Security Administration

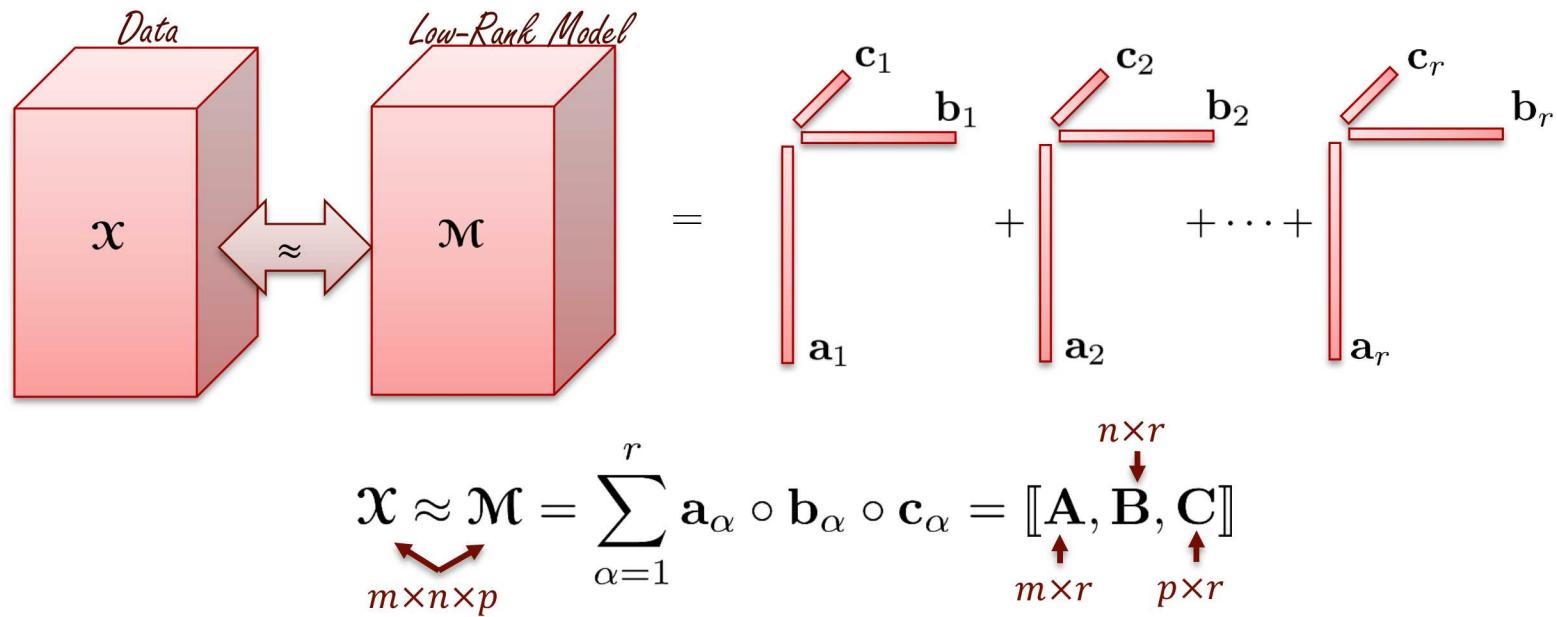
Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Motivation: decomposition of large-scale tensors

- Generalized canonical polyadic (GCP) tensor decomposition
 - D. Hong, T. Kolda, J. Duersch, *SIAM Review*, 2019
 - Finds low-rank approximation of sparse tensors
 - Uses general loss function to better represent variety of tensor data
- Implementations available
 - TensorToolbox (Bader and Kolda) – Matlab
 - GenTen (Phipps and Kolda) – multicore CPU and GPU (via Kokkos)
- Very large tensors can exceed available memory in single-node systems
- SIAM CSE19: Scalable, distributed-memory, MPI-based implementation of CP-ALS using the Trilinos solver framework
- Today: Distributed memory, MPI-based implementation of GCP building from Trilinos/CP-ALS implementation

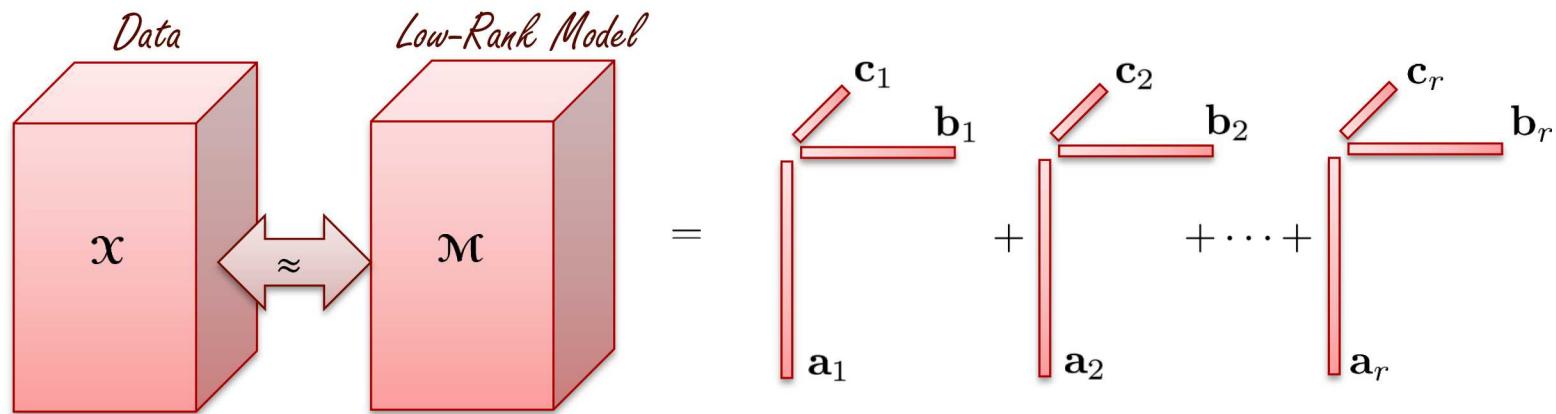
Canonical Polyadic (CP) Tensor Decomposition

