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My background

1 . Ph.D. Texas A&M Univ., Aerospace Engineering, 1995

2. General Motors, Powertrain Division, 1996 - 2004
• FEA, thermal-structural analysis of engines
• production environment (rapid design to analysis)
• fatigue (low and high cycle)
• Group Leader of head and block group, 2002 - 2004

3. Sandia National Laboratories, 2004 - present

• support of product-development engineering
• impact/penetration
• geologic storage of CO2
• pervasive fracture modeling
• polyhedral finite elements
• meshfree discretizations (rapid design to analysis)
• multiscale modeling, error estimation
• metal additive manufacturing
• department manager, 2018 - present
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Sandia National Laboratories

• Established in 1945 as Los Alamos Z division

• Sandia Laboratories established in 1949

• Government owned, contractor operated, for DOE's National Nuclear
Security Administration (NNSA)

• Responsible for design of non-nuclear components for nuclear weapons

• Sandia teams with the two "physics" laboratories: LANL, LLNL

• First managed by AT&T Bell Labs, 1949-1993

• FFRDC, Federally Funded R&D Center (may perform work for industr

• $3.8 billion budget

• 14,000 employees: 2600 B.S, 4600 M.S., 2100 Ph.D.

• 950 students; 250 post-docs

Research & development staff by
discipline

Electrical
engineering, 16%

Mechanical
engineering, 18%

Other
engineering, 29%
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Computer
science, 18%

Cybersecurity, 6%

Chemistry, 1%

Physics, 4%

Other science, 9%
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4 Research Foundations (Lab directed R&D)
Computing
Information S

Engineering Sciences

Bioscience

Materials Sciences

Nanodevices &
Microsystems

4.
• $162M in FY19
• supported 130 post docs
• 300 journal pubs
• up to 30% univ. collab.

Geoscience



5

Engineering Sciences Center
• Mission: provide validated, science-based engineering expertise and solutions

across the life cycle of products to inform engineering decisions.

• Integrate theory, computational simulation and experimental discovery/validation
across length and time scales to develop the technical basis for complex systems.

• 600 staff members

• Core technical areas:

• shock physics and energetics

• solid mechanics

• structural dynamics

• thermal and fire sciences

• aerosciences (hypersonics)

• fluid mechanics

•

ow"'

••

Mono. arm w iu

I
)

ONS

al at lie 100
tau,

Time (s) = 3397



6 Structural Mechanics and Research Group

• 6 departments:
• Structural Dynamics (linear)

• Structural Mechanics (nonlinear)

• Component Science and Mechanics (engineering mechanics)

• Computational Material Mechanics (material models)

• Environments Engineering

• Computational Shock Physics

• 100 staff members

• Two summer intern institutes:
• RAMS: Research & Applications of Mechanics of Structures (12 students)

• NOMAD: Nonlinear Mechanics and Dynamics (18 students)

www.sandia.gov/careers/students_postdocs/



Component Science and Mechanics

• About 15 staff members: 2/3 M.S., 1/3 Ph.D.

• Tightly integrated with "product realization teams"

• FEA analysis, engineering mechanics

Research areas:
• contact mechanics

• fracture mechanics

hermitic
connector

• advanced stress analysis, error estimation

• parametric reduced-order models (multifidelity)

• object-oriented modeling (e.g. Modelica)

• rapid design to analysis methodologies
Max Principal Stress (ksi)
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Outline

1. Multiscale modeling and model-form error estimation

2. Polyhedral finite element formulation



9 I Solid mechanics: multiple scales
crystal plasticity macroscale plasticitydislocation dynamics

Peach-Koehler relation

F = (b • a) x O(1/r)

dislocation cell structure

(Zaiser, M. and P. Hähner, 1999)

10-6

conservation of OP
linear momentum ax 

: I + pob = pou

plastic velocity
gradient:

N

LP = Pa
ct=1

in SZ

= ma 0 n'

AM 304L microstructure (LENS)

1.0 mm

ductile void growth & coalescence

conservation of aP
linear momentum ax

: I + pob = Nil in S2

yield surface f = 0(6) — ay(F) = 0

Benzerga, 1999)

1 0-4
Length Scale (m), time scale (s)

