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3 Key Points

o The expression of gas hydrate in nature is controlled by complex interactions
between gas sources, migration mechanisms, hydrate reservoirs, and
(thermodynamic) seals

o Forward modeling these systems often requires:
• Multi-phase, multi-component simulation

• 3D capability to honor lateral heterogeneity and quantify competing influences of different migration
mechanisms

o Predicting continuous distributions of inputs to a simulator is challenging when
operating data-limited
• How do we overcome this challenge, and can we quantify associated uncertainties?

o We can use machine learning to estimate the inputs to a simulator based off of
proximity in geologic predictor space instead of simply spatial proximity



4 Thermodynamics

MARINE SETTINGS
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5 Methane Availability •
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6 Transport •

Increasing distances and
rates of methane transport
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Motivation
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Global Observations (data)

Collect and use all known data on seafloor,
organized as a gridded dataset. Data outside

of the Arctic can and should be used!
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8 Framework •
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GPSM

Geospatial Machine Learning Algorithm
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11 GPSM machine-learned maps
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13 Machine learning Mechanistic Simulation

• Probabilistic maps
quantify uncertainties in
the seafloor parameters
we are interested in

• How do these
uncertainties propagate
downward?

• What can confidence
intervals on e.g. seafloor
temperature, seafloor
depth, seafloor organic
carbon content, or heat
flux tell us about the
likelihood of shallow
gas or gas hydrate?

Ex.

1. (/)

2. a

3. vsed

4. dist.

5. etc.

Observed Value
• e.g. permeability

Predicted value (predictand)
• e.g. permeability

Geospatial Machine Learning Algorithm
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vector of
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Based on sparse known
data, and hundreds of
dense calculated predictors,
GML produces continuous
maps of desired sea oor
quantities, such as porosity,
sediment type, total organic
carbon content, etc.

GML produces estimates of
sea oor quantities and
their uncertainty, which is
based on prediction error.
A well sampled parameter
space will reduce
parameter uncertainty.

Uncertainty results can be
used to guide future data
acquisition campaigns.
Increasing observations
where prediction error
(uncertainty) is high will
bene t predictive skill
globally.

We need thermodynamic models
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Explore and predict with confidence.
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15 Forward modeling: open-source software development •
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16 Open-source software development

P F LOT R I NI

• Version control (git)

• Regression testing

• Online

documentation/user's

manual

• Continuous integration

•

PFLOTRAN / code / pfiotranE pfiotran

Commits
Q

0 Source
Searcn

§ Commits

1,3 All branches

Clone

Author Commit Message Date
If Branches

Tom Seidl c47ee89 m Merged in dtseidl/pflotran/tom/fmdm-surrogate (pull request #230) changed DECAT_TIME to use time units Approved-by: Gle... 2019-11-26

11 Pull requests

er Pipelines

Tom Seidl 9937f d8 changed MECHANISM FMDMSURROGATE to FMOM_SURROGATE slde note: tlme unks for the DECAV_TIME sub-block assume... 2019-11-25

Tom Seidl a227fec changed DECAV_TIME to require time units 2019-11-25

43 Deployments

Tom Seidl 6264747 M Merged pflotran/pflOtran lreo master 2019-11-25

0 Issues
Glenn Hammond bbb42e3 initial pass at fixing indexing of source/sink terms in general; still needs fix for numerical Jacobian 2019-11-22

PfiN

e Glenn Hammond af4db21 fixed bug In regression script where timeout_error flag Is uninitialized. 2019-11-22

Downloads
• Heeho Park 3815a2f m Merged in heehrecp&preconditionephypre-rove-fix (pull request 4228) PETSC_HAVE_LIBHVPRE changed to PETSC HAVE LI 2019-11-21

• Michael Wale 5ef 26c5 Minor changes following comments on pull request. 2019-11-21

• Michael Nole 5d6391/4 Tweak. 2019-11-21

• Michael Wale d1b8426 Ratan. to have the PM hold all hydrate_parameters, to which others will point. 2019-11-21

• Michael Nole c2820f 7 Move methanogenesis parameters into the PM and out ot patch. Requires changes outside of HMODE. 2019-11-21

it Glenn Hammond c5e8b83 la Merge branch Master' of hRps://bittucket.org/pllotran/pflotran 2019-11-20

jp Glenn Hammond aft086.11 Changed -metre° 0 -> -malloc_debug no 2019-11-20

V. Glenn Hammond cooba1b m merged in glenn/add-major-fail-to-regression (pull request 4226) Addition of MAJOR FAIL category in regression tests; time o... 2019-11-20

e Glenn Hammond b32ed5c Added T for time out error to regression testing legend 2019-11-20

Tom Seidl Ilaedb97 st Merged in dtreidl/pflotraretom/findm-surrogate (pull request e223) Tom/fmdm surrogate Approved-by: Glenn Hammond gene... 2019-11-20

Tom Seidl 114a2e3 Revisions for pull request #213: Changed tolerance for frndm_ann_surrogate regression test. Replaced real, integer, and logical... 2019-11-20

le Glenn Hammond 30f 51,83 M Merged in glenn/add Mon to travis (pull request #226) Added python-h5py to apt-get Approved-by: Glenn Hammond geham... 2019-11-18

e Glenn Hammond 47c3698 Added python-hspy ret-get 2019-11-19

• Michael Nole 8c92b6d m Merged in Mithael/hmode (pull request 8220) Michael/hmode Approved-by: Glenn Hammond gehammogsandia.gov 2019-11-19

e Michael Hole d4244af hydrate regression test corifig file update. 2019-11-19

• Michael Wale 79e45a6 Move Srg into reLperm base 2019-11-19

e Michael Nole cdf 8dbf Working radiolysIs model. b michael/repp-radiolysis 2019-11-18

Glenn Hammond b34b282 Loosened major scale to 1.d6 2019-11-18

ir Glenn Hammond 3feda9e Modified major fallure of be a scaling of absolute/relative tolerance 2019-11-18

Prey Next
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18 Applying the Framework

Using GPSM maps for:

o TOC

o Sedimentation rate

o Heat flux

• Bathymetry

o Seafloor temperature

We can use mechanistic simulations to project downward into sediments

o
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1 9 Applying the Framework •

GPSM
Seafloor Total Organic Carbon
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23 Future Work

o Higher-resolution maps, zoomed in sub-sampling

o Quantify uncertainty

o Sub-sample, do 3D

o Mixed migration mechanisms

o Expanded capabilities (mixed hydrates [with UT Austin], geomechanics/slope stability with
CSM, etc)

Affiliated posters you should check out
o Jenn Frederick

o David Fukuyama