- CANDECOMP / PARAFAC (CP) decomposition
- F. Hitchcock (1927); J.D. Carroll & J-J Chang (1970); R. Harshman (1970)
- Seek low-rank approximation of tensor data



Find CP decomposition by solving optimization problem

- Generalized CP (GCP) decomposition (Hong, Kolda, Duersch, 2018) takes user-defined loss function $f(x_{ijk}, m_{ijk})$



Optimization Problem: $\min \|\mathcal{X} - \mathcal{M}\|^2 \equiv \sum_i \sum_j \sum_k f(x_{ijk}, m_{ijk})$

$f(x, m)$ provided by user

Generalized loss functions represent variety of tensor data

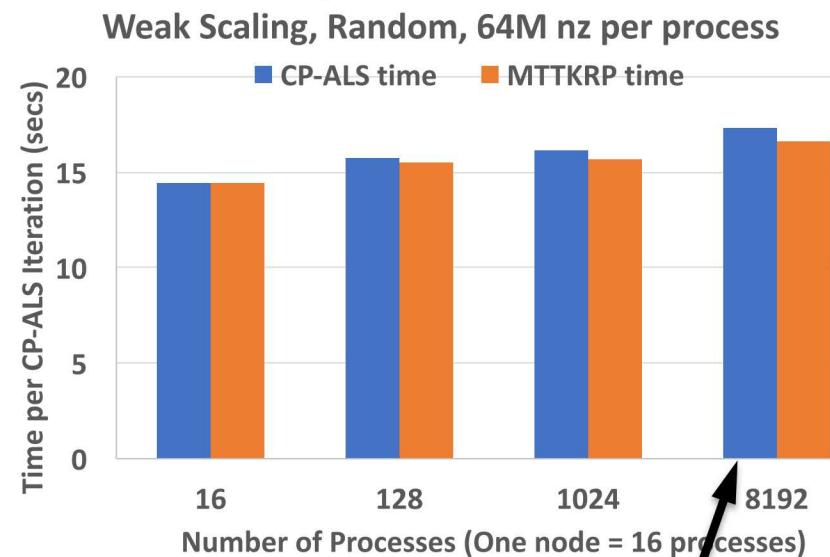
- For example, CP-ALS (alternating least squares) uses Normal loss function; good for Gaussian data:

$$\text{Optimization Problem: } \min \|\mathcal{X} - \mathcal{M}\|^2 \equiv \sum_i \sum_j \sum_k (x_{ijk} - m_{ijk})^2$$

- Other loss functions better represent other types of data:
 - Binary data
 - Count data
 - Non-negative data

Previous work: Distributed-memory CP-ALS using Trilinos

- Trilinos Solver Framework: Software for scientific applications with MPI+X parallelism
 - Linear algebra; linear, nonlinear, eigen solvers; discretization; meshing; load balancing; optimization
 - Built on Kokkos for on-node performance portability
- **Tpetra** parallel matrix, vector, communication classes
 - **MultiVectors**: dense storage, norms, etc. for factor matrices
 - **Maps**: parallel distribution of tensor and factor matrix
 - **Import/Export**: communication of factor matrix entries



**12.6 Terabyte tensor on
8192 MPI processes
(524 B nonzeros)**

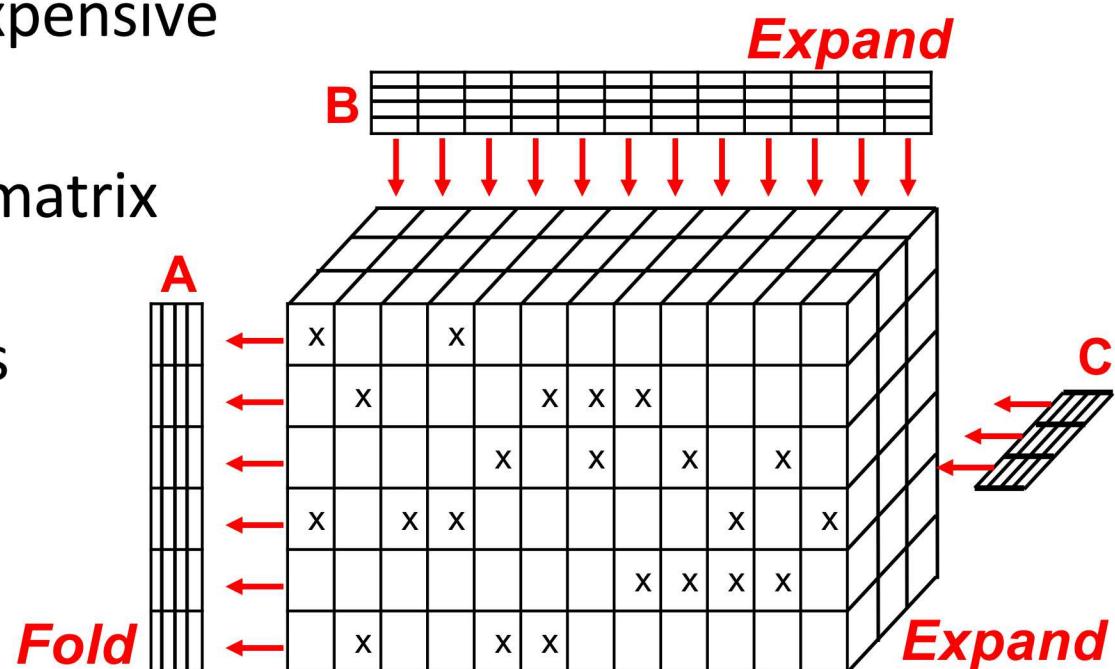
MTTKRP uses Trilinos' SpMV communication pattern

$$\mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B}) \Rightarrow \sum_{ijk} x_{ijk} b_{jr} c_{kr}, r = 1, \dots, R$$