I/a0(6) = 1 2 1161 — 621a + 101 0-31° 02 (7e) } 

o

10-2



1° Multiscale modeling challenges for solid
mechanics

1. First principles prediction of strain-hardening behavior in ductile materials

2. Stress-strain behavior is path, rate and T dependent (infinite dimensional).

3. Strain localization, fracture

4. Limits of homogenization theory (lack of scale separation)

5. How to include material variability at macroscale? (homogenization filters fine scale)

6. Concurrent multiscale modeling?

7. error estimation (epistemic uncertainty)
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Types of uncertainty (UQ)

Types of aleatory uncertainty
• microstructure (material variability)

• geometric

• loading

Types of errors (epistemic uncertainty)

• model-form error

• homogenization error

• lack of scale separation
• surface effects
• lack of a representative volume element



12

I
0

t

Error estimation as UQ (epistemic)

• simple macroscale model
• deterministic (simulate once)
• assess error a posteriori

stress field in tension assuming a
homogeneous isotropic material

time to failure
stochastic
bound

tf(W) tf < fri(w)

variable microstructure



13 Error estimation and adaptivity

I

I
I

approximate
model

reference
model

(expensive)

adaptivity (apparent properties)

--> simulation -*
engineering

quantity of interest

1
1
1
1

)10111•

error
estimation
(UQ)

I
J

a posteriori error
estimation framework

1
I

time to failure 
stochastic I
bound

tf (W) tf < fri (w) I



1 4 I Error estimation as UQ

single scale

multi-scale '

• Zohdi, T.I., J.T. Oden, and G.J. Rodin, Hierarchical modeling of heterogeneous bodies. Computer
Methods in Applied Mechanics and Engineering, 1996, 138:273-298.

• Oden, J.T. and T.I. Zohdi, Analysis and adaptive modeling of highly heterogeneous elastic structures.
Computer Methods in Applied Mechanics and Engineering, 1997, 148: 367-391.

Oden, J.T. and K. Vemaganti, Adaptive hierarchical modeling of heterogeneous structures. Physica D:
Nonlinear Phenomena, 1999, 133:404-415.

• Oden, J.T. and K.S. Vemaganti, Estimation of Local Modeling Error and Goal-Oriented Adaptive
Modeling of Heterogeneous Materials: I. Error Estimates and Adaptive Algorithms. Journal of
Computational Physics, 2000, 164:22-47.

goal oriented

nonlinear

• Oden, J. T. and S. Prudhomme, Goal-oriented error estimation and adaptivity for the finite element
method. Computers Et Mathematics with Applications, 2001, 41:735-756.

• Oden, J. T. , et al., Modeling error and adaptivity in nonlinear continuum mechanics. Computer
Methods in Applied Mechanics and Engineering, 2001, 190:6663-6684.

• Romkes, A. and J.T. Oden, Adaptive modeling of wave propagation in heterogeneous elastic solids.
UQ Computer Methods in Applied Mechanics and Engineering, 2004, 193:539-559.

• need a "reference model" (or advanced experiments)

• adapt macroscale model to reduce error or uncertainty



1 5 Motivation: Laser weld, 304L

1 mm

How to homogenize?

EBSD welding direction

NNNN (too)



161Stainless steel 304L single crystal
elasticity constants

austenite FCC (cubic symmetry)

= 204.6 GPa

C12 = 137.7 GPa  

C44 = 126.2 GPa

anisotropy ratio A =  
2 C44 

= 3.8
un — 12

(Ledbetter, 1984)



17 Effect of texture on homogenized elastic properties

austenite grain (FCC)
304L

no texture

isotropic (2 independent)

E = 198 GPa

= 0.294

G = 76.5 GPa

G =
2(1 +

E

cubic symmetry (3 independent)

E = 93.8 GPa

v = 0.402

G = 126 GPa

ideal fiber-texture
along [001]

transversely isotropic

E11

E22

E33

= 143 GPa

= 143 GPa

= 90.9 GPa

v12 = 0.114

v23 = 0.615

v13 = 0.615

G12 = 58 GPa

= 126 GPa

G13 = 126 GPa

G23



18 LENS, Laser Engineered Net Shaping

Powder feed

Focused laser beam
hatch width

scan direction (x)

LENS deposition

(T. Palmer, PSU)

layer thickness



Motivation: Microstructure comparison,
LENS 304L

1 .0 m m

1 .0 mm

3.8 kW LENS
aser Beam

1 00

1 1 1

1 01

• How to homogenize?
• Material or structure?



