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We introduce a framework (Section 2) for integrated probabilistic gas hydrate systems modeling, which includes: GPSM P

eparameter distribution prediction (e.g. using maching learning with the Global Predictive Seabed Model [GPSM)]) vectc_Jr of

sparameter sampling (using Dakota) vector of predictor values

emechanistic simulation (using the massively parallel subsurface flow and reactive transport simulator PFLOTRAN) observed

estatistical analysis (using Python packages) values Wams

*3D visualization (with ParaView). ZE N AR,

For this project (see Frederick et al. poster for more details), we are ultimately interested in predicting occurrence of
shallow free gas accumulations in the Arctic. Coarse mapping of gas hydrate and free gas can yield insight into
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which locations to sub-sample for more rigorous uncertainty quantification. o e ZieT) JeT0 o9 led e let Lame:
Applying the framework (Section 3), we use machine-learned maps (3A) of quantities that provide the expected
values and distributions of boundary and initial conditions for a series of 1D simulations (3B). For a given example,
we look at the sensitivity of the base of the gas hydrate stability zone to various inputs (3C). This procedure can be
followed everywhere on the globe (3D). The 1D models run here are non-isothermal, multiphase, and consider in-situ ﬁ thon
microbial methane generation, sedimentation, and methane diffusion/advection.
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mechanism is insufficient by itself to generate significant amounts of hydrate or gas.
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