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What is a PUF?

Physical Unclonable Function



3 I Physical Unclonable Functions (PUFs)

A function f which takes an m-bit challenge C and produces an n-bit response R

f (C) = R

where C E {0,1}m, R E {0,1}11

Often, m = n. For example, m = n = 1024 bits.

More often, the PUF has a null challenge with m = 0 and n > 0. For example, m = 0, n = 256.

Most PUFs claim to derive their randomness from manufacturing variation in some particular physical aspect
of these elements. Examples of this include interconnect edge roughness, transistor length variation,
variation in semiconductor doping concentrations and dielectric material impurities.



4 I Extracting Manufacturing Process Variations
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Most PUFs compare two circuits against each other (e.g., the metastable state)

o Two transistors

o Two ring oscillators

o Two multi-staged delay paths

Some PUFs compare elements against a reference value

Path Delay



5 The Classic PUF Protocol
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During enrollment, a large number of challenge/response pairs are stored for each PUF

During deployment, a new challenge can be issued each time and the Hamming distance of the new
response and the original response is tested to see if it is "close enough"

Kach challenge/response pair should be used only once

Image credit: Authentication with challenge/responses pairs, from Verayo, Inc.



6 I Fuzzy Extraction
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Typically, some bits (or sites, or locations, etc.) are very error-prone but the application requires the
same response R to be regenerated each time.

One approach is to compute some "helper data" P so that the initial response R can be regenerated
at a later time. This can be done using an initial response w taken during enrollment and then use
this data P to correct the bits that have changed in a later w' to regenerate R exactly.

This helper data is considered public data. However, if P E {0,1}1 it is assumed that P reveals up to
q bits about the response R. Therefore, q is chosen such that q < n.

Image credit: Fuzzy extractor consisting of generation and
reproduction steps, from Dodis et al., 2004



7 Weak or strong?

There is a distinction in the literature between "weak" and "strong' PUFs
O A weak PUF : small challenge space, e.g., m < 32

O A strong PUF : "cryptographically strone challenge space, e.g., m 128

However, there have been a large number of papers presenting attacks on so-called "strong PUFs"

O Model-building



8 I Improving the Challenge/Response Space
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ID: for example, stored in non-
volatile memory (NVM)

Personality: can be changed to
re-enroll the PUF, can be stored
in NVM

Redundancy Information: helper
data, can also be stored in NVM

If the PUF does not have a challenge (m = 0) or if the challenge/response space is otherwise
diminished, then the approach shown in the figure could be used to bring the PUF up to ideal
performance.

However, this adds a significant amount of computational overhead.

Image credit: PUF control circuitry from Gassend et al., 2002



How can we characterize PUFs?

It's all about performance



10 Common PUF Metrics and Ideal Values

Characteristic Identifier Ideal Value

Mean value

Error rate or fraction of noisy

bits

Autocorrelation between

response bits

Hamming distance between

responses to different

challenges

Hamming distance of

responses between devices

Statistical test value

Bias, randomness p. or P (b)
0.5,

-V1'1

a — 2

Reliability HDnoise (or HDintra if

m = 0)

p = 0

Randomness R XX
1

p. = 0, CY =  
2-\/T2

Randomness HDintra
p = 0.5,

Uniqueness HDinter
p. = 0.5,

Randomness v or P-value

a := confidence level (e.g., 0.05)

itt 1 a



11 What is "random"?

A random event (e.g., a bit value) is an event that has a non-deterministic outcome. The means that
any information gathered about the system's current or previous states does not allow the next
outcome of the next event to be predicted with absolute certainty.

Idealized example from NIST: An ideal random bit sequence could be generated by flipping an
unbiased (fair) coin with sides that are labeled "0" and "1"

o Unbiased: each flip has a probability of exactly 1/2 of producing a "0" or "1"

O Flips are independent of each other: the result of any previous coin flip does not affect future coin flips

What if you already have bit strings and want to know if they might have come from an ideal source
of randomness (like our coin flips)?
o Look for signs of patterns using a standard set of tests (NIST 800-22, Diehard tests, etc.)

