
Application Development and Readiness for Sierra
Correctness, Deadlocks, Productivity

CCR
Center for Computing Research

James Elliott

jjellio@sandia.gov
Sandia National Laboratories is a multimission
Laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
international inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

(SAND2018-12904 C)

Unclassified Unlimited Release

SAND2020-1959PE

Outline

Challenges when moving from traditional computing platforms to Sierra

❑ A Cautionary Tale of R&D and Preparing for Sierra

❑ D evelopment
❑ Memory types and what not to do ■

❑ Understanding latencies

❑ Testing
❑ Changes and additions to a multiplatform CI framework

❑ My code deadlocks... but only on machine • • •

Or dealing with semantics that the MPI Standard refuses to acknowledge.

2

A Cautionary Tale of R&D and Preparing for Sierra

Runs on
early
access
testbed

4

Runs with
MPI impl. A

3

60

vi 40

20

0

Host

Observes UVM memory -20x slower than host

x x x)(X X X X X

3 4 5 6 7 8
Log2(message size in bytes)

1
User notices app

is slow in CG
norms...

Allreduce is
taking longer than

SpMV+Axpy
combined!

Developer eradicates use of UVM from all MPI calls,
adding code to explicitly copy data to buffers of another

type (E.g., host or device memory)
An expensive R&D effort!

A year or more
passes and ...
Runs on new
testbed with
official vendor

software
Runs with
MPI impl. B

60

,A 40

20

0

Host JVM

Observes UVM memory identical to host

2 3 4 5 6 7 8 9 10
Log2(message size in bytes)

z

CCCR
Center for Computing Research

A Cautionary Tale of R&D and Preparing for Sierra

• Users frustrated that performance extremely different between testbeds.

• Software stack should not be drastically different

• Hardware is nearly identical

• Expert explores MPI performance on both machines

• Device-aware MPI is available on both machines, but the early access machine enables it by
default, while the other disables it by default.

• Different vendors may set different defaults

• Because an implementation supports device-aware MPI, does not mean it is necessarily enabled

Expert user reruns,
carefully ensuring
each MPI impl.

enables the same
features

60

40

20

0

Moral of the story:
Device-aware MPI likely a runtime option.
Users must now be aware of additional MPI settings
that vary by vendor.

—X— Host UVM

Host and UVM performance
similar

X X X

/

/ X X X X X

2 3 4 5 6 7 8 9 10

Log2(message size in bytes)

80

60

40

20

0

—X—Host UVM

New testbed appears just
as slow as early access

X X X X X X X X X

2 3 4 5 6 7 8 9 1

Log2(message size in bytes)P CR
Center for Computing Research

A Cautionary Tale of R&D and Preparing for Sierra

Users frustrated that performance extremely different between testbeds.

Software stack should not be drastically different

Focus of talk not on performance with device-aware MPI

This talk focuses on caveats and gotchas that can lead to headaches and
developer frustration

Expert user reruns,
carefully ensuring
each MPI impl.

enables the same
features

60

40

20

that vary by vendor.

x

Host and UVM performance
similar

/ N /

/

X X X X X

2 3 4 5 6 7 8 9 10

Log2(message size in bytes)

80

60

40

20

0

x

New testbed appears just
as slow as early access

XXXXXX

2 3 4 5 6 7 8 9 • le

Log2(message size in bytestN cR
Center for Computing Research

Development

MPI_Send(void*, int, MPI_Datatype, int, int, MPI_Comm)

• MPI agnostic to men-iory location (device, host, or managed)

• Users may see drastically different performance between different buffer locations

• Performance can change drastically as the software stack matures!

DO: Design code so that memory type can change

DO: Understand MPI implementation default behavior and runtime options

DO: Expect performance to improve for different buffer types

DON'T: Early optimize based on MPI performance

OSU Allreduce - Device-Aware MPI
(2 nodes)

o o o o o o

e

o o

o o —H Managed Memory

 ° Device Memory

4 8 16 32 64 128 256 512
Message Size in Bytes

6

1 ""

Host Memory

t:CCR
•
Center for Computing Research

1

1

Development

Latencies in GPU-centric apps

• GPUs offer extremely good data parallelism ... but there is a cost to starting a GPU kernel

• Cost to synchronize / fence around a kernel launch — 30-40 us.

• If algorithm needs to perform communication between computation kernels

• GPU kernel launch latency can inhibit performance.

• Difficult to decide when to leave data on device or forego GPU use in favor of host execution

• No clear answer to this... Kernel fusion can help, possibly cuda-graphs (but that functionality may
not be portable)

■

ILO CCR
Center for Computing Research

Testi ng

Device aware-MPI introduces Compile and Runtime challenges

• Software (Trilinos) uses compile time checks to determine if MPI is device-aware (can device
buffers be passed to MPI)

• Reality: Device-aware MPI is a runtime option for many MPI implementations.

• Tpetra (distributed linear algebra package) has different code paths for traditional and device-aware
MPI

• Algorithms need to pack, transfer, receive, and unpack data — entails copying device buffers to host if device-
aware MPI is not supported (i.e., older platforms the library must support)

• Unit testing needs to exercise both code paths, which requires two passes through the test suite
(toggling a runtime flag to MPI and changing Tpetra's expected behavior via an ENV variable)

• Not extremely complicated to implement, but requires understanding how to enable/disable MPI features

■

ext CCR
Center for Computing Research

My code deadlocks... but only on machine

Device-aware MPI semantics are fuzzy!

MPI Standard provides no mechanism for querying support for devices or buffer
types

Example:

o App runs correctly on most machines, but deadlocks on one.

o MPI appears to be putting garbage into buffers

o Valgrind, etc... report no issues with the code ...

Substantial R&D effort tries to debug the application and the machine

Root cause: Managed Cuda memory (UVM) requires device-aware MPI or it
silently produces bogus data.

o No tools existed to report whether the app was using MPI appropriately

I

I

C3-•:scsig.R.. 1

1
My code deadlocks... but only on machine

Developed MPI Profiler (PMPI based) that tests all buffers passed to all MPI
functions and report buffer locations.

• Using tool,

• Identified 6 call sites in one kernel of the app that passed UVM buffers to MPI.

• Identified one callsite in a Trilinos package that inadvertently passed a UVM buffer to
MPI

Different MPI implementations may have different semantics - a headache

• Corrected issue and code behaved as expected.

Moral of the story:
> Tools for asserting Device-MPI correct usage not

existent.
> Understand the rules for your MPI implementation
> Understand how your app uses MPI

(perhaps we can share our profiler)

CCCR
Center for Computing Research

1

1 Conclusion

• Moving to Sierra has presented several challenges

• Device-aware MPI presents introduces runtime options that change MPI performance
and semantics

• Device-aware MPI requires developers to be aware of the location of buffer types passed
to MPI

• Buffer location can impact performance, but vendors can optimize performance negating
or reversing premature optimizations

• Kernel launches / memory fencing can be expensive

• Unit testing needs to exercise all code paths, which requires understanding how to
enable/disable MPI features.

Not understanding device-aware semantics can lead to difficult debugging

Questions and Comments: James Elliott <jjelliogsandia.gov>

ILO CCR
Center for Computing Research