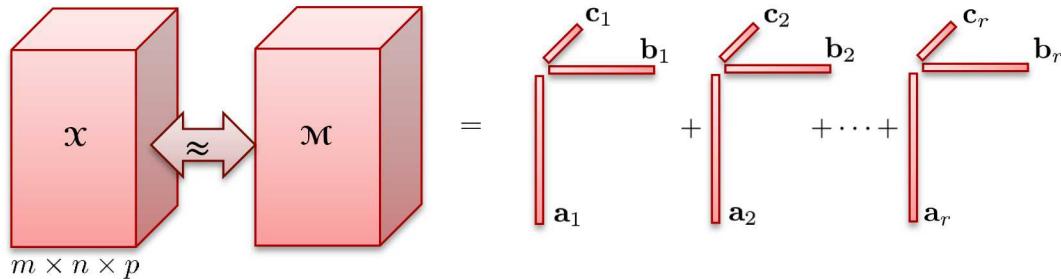
For each local tensor
nonzero $x_{ijk} \dots$

...use R entries of factor
matrices B and C to compute
 R contributions to MTTKRP

- Matricized Tensor Times Khatri-Rao Product (MTTKRP) is most expensive part of CP-ALS computation
- **Expand**: Sends input factor matrix entries to processors with corresponding tensor entries
- **Fold**: accumulates local contributions into output factor matrix



MTTKRP is key kernel of GCP direct optimization



Goal is to minimize: $F(\mathbf{A}, \mathbf{B}, \mathbf{C}) \equiv \sum_{ijk} f(x, m)$

Repeat until converged...

$$[\mathbf{A}, \mathbf{B}, \mathbf{C}] \leftarrow [\mathbf{A}, \mathbf{B}, \mathbf{C}] - \alpha \left[\frac{\partial F}{\partial \mathbf{A}}, \frac{\partial F}{\partial \mathbf{B}}, \frac{\partial F}{\partial \mathbf{C}} \right]$$

Gradients

$$\left[\begin{array}{l} \frac{\partial F}{\partial \mathbf{A}} = f'(\mathbf{X}_{(1)}, \mathbf{M}_{(1)})(\mathbf{C} \odot \mathbf{B}) \\ \frac{\partial F}{\partial \mathbf{B}} = f'(\mathbf{X}_{(2)}, \mathbf{M}_{(2)})(\mathbf{C} \odot \mathbf{A}) \\ \frac{\partial F}{\partial \mathbf{C}} = f'(\mathbf{X}_{(3)}, \mathbf{M}_{(3)})(\mathbf{B} \odot \mathbf{A}) \end{array} \right]$$

Gradient tensor f' is the derivative of loss function f with respect to m , evaluated elementwise

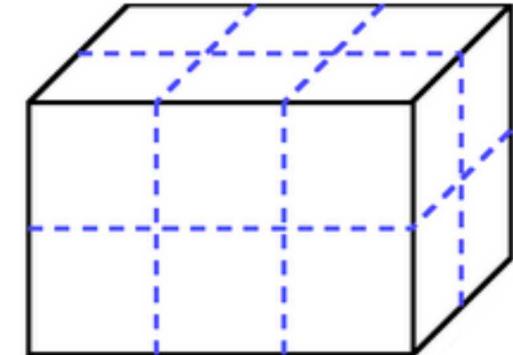
MTTKRP using gradient tensor

Solve GCP Optimization via Stochastic Gradient Descent

- Sample **both** tensor **nonzeros** and tensor **zeros**
 - Stratified sampling (sampling without replacement)
Ensure an entry (nonzero or zero) is sampled at most once per iteration
 - Semi-stratified sampling (sampling with replacement)
Allow duplicate samples of an entry
- **Sampling to compute loss for convergence test**
 - Sample <10% of tensor entries
$$\hat{F} \equiv \sum_{x_{ijk} \neq 0} \frac{\eta}{p} f(x_{ijk}, m_{ijk}) + \sum_{x_{ijk} = 0} \frac{\zeta}{q} f(x_{ijk}, m_{ijk})$$
 - η/p = number of nonzeros in tensor / number of nonzero samples
 - ζ/q = number of zeros in tensor / number of zero samples
- **Sampling to compute stochastic gradients**
 - Sample <1% of tensor entries in each iteration

Processor bounding boxes simplify sampling in distributed memory

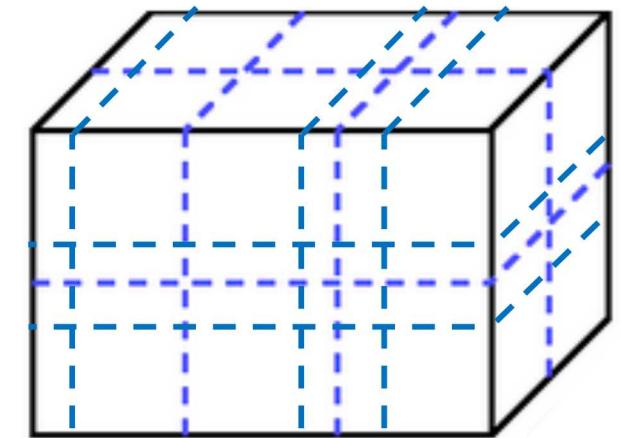
- Assume block-based distribution of tensor
 - Bounding boxes do not overlap
 - Bounding boxes cover entire index space of tensor
 - Each processor knows bounding box of its block
- Processors sample within their bounding boxes
 - Enables efficient searching for duplicate samples in stratified sampling
 - Maintains aligned communication pattern for expand/fold
- For s samples globally, select s/np indices on each of np processors (for load balance)
- Sample nonzeros proportionally to number of nonzeros in box (to prevent skew)
- Note: CP-ALS does not require bounding boxes; can use arbitrary tensor distributions



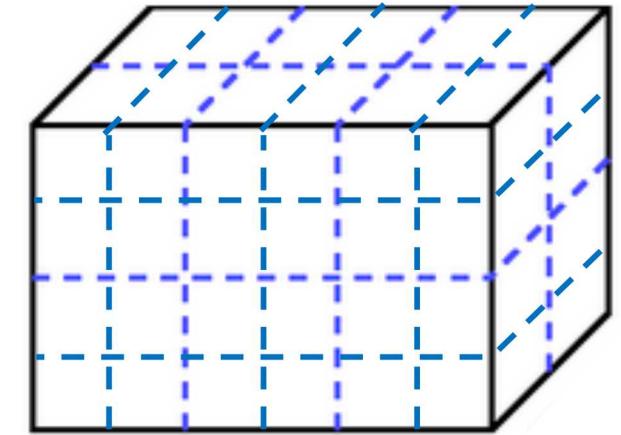
$p \times q \times r = 3 \times 2 \times 2$
processor layout

