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Hyperspectral imaging
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Traditional sensors for HSI
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Compressive sensing recovers sparse signals
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Snapshot hyperspectral imager
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Fa bry-Perot resonators

Mirror spacing: 2.00 pm
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Mirror spacing vs. wavelength
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Hyperspectral dataset Da.

Class labels

• The data cube has

size

145 x 145 x 220.

• The measured

data cube has size

145 x 145 x 160

with noise added.
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Hyperspectral image reconstruction

• A is the transmission matrix.

• For each pixel, solve a penalized likelood problem:

X Y

minimize TV(x, a)
sc,x 1=1 i=1

subject to xii = Wki J, 1 < i < X, 1 < j < Y

9

Dennis Lee



Optimization procedure

• Update k, x, and p sequentially:

x.
Lnakijl, {AA) = —2 >_, >_, Aki,j

i=1 i=1

▪ (Pij, 7111xij Wkiji 12

▪ TV(x,
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Example reconstructions

L. 10.0

7'E 7.5

7 5.0

3 2.5

C' 0.0

g -2.5

12.5

7. 10.0

7.5

5.0

2.5

Class 0

0:5 1:0 1.5 2.0

Class 2

0.5 1.0 1.5 2.0

A (Nm)

2:5

Class 1

10.0 -

7.5 -

5.0 -

2.5 -

0.0 -

0.5 1.0 1:5 2.0

Class 3

2.5 0.5 1.0 1.5 2.0

A 0.1m)

2.5

11

Den n is Lee



Example images
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Multi-layer perceptrons for reconstruction

• The dataset contains 21025 spectra (145 x 145). We reserve

60% for training, 20% for validation, and 20% for testing.

• The number of layers varies as K = 1, 2, 4, 7, 14.
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Results from multi-layer perception
Example Reconstructions, input size: 10, Layers: 1

Indian Pines dataset Random dataset
10

0

10

0

5

0

10

0

GT NN

10

5

7.5

5.0

6

4

7.5

5.0

0 50 100 150 200 0 50 100 150 200
Band Band

14

Dennis Lee



Performance with varying layers

Average R2 - Indian Pines dataset
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3D convolutions extract spatial and spectral features 3:—
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Recurrent networks characterize spectral correlation
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Performance as input size varies

• RNNs (NN/Mou) perform best as input size varies.

Overall accuracy Compressed input
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Performance on reconstructed inputs

• 3D CNNs (NN/He) perform best as input size varies.

Overall accuracy: Reconstructed input
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Accuracy improves on reconstructed inputs
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Summary

• A novel hyperspectral imager has been proposed based on the
theory of compressive sensing.

• Reconstruction algorithms and machine learning approaches
have been developed to process the hyperspectral data.
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