
Thor pulseshaping

Presented by:

Justin Brown

Sandia
National
Laboratories

k fig& N „$1:--4A

•

•

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-2047PE



exquisite current pulseshaping
Loading rates of —106 — 107 /s

° Peak stresses of — 20 — 40 GPa

2 Thor provides a unique ability to produce different loading rates
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Stores 51 kJ of electrical energy with 1

Relatively inexpensive and can be
fired multiple times per day. 1



3 I Thor was designed to deliver a wide range of current pulses
Constructing a tailored current pulse with Thor -flat top
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Constructing a tailored current pulse with Thor - 500 ns ramp
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Constructing a tailored current pulse with Thor - ramp/hold/ramp
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Constructing a tailored current pulse with Thor - shock-ramp
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Contructing a tailored current pulse with Thor - shockless ramp
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Pulseshape is a simple superposition of
basis functions
No complicated circuit-model like Z

High accuracy and precision
Pre-fires are relatively rare

Low timing jitter:



The rest of this talk will be a summary of a variety of projects
4

making use of Thor's pulseshaping capabilities

CaF2 (S. Root, P. Kalita)
Effect of rate on elastic-plastic transition

Tin single crystals (J. Scharff, S. Fensin, D.J. Luscher)
Constitutive response of different orientations

Ga solidification(B. Stoltzfus, J.Belof, P. Myint)
Nanosecond freezing

Tri-lab strength
Ta flat top ramp-release

Tin phase transitions

Rayleigh-Taylor instability



5 Most experiments on Thor look about the same

Window

"Drive"
measurement

J

Window

Sample
measurement

Short-circuit stripline load

Drive on one side and sample
measurement on the other

Also well suited to 'AB' experiments



6 I CaF2 Single Crystals (S. Root, P. Kalita)
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6mm LiF

Loading rate was varied by
—40X, resulting in
dramatically different
signatures of the elastic-plastic
transition.
Data can be used to constrain
the time-dependent nature of
the constitutive response.

----s101-Drtve .s101-CaF2 — ---s102-Dr Pie s102-CaF2 ..s107-CaF2 — —s107-Drive s1.09-CaF2 — — --s109-Drrve



7 I Tin single crystals (J. Scharff, S. Fensin, D.J. Luscher)
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Same machine configuration
results in very different sample
responses
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A second series on the Sn single crystals was conducted to see
8 if the transition could be observed in other orientations
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Designed to repeat the loading rate but go to higher pressures

Observed elastic-plastic transition is highly repeatable

Nothing distinct at higher pressures in <001> and <110> but the behavior near peak is
suggestive of something odd happening



9 Ga solidification (B. Stoltzfus, J. Belof, P. Myint)
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Crockett and Greeff, SCCM, 2009



4 mm LiF

10 Experimental configuration is different from typical experiment
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"Drive"
measurement

Aluminum electrodes and LiF windows
Impedance matched for uniform sample loading

Anodized Al panel to avoid liquid Ga embrittlement
Type IIB (<20 lam thick)

Panels heated to —34°C
Well controlled initial temperature
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Shot variations:
Current pulse (loading rate
and peak pressure)

Ga sample thickness



11 Example of a typical experiment
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We have conducted 13 experiments which suggest a complicated
12 . coupling between the kinetics, cell size, and applied loading

Only through the modeling presented
in the next talk have we been able to
put together a comprehensive picture
of what is happening in these
experiments.

2

0.5

0
250 300 350 400 450 500 550 600 650 700

Time (ns)

#
, v•.,,

•
v

/ 
\

i ••••■••111.,....

.,

-- 250 itm Drive
—250 tim Ga
- 50 itrrl Drive
—50 tirrl Ga
-- 80 jim Drive
—80 pin Ga

i 1 1



13 Ta strength (tri-lab)
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Ramp-release experiments
can be used to infer strength
near the peak state

Conventional wisdom states
"flat tops" are required for the
most precise estimates



There doesn't appear to be a significant advantage to using
14 flat-tops for strength experiments
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15 I Tin: strength through phase transitions (Tri-lab, J. Carpenter)
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Measured velocity is a combination of
EOS, phase transition kinetics, and
strength.

With different loading rates on Thor we may be
able to uniquely identify these different aspects



16 Rayleigh-Taylor Instability Experiments
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17 Conclusions

Unique pulseshaping on Thor has translated to a variety of relevant experiments
Well suited to studying time-dependence

Phase transition kinetics, plasticity, etc.

In some cases we can study materials of interest directly (Ta, Sn)

In others, we choose a material with the physics of interest well matched to the driver (Ga)

We're still innovating!