O If a pattern is found in too many of the bit strings, then the source is not random



12 Statistical Hypothesis Testing

Null hypothesis: the data is unbiased and independent and
identically distributed (IID), i.e., it came from an ideal
source

Reference distribution: the distribution of test values for
truly random inputs; CDF gives P-values

Significance level a: fraction of statistical test values that a)
are below c for the reference distribution, e.g., a = 0.05 z

Critical value c: 1 — a of the statistical test values lie above
this threshold

Decision rule: if P-value is greater than significance level
a, then accept the null hypothesis

Important: The average fraction of the time that the null
hypothesis should be rejected for a truly random source is
a 0

Your random source should pass a test on average 1 — a of
the time, for example 95% of the time if a = 0.05 0 c

Statistical Test Value

1



13 I Statistical Hypothesis Testing

Corresponding probability distribution function (PDF)
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15 Statistical Hypothesis Testing

The Frequency (Monobit) Test

2. Frequency Test within a Block

3. The Runs Test

4. Tests for the Longest-Run-of-Ones in a
Block

5. The Binary Matrix Rank Test

6. The Discrete Fourier Transform (Spectral)
Test

7. The Non-overlapping Template Matching
Test

8. The Overlapping Template Matching Test

9. Maurer's "Universal Statistical" Test

— NIST SP 800-22

10. The Linear Complexity Test

11. The Serial Test

12. The Approximate Entropy Test

13. The Cumulative Sums (Cusums) Test

14. The Random Excursions Test

15. The Random Excursions Variant Test.

Some tests require inputs of 1,000,000 bits or
longer to achieve the desired statistical
significance



1 6 What if your random source is not ideal?

It is Opica/ for random sources to deviate from an ideal random source

There are established means of dealing with low entropy, e.g., "conditionine defined in SP 800-90B

o The conditioning component is deterministic

o The entropy of the output is at most the entropy of the input

o Ideally, the number of output bits is reduced but the entropy becomes ideal (1 random bit/1 output bit)

NIST SP 800-90B recommends several vetted algorithms including

o Keyed functions HMAC (FIPS 198), CMAC (SP 800-38B), CBC-MAC (SP 800-90B, Appendix F)

o Unkeyed functions like SHA-1 through SHA-512 (FIPS 180), SHA-3 (FIPS 202)



17 I Probability of Response Aliasing [Helinski et al. 2009] LE

For a chosen confidence level, what is the likelihood that two devices within a sample will have
responses for a given challenge that are too close?

Can be estimated empirically from measurements of inter-device and noise variation
0 Inter-device Hamming distances: between responses of different PUFs

° Noise (sometimes intra-device) Hamming distances: between repeated measurements



18 I Inter-device and Noise Probability Distribution Functions

Compute (N) inter-device Hamming distances
2

Compute (
R
) noise Hamming distances, where
2

R is the number of repeated measurements

Fit both sets of distances to (discrete) negative
binomial distributions

This provides estimates of the cumulative
distribution functions Finter_ device (x),
Fnoise (x)

Fit

Il

Fit



19 I Inter-device and Noise Cumulative Distribution Functions
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Choose desired confidence level; e.g., 99.7%,
99.99%, 99.9999%, etc.

Find corresponding Hamming distance from
Fnoise (x), this is the noise threshold

Plug this distance threshold into Finter_ device (x)
to obtain the estimated fraction of devices that will
have a response distance less than this noise
threshold



20 I Probability of Aliasing Caveats

Concisely, the expected fraction of inter-device distances that are smaller than the expected largest noise distance

Exponentially sensitive to the noise distances (e.g., if temperature cannot be controlled)

Reasonable values are greater than 2 —n and orders of magnitude less than 1 /N
where n is the number of response bits and N is the number of devices that may ever be produced.
O e.g., 2-1024 < P(alias) < 1/1010 for n = 1024 and N = 100,000,000 = 1 x 108

i.e., 5.56 x 10-3°9 < P(alias) < 1 x 10-10

Probability may increase after error correction
o E.g., correcting 128 bits reduces the total 1024-bit space to 896

O Shifts the inter-chip HD distribution toward 0

On the other hand, the probability of aliasing could be estimated a priori
to guide choosing how much error correction to use

n 2n

128 1 X 1 038

256 1 x 1077

512

1024

1 x 1 0154

1 x 1 0308



Noisy Bits and How to Deal
with Them without Error
Correction

Keep out zones, helper data, etc.



