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My background

1. Ph.D. Texas A&M Univ., Aerospace Engineering, 1995
2. General Motors, Powertrain Division, 1996 - 2004

* FEA, thermal-structural analysis of engines

« “production environment (rapid design to analysis)
« fatigue (low and high cycle)

* Group Leader of head and block group, 2002 - 2004

3. Sandia National Laboratories, 2004 - present

« support of product-development engineering

« impact/penetration

« geologic storage of CO,

« pervasive fracture modeling

* polyhedral finite elements

* meshfree discretizations (rapid design to analysis)
* multiscale modeling, error estimation

* metal additive manufacturing

« department manager, 2018 - present




Research & development staff by
discipline

‘ Sandia National Laboratories

Established in 1945 as Los Alamos Z division
Sandia Laboratories established in 1949

Government owned, contractor operated, for DOE's National Nuclear
Security Administration (NNSA)

Responsible for design of non-nuclear components for nuclear weapons
Sandia teams with the two “"physics” laboratories: LANL, LLNL

First managed by AT&T Bell Labs, 1949-1993 LR
FFRDC, Federally Funded R&D Center (may perform work for in
5.8 billlor budsst A
14,000 employees: 2600 B.S, 4600 M.S., 2100 Ph.D.

950 students; 250 post-docs
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Engineering Sciences Center

« Mission: provide validated, science-based engineering expertise and solutions
across the life cycle of products to inform engineering decisions.

 Integrate theory, computational simulation and experimental discovery/validation
across length and time scales to develop the technical basis for complex systems.

e 600 staff members -
 Core technical areas:
« shock physics and energetics

 solid mechanics

 structural dynamics

« thermal and fire sciences 1 e
e aerosciences (hypersonics) e
« fluid mechanics ) . RS =
g 1 weal I o P
ad® 000 . )
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Structural Mechanics and Research Group

e 6 departments:

Structural Dynamics (linear)

Structural Mechanics (nonlinear)

Component Science and Mechanics (engineering mechanics)
Computational Material Mechanics (material models)
Environments Engineering

Computational Shock Physics

100 staff members
Two summer intern institutes:

RAMS: Research & Applications of Mechanics of Structures (12 students)
NOMAD: Nonlinear Mechanics and Dynamics (18 students)

www.sandia.gov/careers/students_postdocs/



Component Science and Mechanics

 About 15 staff members: 2/3 M.S., 1/3 Ph.D.
« Tightly integrated with “product realization teams”
« FEA analysis, engineering mechanics

-]

Research areas: hermitic

A connector
e contact mechanics

 fracture mechanics

e advanced stress analysis, error estimation

« parametric reduced-order models (multifidelity)
* object-oriented modeling (e.g. Modelica)

* rapid design to analysis methodologies
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Outline

1. Multiscale modeling and model-form error estimation

2. Polyhedral finite element formulation

1 T B



» I Solid mechanics: multiple scales

. . . crystal plasticit iCi
dislocation dynamics ystal p y macroscale plasticity

conservation of oP

Peach-Koehler relation : —— :I+pb=p,ii in Q conservationof P . .. o
linear momentum X s reemartun 32X + pob = poii  in

plastic velocity

F=(b-o)x ~ O(/r) —
IF — Z ,yaPa
gradient: a=1

yield surface f(0,8) = ¢(c) —0,(z") = 0
- - P =m*®n" 1 . . REE
dislocation cell structure 3(0) = {51 = al" +lor — ol + o2 — l")}

e . » 57

304L mic

A " 7 4

\

106 16 18

Length Scale (m), time scale (s)
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Multiscale modeling challenges for solid
mechanics

1. First principles prediction of strain-hardening behavior in ductile materials

2. Stress-strain behavior is path, rate and T dependent (infinite dimensional).

P

Strain localization, fracture

Limits of homogenization theory (lack of scale separation)
How to include material variability at macroscale? (homogenization filters fine scale)

Concurrent multiscale modeling?

e B 2s

error estimation (epistemic uncertainty)
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Types of uncertainty (UQ)

Types of aleatory uncertainty

* microstructure (material variability)
* geometric

* loading

Types of errors (epistemic uncertainty)