Uniform boxes prevent skew in sampling

- Medium grain distribution:
 - Each box has **equal number of nonzeros**, unequal number of zeros – great for CP-ALS
 - For uniform sampling, sample equal number of nonzeros in each box
 - For load balance, sample equal number of zeros in each box
 - Can over/under sample zeros in each box
- Uniform boxes:
 - Equal number of indices (nonzero + zero) per box
 - Within a box, sample proportionally to number of nonzeros and zeros in the box



*Tensor distributions with
 $p \times q \times r = 6 \times 4 \times 2$
processor layout*



Error computation is adapted to bounding boxes

$$\hat{F} \equiv \sum_{x_{ijk} \neq 0} \frac{\eta}{p} f(x_{ijk}, m_{ijk}) + \sum_{x_{ijk} = 0} \frac{\zeta}{q} f(x_{ijk}, m_{ijk})$$

- $\eta/p = \# \text{ of nonzeros in tensor} / \# \text{ of nonzero samples}$
- $\zeta/q = \# \text{ of zeros in tensor} / \# \text{ of zero samples}$
- Replace η, ζ, p, q with on-processor values from bounding boxes
 - Local number of nonzeros, zeros, samples
- If zeros and nonzeros are perfectly balanced across processors, ratios don't change from global values
- If imbalanced, account for density of sampling within a processor

Solve GCP Optimization via Stochastic Gradient Descent (ADAM)

“ADAM: a method for stochastic optimization,” D. Kingma & J. Ba, ICLR 2015

STOCHASTIC GRADIENT DESCENT

Randomly initialize $\mathbf{A}, \mathbf{B}, \mathbf{C}$

Estimate loss $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

While not converged

$$F_{old} = \hat{F}$$

For τ iterations

Compute stochastic gradients $\mathbf{G}_A = \frac{\partial F}{\partial A}; \mathbf{G}_B; \mathbf{G}_C$

Compute $\mathbf{A}, \mathbf{B}, \mathbf{C}$ using $\mathbf{G}_A, \mathbf{G}_B, \mathbf{G}_C$ and step size

Estimate loss function $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

If $\hat{F} > F_{old}$, backup and reduce step size

Return $\mathbf{A}, \mathbf{B}, \mathbf{C}$

Solve GCP Optimization via Stochastic Gradient Descent (ADAM)

STOCHASTIC GRADIENT DESCENT

Randomly initialize $\mathbf{A}, \mathbf{B}, \mathbf{C}$

Estimate loss $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

While not converged

$$F_{old} = \hat{F}$$

For τ iterations

Compute stochastic gradients $\mathbf{G}_A = \frac{\partial F}{\partial A}; \mathbf{G}_B; \mathbf{G}_C$

Compute $\mathbf{A}, \mathbf{B}, \mathbf{C}$ using $\mathbf{G}_A, \mathbf{G}_B, \mathbf{G}_C$ and step size

Estimate loss function $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

If $\hat{F} > F_{old}$, backup and reduce step size

Return $\mathbf{A}, \mathbf{B}, \mathbf{C}$

Use fixed stratified sampling to estimate loss (<10% of tensor indices); construct sampled tensor only once

Solve GCP Optimization via Stochastic Gradient Descent (ADAM)

STOCHASTIC GRADIENT DESCENT

Randomly initialize $\mathbf{A}, \mathbf{B}, \mathbf{C}$

Estimate loss $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

While not converged

$$F_{old} = \hat{F}$$

For τ iterations

Compute stochastic gradients $\mathbf{G}_A = \frac{\partial F}{\partial A}; \mathbf{G}_B; \mathbf{G}_C$

Compute $\mathbf{A}, \mathbf{B}, \mathbf{C}$ using $\mathbf{G}_A, \mathbf{G}_B, \mathbf{G}_C$ and step size

Estimate loss function $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

If $\hat{F} > F_{old}$, backup and reduce step size

Return $\mathbf{A}, \mathbf{B}, \mathbf{C}$

COMPUTE STOCHASTIC GRADIENTS

Sample nonzero and zero indices $\{ijk\}$

Construct gradient tensor \mathbf{y} with

$$y_{ijk} = \frac{\partial f}{\partial m}(x_{ijk}, m_{ijk}) \text{ for samples } \{ijk\}$$

$$\mathbf{G}_A = \frac{\partial F}{\partial A} = \text{MTTKRP}(\mathbf{y}, \mathbf{B}, \mathbf{C})$$

$$\mathbf{G}_B = \frac{\partial F}{\partial B} = \text{MTTKRP}(\mathbf{y}, \mathbf{C}, \mathbf{A})$$

$$\mathbf{G}_C = \frac{\partial F}{\partial C} = \text{MTTKRP}(\mathbf{y}, \mathbf{A}, \mathbf{B})$$

Solve GCP Optimization via Stochastic Gradient Descent (ADAM)

Use stratified or semi-stratified sampling (<1% of tensor indices)

STOCHASTIC GRADIENT DESCENT

Randomly initialize $\mathbf{A}, \mathbf{B}, \mathbf{C}$

Estimate loss $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

While not converged

$$F_{old} = \hat{F}$$

For τ iterations

Compute stochastic gradients $\mathbf{G}_A = \frac{\partial F}{\partial A}; \mathbf{G}_B; \mathbf{G}_C$

Compute $\mathbf{A}, \mathbf{B}, \mathbf{C}$ using $\mathbf{G}_A, \mathbf{G}_B, \mathbf{G}_C$ and step size

