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Key Points

The expression of gas hydrate in nature 1s controlled by complex interactions
between gas sources, migration mechanisms, hydrate reservoirs, and
(thermodynamic) seals

Forward modeling these systems often requires:
Multi-phase, multi-component simulation

3D capability to honor lateral heterogeneity and quantify competing influences of different migration
mechanisms

Predicting continuous distributions of inputs to a simulator 1s challenging when
operating data-limited

How do we overcome this challenge, and can we quantify associated uncertainties?

We can use machine learning to estimate the inputs to a simulator based off of
proximity in geologic predictor space instead of simply spatial proximity
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MARINE SETTINGS PERMAFROST
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s | Methane Availability
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¢ | Transport

Increasing distances and
rates of methane transport

Diffusion of dissolved
b4 1 methane
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Motivation

| Sandia National Laboratories
2 U.S. Naval Research

Laboratory
3 University of Texas at Austin

orecasting Marine Sediment Properties On and Near the
Arctic Shelf with Geospatial Machine Learning

Jennifer M. Frederick!, Warren Wood?, Michael Nole', Ben Phrampus?, Hugh Daigle?, Hongku Yoon', Brian Young', and
Ken Sale'

Global Observations (data)

Collect and use all known data on seafloor,
organized as a gridded dataset. Data outside
of the Arctic can and should be used!

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell Intemational Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND No. 2019-4278 M
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0| GPSM

Geospatial Machine Learning Algorithm

Find Correlations

vector of vector of
observed values predictor values
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Based on sparse known
data, and hundreds of

4 dense calculated predictors,

GML produces continuous
maps of desired sea oor

‘ guantities, such as porosity,

sediment type, total organic
carbon content, etc.

GML produces estimates of
sea oor quantities and
their uncertainty, which is
based on prediction error.
A well sampled parameter
space will reduce
parameter uncertainty.

Uncertainty results can be
used to guide future data
acquisition campaigns.
Increasing observations
where prediction error
(uncertainty) is high will
bene tpredictive skill
globally.
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GPSM machine-learned maps
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Machine learning € -2 Mechanistic Simulation

Probabilistic maps
quantify uncertainties in
the seafloor parameters
we are interested in

How do these
uncertainties propagate
downward?

What can confidence
intervals on e.g. seafloor
temperature, seafloor
depth, seafloor organic
carbon content, ot heat
flux tell us about the
likelihood of shallow

gas or gas hydrate’

Vsed

dist.

etc.

Predicted value (predictand)
* e.g. permeability

Observed Value
* e.g. permeability

Geospatial Machine Learning Algorithm Forecast

Find Correlations
vector of
predictor values

vector of
observed values
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We need thermodynamic models

Based on sparse known
data, and hundreds of

1 dense calculated predictors,
“| GML produces continuous

maps of desired sea oor

‘ quantities, such as porosity,

sediment type, total organic
carbon content, etc.

GML produces estimates of
sea oor quantities and
their uncertainty, which is
based on prediction error.

| A well sampled parameter

space will reduce
parameter uncertainty.

| Uncertainty results can be

used to guide future data

acquisition campaigns.

Increasing observations
where prediction error
(uncertainty) is high will
bene tpredictive skill
globally.
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s | Forward modeling: open-source

PFLOTRAN

= -V- (p;Xiq; + Bl + J! + J9) + a5
V- (nXaar + 2, X80, + Ty +T8) + 4

-V (pHq, + g, — ket V') + qc.

software development
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s | Open-source software development

PFLOTRAN / code / pflotran
Commits

pflotran

Source
I3 Allbranches

Commits

Commit Message
Branches
Tom 4 9 Merged in dtseidl/pflotran/tom/fmdm-surrogate (pull request #
Pull requests
Tom Seid| 9937d8 changed MECHANISM FMDMSURROGATE to FMDM_SURROGATE side note: time \e DECAY_TIM e.. 2019-11-26
Pipelines

* Version control (git)

Issues

Tom Seid! a227fec changed DECAY_TIME to require time units 2019-11-25
m Seid| 6264747 M Merged pfiotran/pflotran into master 2019-11

Glenn Hammond bbb42e3 Initial pass at fixing indexing of source/sink terms in general; still needs fix for numerical Jacobian 2019-11-22
Wiki
Glenn Hammond af4db21 fixed bug in regression script where timeout_error flag is uninitialized. 2019-11-22
Downloads
Heeho Park Merged in heeho/cpr-preconditioner-hypre-have-fix (pull re

s R testa
€oression tesun . v
Michael Nole Sef26c5 Minor changes following comments on pull request. 2019-11-21
Michael Nole 5d630b4 Tweak. 2019-11-21
Michael Nole d1b8426 Refactor to have the PM hold all hydrate_parameters, to which others will point. 2019-11-21

Michael Nole c282cf7 Move methanogenesis parameters into the PM and out of patch. Requires changes outside of HMODE. 2019-1-21

* Online
documentation/uset’s

nn Hammond c6e8b83 ge branch ‘master" of https://bitbucket.org/pflotran/pt 2019-11-20
Glenn Hammond aad86d1 Changed -malloc 0 -> -malloc_debug no 2019-11-20

nn Hammond c43balb Merged in glenn/add-maijor-fail-to-regression (pull
Glenn Hammond b32edSc Added T for time out error to regression testing legend 2019-11-20

manual

u Tor b97 Merged in dtst pfiotran/tom/fmdm-surrogate (pull requ i 2019-11-20
Tom Seidl 114a2e3 Revisions for pull request #223: inged tolerance fmdm_ann_surrogate r 3 n 2019-11-20
n Hammond 3df5b83 Merged in glenn/add-h5py-to-travis (pull request #: r 2019-11-19
Glenn Hammond 47¢3690 Added python-h5py to apt-get 2019-11-19

* Continuous integration

Michael Nole 8c92b6d Merged in michael/hmode (pull request #22 019-11-19

Michael Nole d4244af hydrate regression test config file update. 2019-11-19
Michael Nole 70ed45a6 Move Srg into rel_perm base 2019-11-19
Michael Nole cdfadbf Working radiolysis model. 1» michael/wipp-radiolysis  2019-11-19

Glenn Hammond b34b282 Loosened major scale to 1.d6 2019-11-18
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Glenn Hammond 3feda%e Modified major failure of be a scaling of absolute/relative tolerance 2019-11-18

Next




7 | Framework
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s | Applying the Framework

Using GPSM maps for:

TOC
Sedimentation rate
Heat tlux
Bathymetry

Seafloor temperature

We can use mechanistic simulations to project downward into sediments
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v | Applying the Framework L
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*See Frederick et al. poster at the GRC!
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GPSM-PFLOTRAN Predicted Maximum Gas Hydrate Saturation
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GPSM-PFLOTRAN Predicted Maximum Gas Saturation
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Future Work

Higher-resolution maps, zoomed in sub-sampling
Quantify uncertainty

Sub-sample, do 3D

Mixed migration mechanisms

Expanded capabilities (mixed hydrates [with UT Austin], geomechanics/slope stability with
CSM, etc)

Affiliated posters you should check out
Jenn Frederick

David Fukuyama