* model-form error
* homogenization error

* lack of scale separation
* surface effects
* lack of a representative volume element

BN DN $30
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Error estimation as UQ (epistemic)

variable microstructure

* simple macroscale model
e deterministic (simulate once)
* assess error a posteriori

stress field in tension assuming a
homogeneous isotropic material

| . stochastic
time to failure bound

te(w) — ty <n(w)




» ! Error estimation and adaptivity

adaptivity (apparent properties)

approximate
model

—> simulation

reference
model

(expensive)

time to failure

engineering srror
quantity of interest estimation
(UQ)
A

a posteriori error
estimation framework

stochastic

bound

tf (w)

-ty < n(w)
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Error estimation as UQ

single scale

multi-scale

goal oriented

nonlinear

uQ

* Oden, J.T. and K. Vemaganti, Adaptive hierarchical modeling of heterogeneous structures. Physica D:

Zohdi, T.I., J.T. Oden, and G.J. Rodin, Hierarchical modeling of heterogeneous bodies. Computer
Methods in Applied Mechanics and Engineering, 1996, 138:273-298.

Oden, J.T. and T.I. Zohdi, Analysis and adaptive modeling of highly heterogeneous elastic structures.
Computer Methods in Applied Mechanics and Engineering, 1997, 148: 367-391.

Nonlinear Phenomena, 1999, 133:404-415.

Oden, J.T. and K.S. Vemaganti, Estimation of Local Modeling Error and Goal-Oriented Adaptive
Modeling of Heterogeneous Materials: |. Error Estimates and Adaptive Algorithms. Journal of
Computational Physics, 2000, 164:22-47.

Oden, J.T. and S. Prudhomme, Goal-oriented error estimation and adaptivity for the finite element
method. Computers & Mathematics with Applications, 2001, 41:735-756.

Oden, J.T., et al., Modeling error and adaptivity in nonlinear continuum mechanics. Computer
Methods in Applied Mechanics and Engineering, 2001, 190:6663-6684.

Romkes, A. and J.T. Oden, Adaptive modeling of wave propagation in heterogeneous elastic solids.
Computer Methods in Applied Mechanics and Engineering, 2004, 193:539-559.

* need a “reference model” (or advanced experiments)

* adapt macroscale model to reduce error or uncertainty



15 Motivation: Laser weld, 304L

1T mm EBS D welding direction

How to homogenize? |-------------------




« IStainless steel 304L single crystal
elasticity constants

austenite FCC (cubic symmetry)

—

C11 =204.6 GPa
Ci2 = 137.7 GPa
Cyy = 126.2 GPa

s

2(744

= 3.8

anisotropy ratio A = =
R Ch1— Crs

(Ledbetter, 1984)



7 | Effect of texture on homogenized elastic properties

cubic symmetry (3 independent)

austenite grain (FCC) E = 93.8 GPa
304L v = 0.402
G = 126 GPa
no text{ ideal fiber-texture transversely isotropic
along [001]
Ei; =143 GPa
/ Eyy = 143 GPa ”
isotropic (2 independent) E33 =90.9 GPa
E =198 GPa v12 = 0.114
v =0.294 vo3 = 0.615
G = 76.5 GPa v13 = 0.615
G12 = 58 GPa
G = b Go3 = 126 GPa

2(1+v) G113 = 126 GPa



s 1 LENS, Laser Engineered Net Shaping

Powder feed (‘L-; '{ ,'

Focused laser beam
~ hatch width

" layer thickness

scan direction (x)

UuV‘u"ud

LENS deposition

(T. Palmer, PSU)

© CIMP-3D 2014

X — parallel hatch



» | Motivation: Microstructure comparison,
LENS 304L

111

100 101

* How to homogenize?
e Material or structure?




21 Error estimation: material-model error

(Zohdi, Oden, Rodin, 1996, CMAME)

02 0 2% « (= 0
lu—u’|[E < /(6 —€):(0 —0")d
v b T i
- ~ -~
- ol ‘ S ~ =~ -~
displacement \ o ~ ™
field using true approximate displacement strain field resuhltlng from stress field resulting from
material model field from simplified or approx. stress field buttrue  approx. strain field but true
approximate material model material model material model

Key point: Can bound error using only known quantities from the
approximate simulation. Don't need to run “true” model simulation.