Estimate loss function $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

If $\hat{F} > F_{old}$, backup and reduce step size

Return $\mathbf{A}, \mathbf{B}, \mathbf{C}$

COMPUTE STOCHASTIC GRADIENTS

Sample nonzero and zero indices $\{ijk\}$

Construct gradient tensor \mathbf{y} with

$$y_{ijk} = \frac{\partial f}{\partial m}(x_{ijk}, m_{ijk}) \text{ for samples } \{ijk\}$$

$$\mathbf{G}_A = \frac{\partial F}{\partial A} = \text{MTTKRP}(\mathbf{y}, \mathbf{B}, \mathbf{C})$$

$$\mathbf{G}_B = \frac{\partial F}{\partial B} = \text{MTTKRP}(\mathbf{y}, \mathbf{C}, \mathbf{A})$$

$$\mathbf{G}_C = \frac{\partial F}{\partial C} = \text{MTTKRP}(\mathbf{y}, \mathbf{A}, \mathbf{B})$$

Distributed memory GCP Optimization via Stochastic Gradient Descent

Sample within bounding boxes;
no communication needed

Communicate (expand)
A, B, C entries corresponding
to samples in \mathbf{y}

Communicate (fold) in MTTKRP

COMPUTE STOCHASTIC GRADIENTS

Sample nonzero and zero indices $\{ijk\}$

Construct gradient tensor \mathbf{y} with

$$y_{ijk} = \frac{\partial f}{\partial m} (x_{ijk}, m_{ijk}) \text{ for samples } \{ijk\}$$

$$\mathbf{G}_A = \frac{\partial F}{\partial A} = \text{MTTKRP}(\mathbf{y}, \mathbf{B}, \mathbf{C})$$

$$\mathbf{G}_B = \frac{\partial F}{\partial B} = \text{MTTKRP}(\mathbf{y}, \mathbf{C}, \mathbf{A})$$

$$\mathbf{G}_C = \frac{\partial F}{\partial C} = \text{MTTKRP}(\mathbf{y}, \mathbf{A}, \mathbf{B})$$

Majority of communication is in computing stochastic gradients

Distributed memory GCP Optimization via Stochastic Gradient Descent

STOCHASTIC GRADIENT DESCENT

Randomly initialize $\mathbf{A}, \mathbf{B}, \mathbf{C}$

Estimate loss $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

While not converged

$$F_{old} = \hat{F}$$

For τ iterations

Compute stochastic gradients $\mathbf{G}_A = \frac{\partial F}{\partial A}; \mathbf{G}_B; \mathbf{G}_C$

Compute $\mathbf{A}, \mathbf{B}, \mathbf{C}$ using $\mathbf{G}_A, \mathbf{G}_B, \mathbf{G}_C$ and step size

Estimate loss function $\hat{F} = \sum_{\{ijk\}} f(x_{ijk}, m_{ijk})$

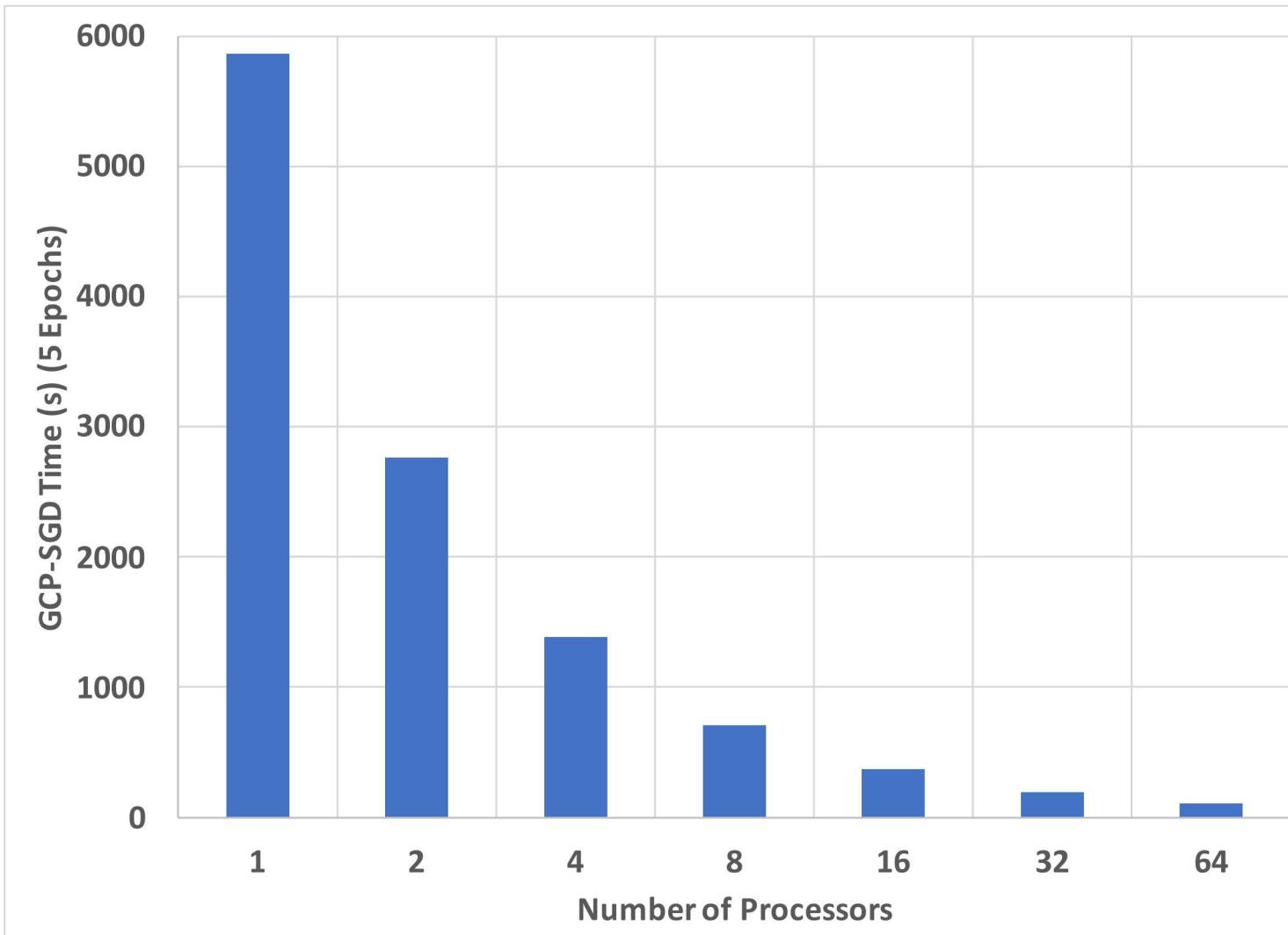
If $\hat{F} > F_{old}$, backup and reduce step size

