
Oversubscription and Your Data, How User
Level Scheduling Can Increase Data Flow

Noah Evans

*.5.CCR
Center for Computing Research

Sandia National Laboratories is a multimission
Laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National NucLear Security
Administration under contract DE-NA0003525.

(SAND2018-11134 C)

SAND2020-2028C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

11 LJI.ILI allU. 111VOL1y WIV118 11.1OLVi1 y V1.. lldaLa

Centricity

From the networking world

• Term has picked up baggage
• Don't address "where" (hosts, processes)

• Address "what" (data)

• This is not new at HPC at all --off node

• Barney will go into greater detail

Data

Fox

The red fox
runs across
the ice

Hash
function

The red fox
walks across

the ice

Hash
function

Hash
function

Key

Network Topology

Host
A B

—Router —*Router —
Host

Data Flow
Application 4 process-to-process Application

1

Transport 4 host-to-host Transport

1

Internet Internet Internet Internet

1 1 1 t 1 t

Link Link Link Link

• i • I ♦

DFCD3454

52 ED879E

46042841

Ethernet

Distributed
Network

CCR
Center for Computing Research

Data Centrism in Runtimes

Modern HPC programming models a mix between *process* centric (MPI ranks) and
data centric (OpenMP/GPU dataflow)

You end up with a mix between runtimes

• This leads to "thread heterogeneity"

• Lots of work to integrate all of these programming models.

• Scheduling from above, wrapping MPI calls (OMPSs, QUO)

• Scheduling from below, using user level threading (Argobots, Qthreads, MPIC,
FGMPI)

• All of these provide scheduling problems.

• Fundamentally a data flow problem. Progress threads/engines -> MPI ranks -> data
parallel runtime -> communication

3
i.4.: CCR• •
Center for Computing Research

I Example Problem: thread oversubscription on the McKernel

O We are running OpenMPI on the McKernel (thanks Balazs)

OpenMPI is very promiscuous with its threads, 2 threads
for every rank.

Big performance hit, need to provide noise cores

o Want to be able to manage this in a much more efficient
way.

O Is it possible to do this in an easier way without modifying
the application?

4

/

System
Daemon

Linu

Kernel
Daemon

Proxy Process

/
System

call

41
Delegator
module

/
 /

1
1

HPC Application

McKernell

 /
IHK Linux

 /
 /

IHK Co-kernel_./

System
call

ME
I Interrupt

Partition 1
Memo ry /

g4: CCR• •
Center for Computing Research

Current state of the Art: QUO (LAN L)

o Attempts to control "thread heterogeneity" (different
threads used by different runtimes, which can conflict)

o Modifies application

O First does an All to All collective to find the MPI Process topology

O Then "pushes" and "pops" a stack of thread affinities and quiesces unused
threads

O Effectively becomes a user level scheduler for pthreads

5
CCR

Center for Computing Research

QUO gives Data Centric control over and undersubscription in HPC
Application phases

Compute phase Vacant PE
e PE occupied

by task Ti
Ti
Tj

PE occupied by
tasks Ti and Tj

PO P1 P2 P3 P4 P5 P6 PO P1 P2 P3 P4 P5 P6

(a) Time evolution of a static over- (b) Under-subscribed MPI+X
subscribed MPI+X configuration. with typical wide binding policy.

Gutierrez, Samuel K., et al. "Accommodating thread-level heterogeneity
in coupled parallel applications." 2017 IEEE-International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2017.

t

PO P1 P2 P3 P4 P5 P6

Figure 5: Illustration of compute resource utilization by tasks over
time u(t) for a QUO-enabled MPI+X configuration.

6
Center for Computing Research

Talk theme: Is it possible to make existing systems MPI+X Data Centric?

Massive investment in the simulation codes that are still MPI+X

Is it possible to use runtime composition techniques to be data centric?

7

1

0 CCR...
Center for Computing Research

I Traditional User Level Scheduling Memory/CPU oriented

Typically a scheduler is attached to a physical device (a per CPU run-queue, a NUMA domain).

This allows *resource* based scheduling, but it's tied to a fundamentally static idea of system
resources.

Can schedule tasks, but scheduler, rather than data driven for the most part

Modern HPC runtimes (Legion, SDFG) provide data centric mechanisms, would require porting
effort

We want to be able to do this without modifying applications.