Examples

1. anisotropic plate with hole (single scale)

2. tube with side hole: metal additive
manufacturing (multiscale)




» | Example: anisotropic plate with hole

1 IVIFa

11

transversely isotropic

F11 =143 GPa |
Epz =143 GPa transversely
3 FEs3 =91.8 GPa isotropic

2 vi2 = 0.115 1 3
vo3 = 0.610
v13 = 0.610
G123 = 64 GPa l l l l
Gasz = 126 GPa

G13 = 126 GPa
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Strain, magnitude

E, v
exact homogeneous

estimated
error

9.234 X 102
8.963 X 10-2

@

exact error




Model adaptivity

N
/(eo—é) : (5‘—00)dQ%ZVen§
< i=1

consider fixed

/ \

error indicator 772,2 ~ (EO —€): (o6 — 0-0) = (I — Cc—1 (CO) (C — CO)

How can we decrease this error, but still use an isotropic material model?

Consider a heterogeneous isotropic material model?

1 &
CO _ Ciso —al] +bK=3K]+ QMK J = §5ij5kl hydrostatic operator

K=1I-17 deviatoric operator

Let bulk modulus K and shear modulus p vary with position.

N | . O
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Model adaptivity

necessary conditions

o) _y .4 90

da oy Y

Can derive this 2 by 2 system of equations for the updated bulk and shear moduli.
20C71Je%) : (Je®) (C1Ke): (Je%) + (C1Je) : (Ke) IBsew |
(sym) 2(C7'Ke") : (Ke?) 2 finew |

{ 1J€°%]3 + (C~1 J€%) - (Ce”) }
IKe||3 + (C'Ke) : (Ce?)
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Young's modulus

homogeneous iteration 1 iteration 2




Poisson’s ratio

homogeneous iteration 1 iteration 2

0.5




‘ E, v, homogeneous

Error bound

estimated error D
T D

Q 9.234 X 102 5.554 X 102 5.482 X 102
8.963 X 102 5.447 X 102 5.378 X 102

exact error )
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Example (multiscale)

Consider two processing steps
l 1. AM build for tube (LENS)

2. subtractive machining for side hole

Consider two synthetic microstructures:

1. equiaxed (wrought)
2. additive (LENS using Kinetic Monte Carlo)



| FCC crystal plasticity model

Representative Volume Element (RVE) response

. : N

plastic velocity B o o

gradient: LF = Z 1
a=1

Schmid tensor: P% = m®* @ n®

) . a\ 1/m
slip system slip A% = 4 (T_> - sign(7%)
rates: 9

: G,
slip System g — g, + (g0 — go) [1 — exp <——7>]

hardening: 9so — Yo
LA yield surface strain-rate dependence
F= Z 7] (sum over slip systems) ' 56 .
s=1 400 Von Mises
. . . —— RVE realization 1
Single crystal elastic constants (austenite) 300} —— RVE realization 2 5% 1072/s
=8
C11 =204.6 GPa 200t 5 x 10_4/3
012 =137.7 GPa 100} QE“_’ 5 x 10 /S
Cys = 126.2 GPa 7}
S o
3
- - [0}
Not considering: 100 £
. -200
« grain boundary effects (Hall-Petch effect) 00 ,
* twinning =y J2 plasticity] 100 -
* dislocation substructures 00 F ) — — sE4/s
. 1 L L L N L 0 . L L :
latent hardening -400  -200 0 200 400 0 001 002 003 004 005

o true strain



31 ‘ EqU|axed miCFOStFUCture homogenized  direct simulation

« 358,000 grains

« voxelated with 28M finite elements

* crystal plasticity

* assume no preferred grain orientation (no texture)
* homogenized response is isotropic




13 | Synthetic additive microstructure using Theron Rodgers, SNL)
Kinetic Monte Carlo (KMC)

« KMC additive simulation

* single laser pass per layer
« 100 layers

* overlap with previous layer

double ellipsoid heat-
source model



« | Synthetic additive microstructure using KMC

(Theron Rodgers, Jon Madison, SNL)