Return $\mathbf{A}, \mathbf{B}, \mathbf{C}$

Communicate
(expand) $\mathbf{A}, \mathbf{B}, \mathbf{C}$
for fixed samples;
Allreduce

Distribute
 $\mathbf{G}_A, \mathbf{G}_B, \mathbf{G}_C$
in same way as
 $\mathbf{A}, \mathbf{B}, \mathbf{C}$;
***no communication
needed here***

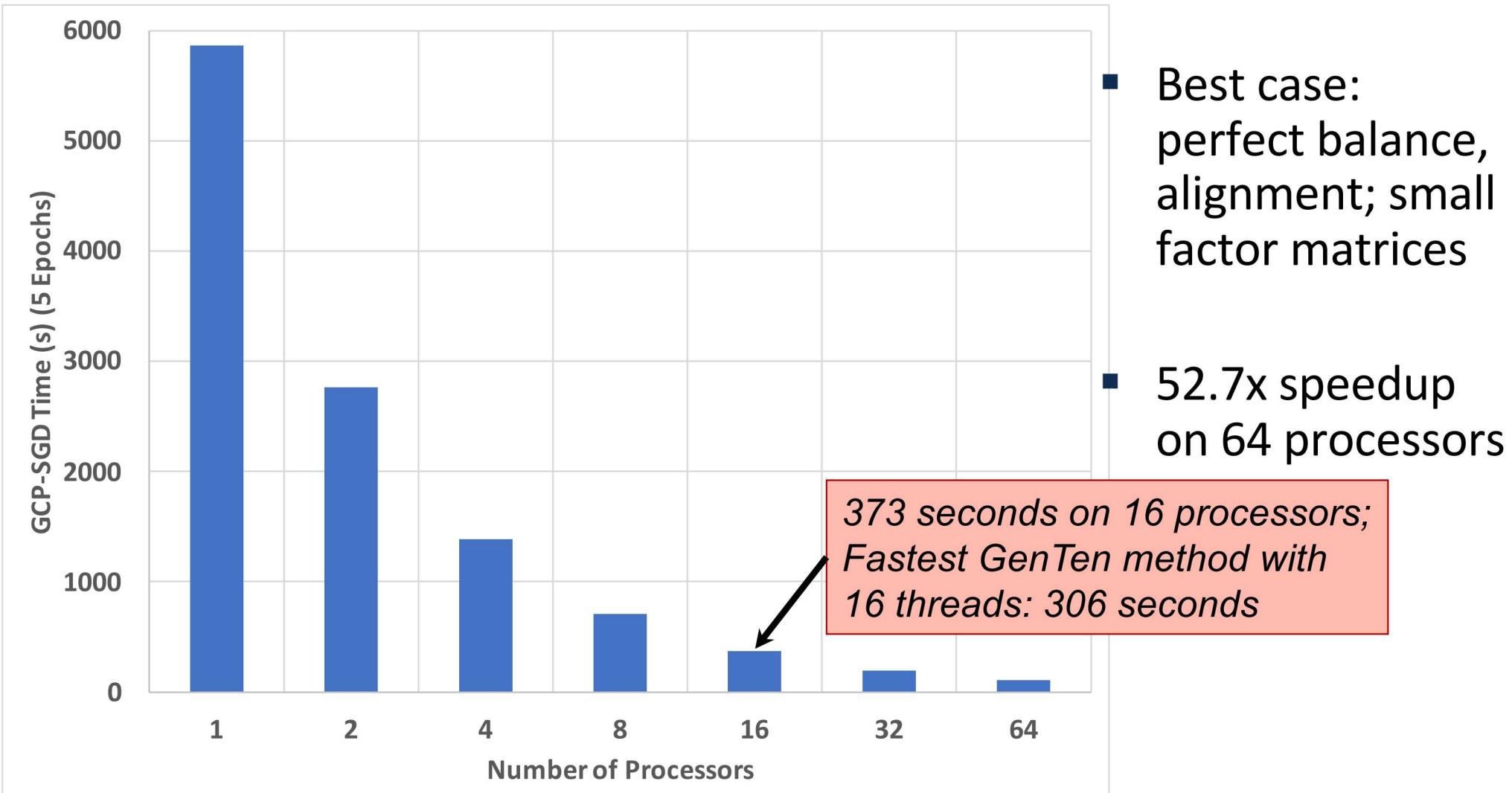
Best-case strong scaling is good



- Best case: perfect balance, alignment; small factor matrices
- 52.7x speedup on 64 processors

