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Thor provides a unique ability to produce different loading rates
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exquisite current pulseshaping
Loading rates of ~10°—107 /s
Peak stresses of ~ 20 — 40 GPa

Stores 51 kJ of electrical energy with I

Relatively inexpensive and can be ‘
fired multiple times per day.




3 ‘ Thor was desi

Constructing a tailored current pulse with Thor - shock-ramp
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Contructing a tailored current pulse with Thor - shockless ramp
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Constructing a tailored current pulse with Thor - flat top
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Constructing a tailored current pulse with Thor - 500 ns ramp
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Constructing a tailored current pulse with Thor - ramp/hold/ramp
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Contructing a tailored current pulse with Thor - ramp/hold/ramp
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gned to deliver a wide range of current pulses

Pulseshape is a simple superposition of
basis functions

> No complicated circuit-model like Z

High accuracy and precision
> Pre-fires are relatively rare

> Low timing jitter:



The rest of this talk will be a summary of a variety of projects
making use of Thor’s pulseshaping capabilities

Cal, (S. Root, P. Kalita)

> Effect of rate on elastic-plastic transition

Tin single crystals (J. Schartf, S. Fensin, D.]. Luscher)

> Constitutive response of different orientations

Ga solidification(B. Stoltzfus, J.Belof, P. Myint)

> Nanosecond freezing

Tri-lab strength
° Ta flat top ramp-release
° Tin phase transitions
> Rayleigh-Taylor instability
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5 | Most experiments on Thor look about the same
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Short-circuit stripline load

Drive on one side and sample
measurement on the other

Also well suited to ‘AB’ experiments



¢ | CaF, Single Crystals (S. Root, P. Kalita)
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7 I Tin single crystals (J. Scharff,
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Same machine configuration
results in very different sample
responses



Velocity (m/s)

if the transition could be observed in other orientations
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A second series on the Sn single crystals was conducted to see
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Designed to repeat the loading rate but go to higher pressures
Observed elastic-plastic transition is highly repeatable

Nothing distinct at higher pressures in <001> and <110> but the behavior near peak is
suggestive of something odd happening



9 I Ga solidification (B. Stoltzfus, ]. Belof, P. Myint)
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Aluminum electrodes and LilF windows
> Impedance matched for uniform sample loading

> Anodized Al panel to avoid liquid Ga embrittlement
> "Type IIB (<20 pm thick)

Panels heated to ~34°C

> Well controlled initial temperature

Experimental configuration is different from typical experiment
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Shot variations:

Current pulse (loading rate
and peak pressure)

Ga sample thickness




11 | Example of a typical experiment
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VISAR and PDV agree to within expected
errors

Signature in velocity profile suggests
solidification in ~5 ns

No obvious evidence of re-melting on
release
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We have conducted |3 experiments which suggest a complicated

coupling between the kinetics, cell size, and applied loading
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13 | Ta strength (tri-lab)
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Ramp-release experiments
can be used to infer strength
near the peak state

o Conventional wisdom states
“flat tops” are required for the
most precise estimates
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There doesn’t appear to be a significant advantage to using

flat-tops for strength experiments

Strength

=

5 10
Pressure (GPa)

15

20

G (GPa)

140 |

120

100

40

20

Shear Modulus

® Thor

10
Pressure (GPa)

15

20



15 | Tin: strength through phase transitions (Tri-lab, . Carpenter)
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Measured velocity 1s a combination of
EOS, phase transition kinetics, and
strength.

> With different loading rates on Thor we may be
able to uniquely identify these different aspects



16 | Rayleigh-Taylor Instability Experiments
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17 | Conclusions

Unique pulseshaping on Thor has translated to a variety of relevant experiments
> Well suited to studying time-dependence

> Phase transition kinetics, plasticity, etc.
> In some cases we can study materials of interest directly (Ta, Sn)
> In others, we choose a material with the physics of interest well matched to the driver (Ga)

> We’re still innovating!