20 Error estimation: material model error
(Zohdi, Oden, Rodin, 1996, CMAME)

••••
displacement
field using true
material model

1-2 -N-. ,... ,
lu — u° 112E < (E° e) : (6- — o-°) dQ

% . ,.% .
% . .

approximate displacement strain field resulting from
field from simplified or approx. stress field but true
approximate material model material model

,....
.....

•••.,
••••

••••
••••

••••
*ft

ft..,

stress field resulting from
approx. strain field but true
material model

Key point: Can bound error using only known quantities from the
approximate simulation. Don't need to run "true" model simulation.



21 Examples

1. anisotropic plate with hole (single scale)

2. tube with side hole: metal additive
manufacturing (multiscale)



22 1 Example: anisotropic plate with hole
IVI ra

—

!tte\i es%•° r.,./

'414 --air

transversely isotropic
EH = 143 GPa

E22 = 143 GPa

3 E33 = 91.8 GPa

v12 = 0.115

v23 = 0.610

v13 = 0.610

G12 = 64 GPa

G23 = 126 GPa

G13 = 126 GPa

rT

O
transversely
isotropic



23 Strain, magnitude

I

o
1

exact
E, v
homogeneous

1

estimated
error

exact error

9.234 X 10-2
8.963 X 10-2



24 1 Model adaptivity

L(e° — : (er — cs() )
N

i=1

consider fixed

error indicator (co 0.0) = (i[ c-1 co ) co (c co) co

How can we decrease this error, but still use an isotropic material model?

Consider a heterogeneous isotropic material model?

co ciso “K=3K +2[LK
1

J = 30ijoki hydrostatic operator

= — J deviatoric operator

Let bulk modulus K and shear modulus p vary with position.



25 1 Model adaptivity

necessary conditions

0(77n _ 0 and
Oa

0(T1) o
Ob

Can derive this 2 by 2 system of equations for the updated bulk and shear moduli.

[ 2(C-1 E°) : (

[ (syrn)

€0) (C-1 K E0) : ( E0) + (C-1 E0)

2(C-1 KO : (KO
: (KE°) 1 f 3Knew

i 1 2 //new

1 150 1-h(ic-i 0): (Co
1 KE° 1+(ic-1K€0): (Co

1
I

I

1



26 Young's modulus

t
o
t

homogeneous iteration 1 iteration 2

200

0:



27

Poisson's ratio

t
o
1

homogeneous

el

el

iteration 1 iteration 2

II-

P

.46_
lir 111.

p



I Error bound

estimated error

exact error

E, v, homogeneous

9.234 X 10-2
8.963 X 10-2

iteration 1

5.554 X 10-2
5.447 X 10-2

iteration 2

5.482 X 10-2

5.378 X 10-2



" Example (multiscale)

I
0

1
Consider two processing steps
1. AM build for tube (LENS)
2. subtractive machining for side hole

Consider two synthetic microstructures:
1. equiaxed (wrought)
2. additive (LENS using Kinetic Monte Carlo)



30 1 FCC crystal plasticity model
plastic velocity
gradient:

Schmid tensor:

LP = P'

a=1

Pcti = n'

a)1/rn a
slip system slip ;Ya = 

T 
• signer )

rates:

slip system
hardening:

G
g = + (gso — go) [1 — exp  7)1

gso 

o 

go

= E 1781 (sum over slip systems)
s=1

Single crystal elastic constants (austenite)

C11 = 204.6 GPa

C12 = 137.7 GPa

C44 = 126.2 GPa

Not considering:

• grain boundary effects (Hall-Petch effect)
• twinning
• dislocation substructures
• latent hardening

Representative Volume Element (RVE) response

yield surface

400 -Von Mises
RVE realization 1

300 -- RVE realization 2

200

100

0

-100

-200

-300

-400

J2 plasticity

-400 -200 0 200 400

1

strain-rate dependenc
600

e

500

al 400n_

vi

'El 300

a)

200

100 ---- 5E-2/s

- 5E 3 / s

5E-4 / s

0 
0 0.01 0.02 0.03

true strain
0.04 0.05

1

■

5 x 10-2/8

5 x 10-3/8

5 x 10-4/8

1



Equiaxed microstructure
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• 358,000 grains
• voxelated with 28M finite elements
• crystal plasticity
• assume no preferred grain orientation (no texture)
• homogenized response is isotropic

homogenized direct simulation



33 Synthetic additive microstructure using
Kinetic Monte Carlo (KMC)

double ellipsoid heat-
source model

(Theron Rodgers, SNL)