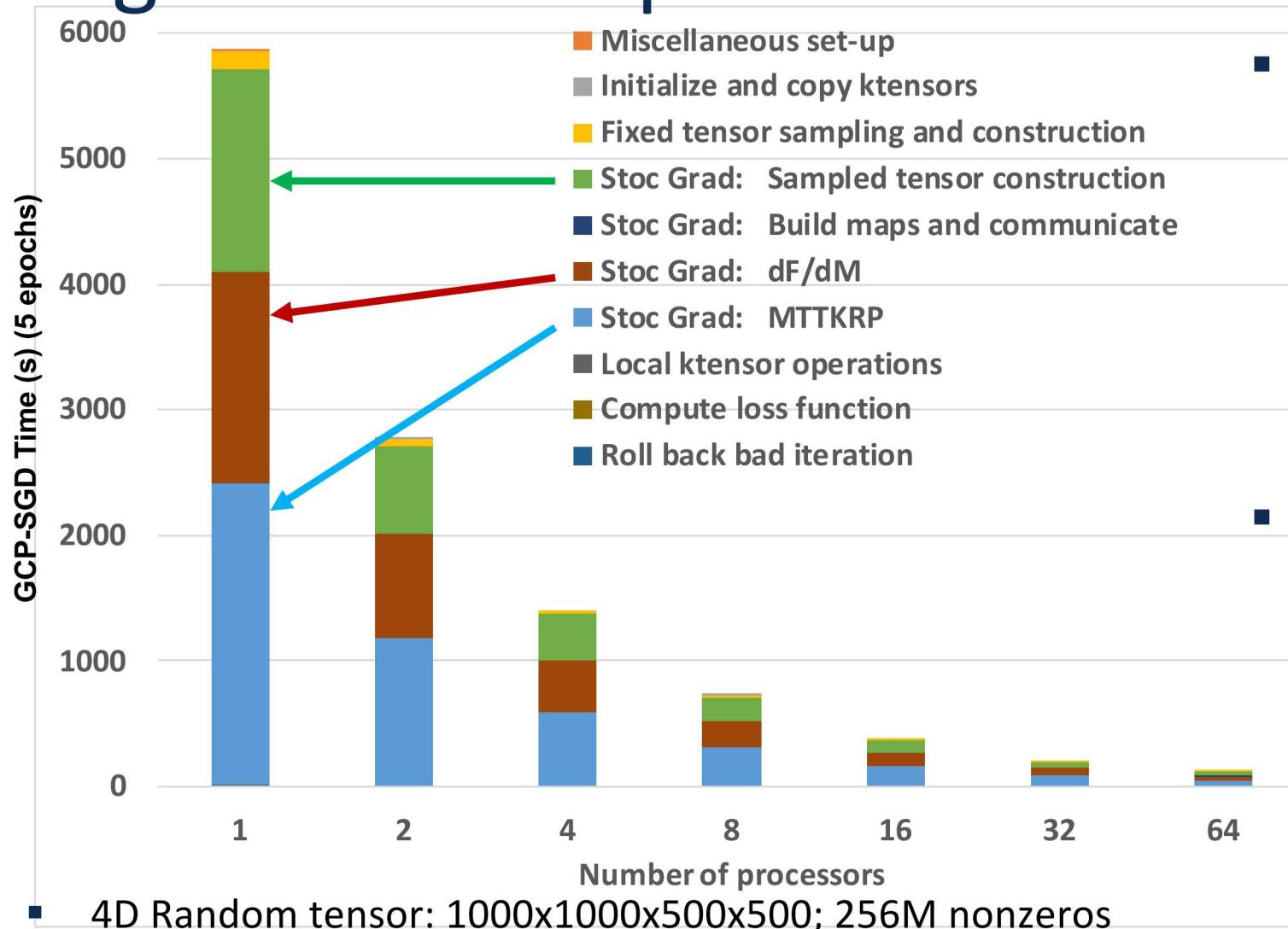
- 4D Random tensor: 1000x1000x500x500; 256M nonzeros; rank=16
- 5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor
- SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)

Best-case strong scaling is good



- 4D Random tensor: 1000x1000x500x500; 256M nonzeros; rank=16
- 5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor
- SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)

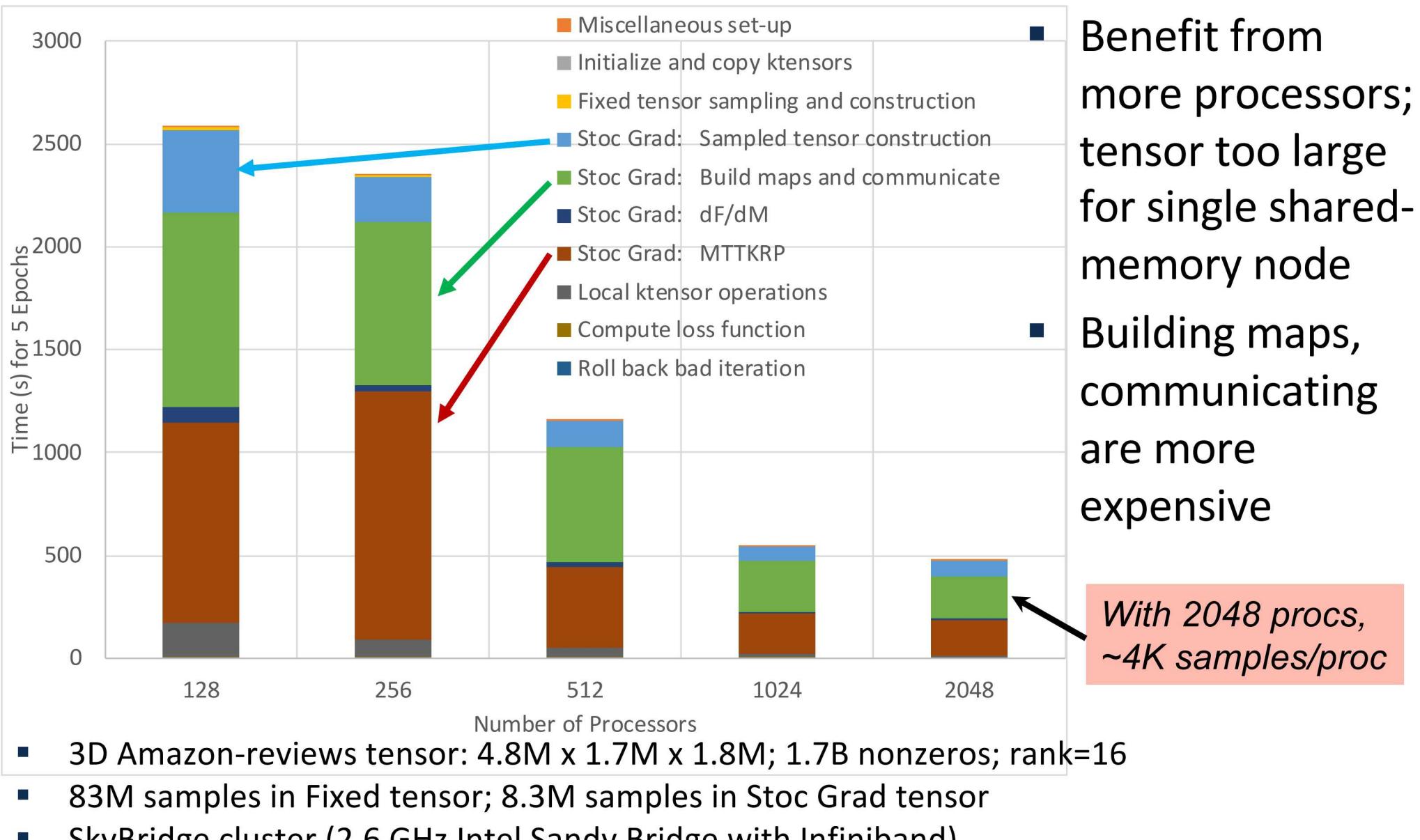
Most time spent in stochastic gradient computation