« KMC (SPPARKS) voxelated geometry, 55 million

* Map to a conformal finite-element mesh of 22M
elements




)

AM stress results (KMC

35

realization 1

homogeneous,
isotropic




: ‘ Stress trace

Equiaxed stress
result

_________

AM (KMC) stress
result

w

n
[

stress magnitude
— [6)]

o
[

o

w

s
o
T

stress magnitude
(6]

0.5

\)
T

N
T

Y oA
!‘.ﬁ ‘. M‘!’M‘;“ﬂ l'l;u M‘“’, l"’ 1"“ l Wm
eI r;‘,%(ww‘1 T i

i 1(c)iistance aI;f\g tube, z ? ® ?
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‘ Error estimation: multi-scale

Previous error estimate will perform poorly if applied here.
» similar to Voigt assumption in composites theory (uniform strain)
* need to use a modified error estimate in energy norm.
(Oden, Zohdi, 1997)

[w —ul[p = 2[J(w) — J(u”)] + [Ju —u’|[
7

A A L J
// \ b
\ A
’ N
’ ' \ i
approximate displacement \ » orevious estimate
displacement field from field using true potential energy

material model

submodeling functional

N
lu—u’||% < X;Ven?

How to get approximate microscale displacement field, w?
Use a Dirichlet projection (submodeling)
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Homogenize
(filter fine scale)

true stress, MPa

0 0.01 0.02 0.03 0.04
true strain

Macroscale simulation

«—| o |—

oP

0X

I+ p,b=p,i in

Assumptions:

* scale separation
* RVE well defined
* no surface effects

lomogenization-localization duality

Localization
(recover fine scale)
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First, partition structure into non-
overlapping subdomains.

904 subdomains




33K hex elements

NERBERBRBRY
TR,
CEETISNNES,

Senuuus!

Type 1 localization

41



130K hex elements



‘ Localization results (equiaxed

homogeneous type 2 projection
isotropic type 1 projection (1 Schwarz iteration) exact (DNS)

Dirichlet
projection
(submodeling)




44‘ | ocalization stress results (AM

homogeneous type 2 projection
Isotropic

type 1 projection (1 Schwarz iteration) exact (DNS)

—

Dirichlet
projection
(submodeling

~




45 Equiaxed microstructure AM microstructure

Type 1 Type 2 Type 2

Stress error




“" How to adapt material properties to reduce error?

How can we decrease this error, but still use an isotropic material model?

N AN QN

Consider a heterogeneous isotropic material model?
1
0 ‘<o J= §5z’j5k:l hydrostatic operator
C°=C*""=aJ+bK=3KJ+2uK
K=1I-7J deviatoric operator

Let bulk modulus K'and shear modulus p vary with position.

Hot to determine? Minimize error mean constitutive response.

., — 214
I(@) —C ()1 R Pra
K €kk
l(e) — S o)1 K B 2
(o) —C{e)] : [(e) =S (o)) oc _ »
ou ]

dev(a) : dev(e)
dev(e) : dev(e)
dev(o) : dev(o)
dev(e) : dev(o)
dev(o) : dev(o)
dev(e) : dev(e)




.| Why polyhedra?

Increased flexibility in finite element discretizations
(tetrahedra and hexahedra are special cases)

Enables hybrid meshing, e.g. hexahedral-dominant
using frame fields

Enables cut-cell approaches

Voronoi meshing

How to generate meshes?
Voronoi is challenging on general shapes

5.00e+04
3.75e+04
2.50e+04
1.25e+04
0.00e+00

vm

5.00e+04
3.75e+04
250e+04
1.25e+04
0.00e+00

D
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Another approach to forming

polyhedral elements

Start with a tetrahedral mesh and
then form dual polyhedral cells.
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« 1 Three types of tetrahedral subdivision

barycentric full truncation partial truncation




» | Barycentric subdivision and aggregation

aggregate of aggregate of

quadrilaterals in 2D hexahedra in 3D
P
/ N‘q
/
t ™
1
i o
4 /
\\ 4‘01
O----o"
(c) (d)
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Barycentric subdivision and aggregat
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»! Element geometry

number of poly element vertices

number of attached

barycentric subdivision truncated subdivision
tetrahedra Y
1400 — - 2000
1200
1000 1500
) )
O 800 0
- & 1000 |
)
:C’ 600 2
400 1
500
o ‘ T
- 1l T : |
0 10 20 30 40 0 20 40 60 80 100 120 0 5 10 15 20 25