• KMC additive simulation
• single laser pass per layer
• 100 layers
• overlap with previous layer



Synthetic additive microstructure using KMC
2„ ;tit
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(Theron Rodgers, Jon Madison, SNL)

• KMC (SPPARKS) voxelated geometry, 55 million

• Map to a conformal finite-element mesh of 22M
elements



35 AM stress results (KMC)
homogeneous,

isotropic

t
0

i

realization 1 2



36 I Stress trace

Equiaxed stress
result

<- —>

AM (KMC) stress
result

2.5

2.5

equiaxed, 1
equiaxed, 2
equiaxed, 3
homogeneous

I

1

I I

5 10 15 20
distance along tube, z

25 30

I

I

AM, 1
AM, 2
AM, 3
homogeneous

I I I

5 10 15 20

distance along tube, z
25 30



1
38 Error estimation: multi-scale

Previous error estimate will perform poorly if applied here.

• similar to Voigt assumption in composites theory (uniform strain)

• need to use a modified error estimate in energy norm.

(Oden, Zohdi, 1997)

1 lw - ull2E = 2[J(w) - J(u°)] + 1 lu - u'll2E
of I, I. I  I/ % %

• % % *
•
• % % •

•
approximate
displacement field from
submodeling

displacement
field using true
material model

potential energy
functional

♦
previous estimate

U - U
i=1

How to get approximate microscale displacement field, w?
Use a Dirichlet projection (submodeling)



39 Homogenization-localization duality

450

400

350

as 300

r,i• 250

V) 200
ci)
2
— 150

100

50

Homogenize
(filter fine scale)

— piece-wiae linear fit

- — RVE realization 1

— — RVE realization 2 -

— — RVE realization 3

. . 

0.01 0.02
true strain

0.03 0.04

Macroscale simulation

OP

o —>

OX 
: I + p013 = pou in Q Eij

Assumptions:
• scale separation
• RVE well defined
• no surface effects

Localization
(recover fine scale)

9 
yy
4 

t. •
4. 1

(C) 

0 050

0 025

0 000
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First, partition structure into non-
overlapping subdomains.

i

I

1
904 subdomains I

1
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Type 1 localization

33K hex elements



42 Type 2 localization (overlapping)

-.414frri

130K hex elements

1



Localization results (equiaxed)
homogeneous type 2 projection

isotropic type 1 projection (1 Schwarz iteration)

t
0

1

IMIllikr
Dirichlet
projection
(submodeling)

im

exact (DNS)



Localization stress results (AM)
homogeneous

isotropic

r
o

i

---K

Dirichlet
projection
(submodeling

type 2 projection
type 1 projection (1 Schwarz iteration) exact (DNS)



45 Equiaxed microstructure
Type 1 Type 2Stress error iAssiEs4
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46 How to adapt material properties to reduce error?

How can we decrease this error, but still use an isotropic material model?

Consider a heterogeneous isotropic material model?

co iso a b K = 3K - 2p, K

1 _c
J — —3 ujjaki hydrostatic operator

K = — J deviatoric operator

Let bulk modulus K and shear modulus p vary with position.

Hot to determine? Minimize error mean constitutive response.

a 
,

C
2 
:— I(a) — C (f) 1

2 -1 A 2

" 0

EC
2 
:— I(E) — S (a)1 

2 OK

e2:— [(a) — C (c)] : [(c) — S Ka)] 0 e2

0,u,
0

<akk> 
<Ekk

2,u

2p,

dev(a) : dev(c)

dev(E) : dev(e)

dev(6) : de0r)

dev(E) : dev(a)

dev(a) : dev(a)

deAT(E) : dev(e)



47 Why polyhedra?

• Increased flexibility in finite element discretizations
(tetrahedra and hexahedra are special cases)

• Enables hybrid meshing, e.g. hexahedral-dominant
using frame fields

• Enables cut-cell approaches

• Voronoi meshing

How to generate meshes?
Voronoi is challenging on general shapes

vm

5 00e+04

3 75e+04
2 50e+04
1 25e+04

0 00e+00

vm

5 00e+04
3 75e+04
2 50e+04
1 25e+04
0 00e+00



48 Another approach to forming
polyhedral elements

Start with a tetrahedral mesh and
then form dual polyhedral cells.



