This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 2028C

Oversubscription and Your Data, How User
Level Scheduling Can Increase Data Flow

Noah Evans

0o"s

Sandia National Laboratories is a multimission
laboratory managed and operated by National
o e Technology & Engineering Solutions of Sandia,
..5‘ LLC, a wholly owned subsidiary of Honeywell
)
e
Center for Computing Research

International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

(SAND2018-11134 C)

| 4L X UJlLlCl1l Alil\l lllUDLl)/ WLUllé J._I.J.DLUL)/ Ul A ALtA

Centricity

Network Topology
Host Host
A B
* From the networking world |
& Data Flow
* Term has picked up baggage sovicatn . PTOCESS-t0-PrOCESS | sppican
* Don’t address "where” (hosts, processes) e I host-to-host . T
* Address “what” (data)
| Internet l I Internet I | Internet I ’ Internet I
* 'This is not new at HPC at all --off node | } | I 1 T I
Link Link Link Link
* Barney will go into greater detail L E
Ethernet S%%?clr'e\? > Ethernet
Data Key Distributed
T _— 1 Network
function wm%”ﬂ DFCD3454 |
Hash §
function —>| 52ED879E |

Hash _
funetion [46042841

#CCR

Center for Computing Research

Data Centrism in Runtimes

* Modern HPC programming models a mix between *process* centric (MPI ranks) and
data centric (OpenMP/GPU dataflow)

* You end up with a mix between runtimes

* This leads to “thread heterogeneity”

* Lots of work to integrate all of these programming models.
* Scheduling from above, wrapping MPI calls (OMPSs, QUO)

* Scheduling from below, using user level threading (Argobots, Qthreads, MPIC,
FGMPI)

* All of these provide scheduling problems.

* Fundamentally a data flow problem. Progress threads/engines -> MPI ranks -> data
parallel runtime -> communication

Center for Computing Research

Example Problem: thread oversubscription on the McKernel

> We are running OpenMPI on the McKernel (thanks Balazs)

> OpenMPI is very promiscuous with its threads, 2 threads
for every rank.

° Big performance hit, need to provide noise cores

> Want to be able to manage this in a much more efficient
way.

> Is it possible to do this in an easier way without modifying
the application?

System
Daemon Proxy Process ‘
HPC Application
Linu§|
o DeTegatoT McKernel L |
Daemon || System module / System
call IHK Linux IHK. Co=kerngel call
EY EEEEEEEEER | llllllll M/
—f Interrupt | — -
Partition Partition_i

1+ CCR

Center for Computing Research

Current state of the Art: QUO (LANL)

> Attempts to control “thread heterogeneity” (different
threads used by different runtimes, which can conflict)
> Modifies application
° First does an All to All collective to find the MPI Process topology

° Then ”pushes” and “pops” a stack of thread affinities and quiesces unused
threads

° Effectively becomes a user level scheduler for pthreads

+CCR

Center for Computing Research

QUO gives Data Centric control over and undersubscription in HPC |
Application phases

PE occupied PE occupied by =
Vacant PE @ by task Ti tasks Ti and Tj =

O

I:I Compute phase

®)
u (t)

2000
HOEE)
PORE

Q
O
O

PO9F
Shih
QPOR

O
o~
O

AN L] L] L] L

PO PIP2 P3 P4 P5 PG PO PIP2 P3 P4 P5 PG PO P1P2 P3 P4 PS5 P6
() Timeevalaton of 4 staflc overs (b} Undex-subeeribed MPT£XC Figure 5: Illustration of compute resource utilization by tasks over
subscribed MPI+X configuration. with typical wide binding policy. . .

time u(t) for a QUO-enabled MPI+X configuration.

Gutiérrez, Samuel K., et al. "Accommodating thread-level heterogeneity
in coupled parallel applications." 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2017.

Center for Computing Research

Talk theme: Is it possible to make existing systems MPI+X Data Centric! -

Massive investment in the simulation codes that are still MPI+X |
Is it possible to use runtime composition techniques to be data centric? |

+CCR

Center for Computing Research

Traditional User Level Scheduling Memory/CPU oriented

Typically a scheduler is attached to a physical device (a per CPU run-queue, a NUMA domain).

This allows *resource* based scheduling, but it’s tied to a fundamentally static idea of system
resources.