8 0 CCR...
Center for Computing Research

I Substrate-based runtime composition

Substrate based runtime composition provides a
common scheduling mechanism for runtimes.

Runtimes implement the policies

Still use the regular API but you have a substrate
(under the covers)

Typically you need to have a way to schedule
runtimes cooperative Y.

Relies on good runtime behavior

1
1

Lithe Runtime

current M . ME
scheduler

I I I I
h a rts

TBBLithe

MB yield OMB G:=IEI=
4.

scheduler hierarchy

 gas A14, 40,•

23

Pan, Heidi. Cooperative hierarchical resource management for efficient composition
of parallel software. Diss. Massachusetts Institute of Technology, 2010.

9
2.14 CCR...
Center for Computing Research

I Substrates are usually CPU Centric

E.g. Lithe is based on multiplexing runtimes over HARTs (HARdware Threads ==
CPUs/Hyperthreads)

Can schedule on blocking I/0 but no concept of data driven scheduling (i.e. scheduling over a
particular data allocation)

This is fundamentally lossy, you don't know your data flow

Is it possible to annotate that dataflow into substrate scheduling?

10
2.14 CCR...
Center for Computing Research

11

I Proposal: Data Driven Substrate Scheduling

Add another layer to hierarchical scheduling: Data provenance

When data of interest (e.g. MPI Buffers) are allocated, attach a run-queue to the root scheduler.

This allows Progress Threads/MPI/OpenMP to know the provenance of their data as they schedule.

However, some obvious problems with neat solutions.

0 CCR...
Center for Computing Research

Process: Process address spaces make data scheduling harder

Rank

rat!'

12

Rank

IIIii.

IDati

1
Rank

I

214 CCR...
Center for Computing Research

I Solution: Process In Process: Share Address Spaces

Rank

a.

rbatl

T

Rank

r
•

Rank

Datil

11

13

1
i

I

0 CCR...
Center for Computing Research

I Problem: Implementing push and pop semantics

Quo relies on global knowledge of thread state to push and pop affinities after switching between
runtimes.

Traditional CPU based schedulers don't have this knowledge.

Know what's on your run-queue, but don't know the global state of the system.

To fully subscribe the system you need to know everything that's going on.

14 0 CCR...
Center for Computing Research

I Proposed Solution: Gang Scheduling with Data Inheritance

Schedule based on data regions, round robin.

o Each data region gang schedules cpu threads before passing to next region.

Ensures no conflicts because one region

Allows precise control of allocations and locality dynamically.

Potentially slower because you're scheduling globally.

15
2.14 CCR...
Center for Computing Research

Current Progress

Have a mechanism to replace OpenMPI's threading model to allow composition (currently a pull
request in OMPI master)

o Uses OpenMPI's modular component architecture to decouple particular threading libraries from
implementation.

o New threading models are shared libraries loaded at runtime.

Have a separate version of MPI and OpenMP that coschedule using Lithe.

Baked in (earlier than thread MCA)

- Allows MPI ranks, progress threads, Orte and OpenMP to coschedule.

O Barrier synchronous is painfully slow, early results show better performance >96 nodes on KNL

16

•

21:At CCR...

1
I

Center for Computing Research

I Future Work

Add Data Queues via PiP's glibc and Data Inheritance Scheduling to Lithe

Progress threads: Current approach to scheduling (Progress->MPI->OpenMP->MPI) is very static.
Figuring out good join points to allow asynchronous progress to occur (during gang scheduling?)

Explore overdecomposed approaches: Current approach is very QUOish, come up with scheduling
disciplines amenable to over decomposition.

Integrate Lithe into the new OpenMPI

17

CA and more modern OpenMP's

I
1

I

I

2.14 CCR...
Center for Computing Research

Conclusions

Proposed a new form of scheduling based on Data Inheritance.

Gives explicit provenance to data and computation, making it possible to control oversubscription and
dataflow in legacy applications.

Requires changing runtimes but not the applications.

Not possible in traditional scheduling models, processes don't have enough information about global state
of the system.

By using Data Inheritance Scheduling over MPI Ranks represented as Processes in Process you can
maintain the global knowledge of the system you need.

The runtime substrate is implemented.

Data Inheritance scheduling + PiP integration are future work

18
Center for Computing Research