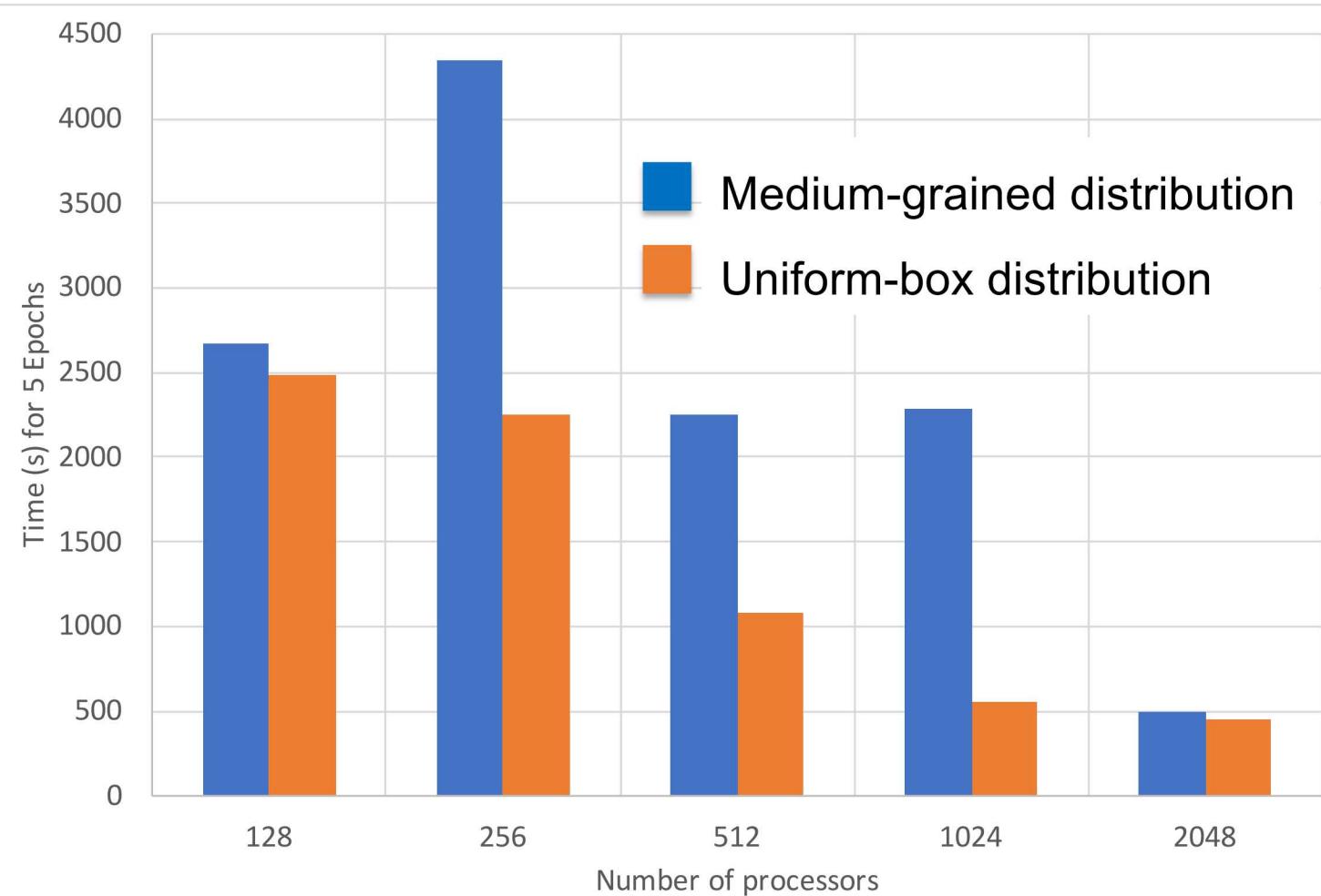
- Many kernels scaling well
 - Sampled tensor construction
 - MTTKRP
 - Derivative computation
- Costs for building maps and communicating are small but grow with number of processors

- 4D Random tensor: 1000x1000x500x500; 256M nonzeros
- 5M samples in Fixed tensor; 1.5M samples in Stoc Grad tensor
- SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)

More variability seen in real tensors



Uniform-box distribution benefits performance



- 3D Amazon-reviews tensor: 4.8M x 1.7M x 1.8M; 1.7B nonzeros; rank=16
- 83M samples in Fixed tensor; 8.3M samples in Stoc Grad tensor
- SkyBridge cluster (2.6 GHz Intel Sandy Bridge with Infiniband)

Conclusions and Future Work

- Distributed memory implementation of GCP-SGD is scalable and feasible for decomposition of very large tensors
 - Bounding box of processor's indices aids in efficient distributed-memory sampling
 - Trilinos' Tpetra data structures manage communication and factor matrix operations
 - Small sample sizes challenge strong scaling
- Next step: integration of on-node parallelism
 - Use capabilities in GenTen (Phipps, Kolda), such as on-node MTTKRP
- MPI-based code soon to be released on [gitlab.com: GentenMPI](https://gitlab.com/GentenMPI)