Can schedule tasks, but scheduler, rather than data driven for the most part

Modern HPC runtimes (Legion, SDFG) provide data centric mechanisms, would require porting
etfort

We want to be able to do this without moditfying applications.

""’CCR

Center for Computing Research

Substrate-based runtime composition

Substrate based runtime composition provides a Lithe Runtime

common scheduling mechanism for runtimes.

corent [[[[
TBByjtne

5 s “ s scheduler
Runtimes 1mplement the pOhClCS enter] vield [requesg register] unregister
Still use the regular API but you have a substrate OpenMP, .,
(under the COVCIS) enter] yield Jrequesfjregister] unregister
harts scheduler hierarchy

Typically you need to have a way to schedule
runtimes cooperatively. __TBByy, OpenM

))) Lithe Runtime
Relies on good runtime behavior os

Hardware

23

Pan, Heidi. Cooperative hierarchical resource management for efficient composition
of parallel software. Diss. Massachusetts Institute of Technology, 2010.

Center for Computing Research

10

Substrates are usually CPU Centric

E.g. Lithe is based on multiplexing runtimes over HARTs (HARdware Threads ==
CPUs/Hyperthreads)

Can schedule on blocking I/O but no concept of data driven scheduling (i.e. scheduling over a
particular data allocation)

This 1s fundamentally lossy, you don’t know your data flow

Is it possible to annotate that dataflow into substrate scheduling?

""’CCR

Center for Computing Research

11

Proposal: Data Driven Substrate Scheduling

Add another layer to hierarchical scheduling: Data provenance

When data of interest (e.g. MPI Buffers) are allocated, attach a run-queue to the root scheduler.

This allows Progress Threads/MPI/OpenMP to know the provenance of their data as they schedule.

However, some obvious problems with neat solutions.

""’CCR

Center for Computing Research

12

Process: Process address spaces make data scheduling harder

Rank

Rank

Rank

+CCR

Center for Computing Research

13

Solution: Process In Process: Share Address Spaces

#CCR

Center for Computing Research

14

Problem: Implementing push and pop semantics

Quo relies on global knowledge of thread state to push and pop atfinities after switching between
runtimes.

Traditional CPU based schedulers don’t have this knowledge.
Know what’s on your run-queue, but don’t know the global state of the system.

To fully subscribe the system you need to know everything that’s going on.

""’CCR

Center for Computing Research

15

Proposed Solution: Gang Scheduling with Data Inheritance

Schedule based on data regions, round robin.

> FHach data region gang schedules cpu threads before passing to next region.
Ensures no conflicts because one region
Allows precise control of allocations and locality dynamically.

Potentially slower because you’re scheduling globally.

Center for Computing Research

16

Current Progress

Have a mechanism to replace OpenMPI’s threading model to allow composition (currently a pull
request in OMPI master)

> Uses OpenMPI’s modular component architecture to decouple particular threading libraries from
implementation.

> New threading models are shared libraries loaded at runtime.

Have a separate version of MPI and OpenMP that coschedule using Lithe.
° Baked in (earlier than thread MCA)

> Allows MPI ranks, progress threads, Orte and OpenMP to coschedule.

° Barrier synchronous is painfully slow, early results show better performance >96 nodes on KNL

Center for Computing Research

17

Future Work

Add Data Queues via PiP’s glibc and Data Inheritance Scheduling to Lithe

Progress threads: Current approach to scheduling (Progress->MPI->OpenMP->MPI) is very static.

Figuring out good join points to allow asynchronous progress to occur (during gang scheduling?)

Explore overdecomposed approaches: Current approach is very QUOish, come up with scheduling
disciplines amenable to over decomposition.

Integrate Lithe into the new OpenMPI MCA and more modern OpenMP’s

""’CCR

Center for Computing Research

18

Conclusions

Proposed a new form of scheduling based on Data Inheritance.

Gives explicit provenance to data and computation, making it possible to control oversubscription and
dataflow in legacy applications.

Requires changing runtimes but not the applications.

Not possible in traditional scheduling models, processes don’t have enough information about global state
of the system.

By using Data Inheritance Scheduling over MPI Ranks represented as Processes in Process you can
maintain the global knowledge of the system you need.

The runtime substrate is implemented.

Data Inheritance scheduling + PiP integration are future work

Center for Computing Research

