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Hyperspectral imaging
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Traditional sensors for HSI
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Compressive sensing recovers sparse signals
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Snapshot hyperspectral imager
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Fabry-Perot resonators
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Mirror spacing vs. wavelength

Fabry-Perot Transmission
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Hyperspectral dataset

Class labels
16
14

m The data cube has 12
size L
145 x 145 x 220.

m The measured 8
data cube has size ;
145 x 145 x 160
with noise added. 4
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Hyperspectral image reconstruction

m A is the transmission matrix.
m For each pixel, solve a penalized likelood problem:

X Y
DO A% — yijll3 + Bllxill + TV(x, e)

i=1 i=1

minimize
X,x

N =

subject to x;j = Wx;j, 1<i<X, 1<j<Y
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Optimization procedure

m Update X, x, and p sequentially:

Ly({xi }, {xij}. {pij}) = ZZHA’% yqu‘i‘ﬁ”Xu“l

=1 =L
+(pij, xij — WX j) + gllxu - Wxl|?
+ TV(x, )
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Example reconstruct
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Example images
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Multi-layer perceptrons for reconstruction L=

m The dataset contains 21025 spectra (145 x 145). We reserve
60% for training, 20% for validation, and 20% for testing.

m The number of layers varies as K = 1, 2, 4, 7, 14.
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Results from multi-layer perception

Example Reconstructions, Input size: 10, Layers: 1
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Performance with varying layers &,

Average R? - Indian Pines dataset Average R? - Random dataset
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3D convolutions extract spatial and spectral features 3
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Y. Li, et. al., “Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network”

Remote Sens. (2017). 16




Recurrent networks characterize spectral correlation 3

Hyperspectral Image Classification Map
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L. Mou, et. al., “Deep recurrent neural networks for hyperspectral image classification” |IEEE Trans. Geoscience
and Remote Sens. (2017). 17
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Performance as input size varies

m RNNs (NN/Mou) perform best as input size varies.

Overall accuracy: Compressed input Standard deviation of overall accuracy

b £ 0.00
53 - 57 -15
] s
= = 2
f =4
So 7101 72,02 60 5g
BT ' 9
T o X 76.60  76.75 50 Fo
wn wn
0 0 6
9 20 O
5o 77.92 7516 5 o BELLM 1449
€3 £3 3
Soe B = I 24 s > So --

o~ o~

o~ o~ 0

KNN  NN/He NN/Li NN/Mou SVM KNN NN/He NN/Li NN/Mou SVM
Classifier Classifier




Performance on reconstructed inputs

m 3D CNNs (NN/He) perform best as input size varies.

Overall accuracy: Reconstructed input
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Accuracy improves on reconstructed inputs

Overall accuracy, Classifier: SVM
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Summary @

m A novel hyperspectral imager has been proposed based on the
theory of compressive sensing.

m Reconstruction algorithms and machine learning approaches
have been developed to process the hyperspectral data.
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