22 I Example measured (or averaged) element values
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23 I Histogram of averaged element values
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24 Illustration of element value noise
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25 How can we deal with noisy bits?

These sites that are noisy may be excluded based on
o How close they are to the reference value

O If they flip among several subsequent measurements

Comparing elements against each other is a similar problem

O Most values are normally distributed

o Then, most elements are near the mean, and therefore are near each other



26 Distribution of (
2
) comparisons of elements
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27 
(n)

Comparison Values with Noise for an example PUF
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28 I Distribution of (
2
n) comparisons, unstable ones removed
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What about environmental
variations?



30 I Temperature Effects

Circuit performance tends to decrease as
temperature increases

For example, ring oscillator frequency decreases
as the temperature increases
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31 I Voltage Effects

Circuit performance tends to decrease
supply voltage is reduced

For example, ring oscillator frequency
as the supply voltage decreases

when the

decreases

RO Frequency versus Voltage

Siiiinty Voltage (V)



32 Common-modeVariations

PUF designs usually compare measured values
O to a reference value

o to each other

This has the benefit of cancelling common-mode variation

O As we saw, temperature and voltage tend to have the same effect on all the elements
(carrier mobility, threshold voltage)

However, there are still minor variations in the temperature coefficient of the measured value due to
manufacturing variations
o Occasionally, the relative values will still reverse their order

o Causes additional unstable bits when temperature cannot be controlled

We can model the RO frequency using F ,-=,' — aT + c

The coefficient of temperature a and the offset c can be broken into average and individual parts:

F rr'' —(aavg + aind)T + (cavg + cind) where aind < aavg, cind < cavg

•



33 Influence of global variation and mismatch

300mm Silicon wafer

Global mismatches introduce a
systematic and predictable gradient of a given parameter

across the silicon wafer.

Process threshold

voltage (TZth)

— 0.4V

— 0.3V

— 0.2V



34 Influence of local variation and mismatch
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How long do PUFs last?



36 i Accelerated Life Testing

Typically, microelectronic wear-out mechanisms increase with
elevated temperature and voltage

NIST/SEMATECH e-Handbook of Statistical Methods
O shows an excellent method for estimating the acceleration factor
and the mean time to failure (MTTF)

o as a function of temperature and voltage
O requires many chips split into a number of samples

tf = AV16 exp (—Akil,r)

To completely solve the parameters of this equation, many
samples are tested at distinct conditions (see Table on right)

Since failure rates are lower at lower stress levels, even more
samples are needed at these conditions

The "backwards Ir design is commonly used for acceleration
modeling experiments covering the full range of both stresses,
but still hopefully having enough acceleration to produce
failures

Example accelerated life testing
conditions and number of samples
tested at each condition

LaiiiiMallt
6V 10,000 1 ,000 30

8V 1,000 100 30

12V 30 30 30



37  Alternative MTTF Approximation
2010]

If we assume a common failure mechanism, we
can compute the acceleration factor (AF) using

o AF = exp 
(Ea (  1 1  ))

, Ea is the
k Tuse Tstress

thermal activation energy (in eV), k is
Boltzmann's constant

o Ea can be assumed to be 1.0 eV

If there are zero failures during the test,

o A. =  
m 

[failures per hour]
TDHxAF

o TDH := Total Device Hours = number of
units X hours under stress

o M
..,,2
Aa,2r+2

2

based on [Seymour 1993] and [Vigrass

o )(2 := the Chi square factor (or probability)
for 2r + 2 degrees of freedom

O r := the total number of failures

O a := the complement of the confidence
level, e.g., 0.05

Then, we can compute MTTF using
1 2xTDHxAF 

o MTTF = - = [hours]
A „2

Aa,2r+2
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