(a) number of attached tetrahedra  (b) number of elementvertices (c) number of elementvertices



* " Governing equations (total-Lagrangian formulation) ™

strong form opP T = poit ‘

0X

u=u on Iy and P-N=t;, on I}

BN DN $30

weak form find the trial functions u € H*(Qg) such that |

/ to-vdS — P:(0v/0X)dX = pot - vdX
F6 Qo Qo

for all test functions v € H}(Qo)
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Finite element formulation

« Bubnov-Galerkin formulation (trial and test functions use same space)

« Total-Lagrangian formulation (integrate weak form on original configuration).

« Minimize number of integration points while avoiding artificial stabilization.
 Typically, number of quadrature points ~ number of vertices (first order).
* Mean-dilation (F-bar) formulation for nearly-incompressible materials

* Compatible with standard trilinear hexahedron

* Going to explore the use of two types of shape functions:

1. harmonic,
2. maximum entropy (max-ent)
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Harmonic shape functions

Harmonic functions minimize the Dirichlet energy given by
the following functional:

J() = % /Q Vi - Vo dX with 1 € H(Qe)

The minimizer of this functional satisfies the following
variational problem:

find ¢ € H'(Q,) with W =1 on T such that
/ VY- VodX =0
Qe
for all test functions v € Ha (Qe)

The strong form of this variational problem is given by:

V2 =01in Q. with ¢ =1 on I,
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Harmonic shape functions

Ny N,
Y tha(X) =1 Y Ya(X) X=X
a=1 a=1

partition of unity linear reproducibility

B
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Patch test

tension

 atestfor element consistency
e« Uniform trgct!ons should result in uniform ¢ )
stress/strain field.

shear




Patch test

tension

shear

* Failed patch test!

« Can be traced to use of low-order integration
scheme.

* Due to lack of “integration consistency” or
violation of the discrete divergence theorem.

=h




‘ Integration consistency

Divergence theorem states that: / Vi, dX = / »* N dS
Qe Fe

where IN is the outward unit normal vector on I',

In discrete form:

Nq Ng
Y wpVar =Y wi vaNi, (a=1,...,N,)
=1 =1

where Va1 = 1q(Xk), and X}, is the position of the k-th quadrature point

* For non-polynomial shape functions, this will not be satisfied in general.

* This will results in a lack of consistency (failure of the engineering patch test).




Shape function derivative correction

Maintain the reproducing properties of the derivatives.

Minimize the least-squares difference between the new derivatives and the old.

Only performed once during simulation (pre-processing step).

Q Nq Ng
. 2 . . T B
girél}rzl?» ,;_1 Wi||€x — Vak|| subject to the constraints ,;_1 Wi &k — lg_l w; YNy =0

“Tweak” the shape function derivatives to satisfy the integration consistency condition.




=
=

2! Patch test

failed patch test successful

tension Error in stress with and without correction

applied traction state  without correction with correction

tension 0.18 9.6 - 1613
shear 0.13 37 » g1

shear




*! Beam bending with shear load

fixed | | l




« | Convergence, harmonic vs. max-ent

107"

L, norm of disp. error

L, norm

102

harmonic

10"

Dmax

159

energy norm
g

-
o

1078

energy norm

'
N
T

harmonic

10"

Dmax

N | E



2 I Convergence, harmonic vs. max-ent
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‘ Simulation results

hydrostatic stress von Mises stress equivalent plastic strain

0.50
0.25

0.00

| 500
‘ 250i
Y
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Comparison of reaction forces

8
7 L.
z o '
V4 0000000000000000-00-6-0-9
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(q0]
o
hexahedra

o o o polyhedra ]

0 0.5 1 1.5 2
extension, mm
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