49 Three types of tetrahedral subdivision

barycentric full truncation partial truncation



50 I Barycentric subdivision and aggregation

(a) (b)

aggregate of
quadrilaterals in 2D

P%.,i .,i

aggregate of
hexahedra in 3D

(c) (d)
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I
" Element geometry 1

number of poly element vertices

1400

1200

1000

(1-)
ID 800

E
2 600

400

number of attached
tetrahedra

200

0  1111

0 10

1 1 I m
20

I

30

.
40

(a) number of attached tetrahedra

1400

1200

1000

'<15
_a 800

E
2 600

400

200

(b)

barycentric subdivision

11 ii ii

2000

1500

500

truncated subdivision

0  
20 40 60 80 100 120 

 
0 5 10 15 20 25

number of element vertices (c) number of element vertices

1

1
I

1



1 
I

" Governing equations (total-Lagrangian formulation) 1

OP 
I: = Po ii Istrong form

OX

1u = 'it on rot and P • N = to on Fto

•

weak form find the trial functions u E H1 (Q0) such that

f to • v dS — I P : (Dv IOX) dX = f po U • v dX
rt, s-20 s-20

I
for all test functions v e 1-1(1)-(Q0)

1



i
" Finite element formulation i

• Bubnov-Galerkin formulation (trial and test functions use same space)

• Total-Lagrangian formulation (integrate weak form on original configuration).

• Minimize number of integration points while avoiding artificial stabilization.

• Typically, number of quadrature points — number of vertices (first order).

• Mean-dilation (F-bar) formulation for nearly-incompressible materials

• Compatible with standard trilinear hexahedron

• Going to explore the use of two types of shape functions:

1. harmonic,
2. maximum entropy (max-ent)

i

1



56 I

Harmonic shape functions

Harmonic functions minimize the Dirichlet energy given by
the following functional:

J(0) := 1 f e Vrcb • VO dX with 0 E H1(S2e)

The minimizer of this functional satisfies the following
variational problem:

find 0 E H1(Qe) with 0 = 0 on Fe such that

12, VO • Vv dX = 0

for all test functions v E 41(Qe)

The strong form of this variational problem is given by:

V20 = 0 in C2e with 0 = 0 on Fe



" Harmonic shape functions

Eoa(x) = 1
a=1

partition of unity

Ivy

>21Pa(x)xa = X
=1

linear reproducibility



58 1 Patch test

• a test for element consistency
• Uniform tractions should result in uniform

stress/strain field.

i

tension

shear



59 Patch test

tension

1.050

0.975

0.900

shear

(c)

• Failed patch test!
• Can be traced to use of low-order integration
scheme.

• Due to lack of "integration consistency" or
violation of the discrete divergence theorem.

1



60 1 Integration consistency

Divergence theorem states that:

In discrete form:

V0a dX = I Oa N dS
fc2e re

where N is the outward unit normal vector on re

NQ

EWkVIPak

k=1

NrQ

/=1

F oai NI , (a = 1, ... , Nv)

where Oak := Oa(Xk), and Xk is the position of the k-th quadrature point

• For non-polynomial shape functions, this will not be satisfied in general.
• This will results in a lack of consistency (failure of the engineering patch test).



61 Shape function derivative correction

• "Tweak" the shape function derivatives to satisfy the integration consistency condition.

• Maintain the reproducing properties of the derivatives.

• Minimize the least-squares difference between the new derivatives and the old.

• Only performed once during simulation (pre-processing step).

min
E R3

NQ

k=

WkIk—vvak112 subject to the constraints

NQ

YjWk —

k=1

NrQ

=1

r„,,
1 Nl = 0

This constrained optimization problem can be solved using the method of Lagrange multipliers:

A) := VOak112 + A •

ATL

—

k= 1 1=1
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62 1 Patch test
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63 Beam bending with shear load
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64 I Convergence, harmonic vs. max ent
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65 I Convergence, harmonic vs. max ent
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66 Example: elastic-plastic plate

• uniaxial extension
• elastic-plastic

constitutive model (J2)



67 Simulation results
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68 Comparison of reaction forces
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