SAND2020- 1959PE

Application Development and Readiness for Sierra
Correctness, Deadlocks, Productivity

James Elliott

+CCR

Center for Computing Research jjellio@sandia.gov

nergy’s Na mna luclear Security
Administration t ct DE NA0003525.
(SAND2018 12904 C)

Unclassified Unlimited Release

Outline

Challenges when moving from traditional computing platforms to Sierra
A Cautionary Tale of R&D and Preparing for Sierra

J Development
J Memorty types and what not to do
J Understanding latencies

J Testing
J Changes and additions to a multiplatform CI framework

J My code deadlocks... but only on machine

, Or dealing with semantics that the MPI Standard refuses to acknowledge.

#CCR |

Center for Computing Research

A Cautionary Tale of R&D and Preparing for Sierra

1

User notices app
is slow in CG

R 60 ot R norms...
LIS on = 1 S— Allreduce is
early Tg’ Observes UVM memory ~20x slower than host taking l_onger than
B o 0 ™ SpMV+Axpy
testbed Runs wit 0 combined!
MPI impl. A 2 3 4 5 6 7 8 9 10
Log2(message size in bytes) 7
Developer eradicates use of UVM from all MPI calls,
adding code to explicitly copy data to buffers of another
type (E.g., host or device memory)
An expensive R&D effort!

4
A year or more
passes and ...

>
/N

=)= HOst -UVM
4 40
Runs on ngw ‘Z’ Observes UVYM memory identical to host
testbed with E 20
official vendor Runs with 0 e
software MPI impl. B 2 3 4 5 6 7 8 9

Log2(message size in bytes)

10

ACCR

Center for Computing Research

A Cautionary Tale of R&D and Preparing for Sierra

* Users frustrated that performance extremely different between testbeds.

* Software stack should not be drastically different

* Hardware is nearly identical

* Expert explores MPI performance on both machines

* Device-aware MPI is available on both machines, but the early access machine enables it by
default, while the other disables it by default.

¢ Different vendors may set different defaults

* Because an implementation supports device-aware MPI, does not mean it is necessarily enabled

60
Expert user reruns, 20
carefully ensuring

20

each MPI impl.
enables the same 0
features

Moral of the story:

Device-aware MPI likely a runtime option.
Users must now be aware of additional MPI settings

that vary by vendor.

=—>—Host

Host and UVM performance
similar

—8—UVM

S —

2 3 4 5 6 7 8 9 10
Log2(message size in bytes)

80
60
40
20

0

e HOST s VM

—_—

New testbed appears just
as slow as early access

N

2 3 4

5
Logz(message size in bytesp.”*‘ éCR

temerforCamputmg Research

A Cautionary Tale of R&D and Preparing for Sierra

* Users frustrated that performance extremely different between testbeds.

* Software stack should not be drastically different

v

Focus of talk not on performance with device-aware MPI

This talk focuses on caveats and gotchas that can lead to headaches and

60
Expert user reruns, 20
carefully ensuring

20

each MPI impl.
enables the same 0
features

developer frustration

that vary by vendor

=—>—Host

Host and UVM performance
similar

—8—UVM

N/ -y N2 g N—y [h— A g

AR, A= A A —=

- =3 ey
N N Y AN N N

3 4 5 6 7 8 9 10
Log2(message size in bytes)

80
60
40
20

R N e b T o T

—)(—Host e | J\/ M

New testbed appears Just
as slow as early access

v

2 3 4

5
LogZ(message size in bytesP."' éCR

Cﬁmerf@u‘ompwng Research

Development

MPI_Send(void*, int, MPI_Datatype, int, int, MPI_Comm)

= MPI agnostic to memory location (device, host, or managed)

= Users may see drastically different performance between different buffer locations

* Performance can change drastically as the software stack matures!

DO: Design code so that memory type can change

DO: Understand MPI implementation default behavior and runtime options
DO: Expect performance to improve for different buffer types

DON’T: Early optimize based on MPI performance

OSU Allreduce - Device-Aware MPI

o — _ Managed Memory

—© —{ Device Memory

(2 nodes)
O O O O O O O O
© O O O O O O e
£
i
o O o) e O O o) S
4 8 16 32 64 128 256 512

Message Size in Bytes

- #CCR |

Center for Computing Research

Development

Latencies in GPU-centric apps
= GPUs offer extremely good data parallelism ... but there is a cost to starting a GPU kernel
= Cost to synchronize / fence around a kernel launch ~ 30-40 us.

= If algorithm needs to perform communication between computation kernels

* GPU kernel launch latency can inhibit performance.

= Ditficult to decide when to leave data on device or forego GPU use in favor of host execution

= No clear answer to this... Kernel fusion can help, possibly cuda-graphs (but that functionality may

not be portable)

#CCR

Center for Computing Research

Testing

Device aware-MPI introduces Compile and Runtime challenges

= Software (Trilinos) uses compile time checks to determine if MPI is device-aware (can device
buffers be passed to MPI)

= Reality: Device-aware MPI is a runtime option for many MPI implementations.

= Tpetra (distributed linear algebra package) has different code paths for traditional and device-aware
MPI

= Algorithms need to pack, transfer, receive, and unpack data — entails copying device buffers to host if device-
aware MPI is not supported (i.e., older platforms the library must support)

= Unit testing needs to exercise both code paths, which requires two passes through the test suite
(toggling a runtime flag to MPI and changing Tpetra’s expected behavior via an ENV variable)

= Not extremely complicated to implement, but requires understanding how to enable/disable MPI features

o?

CCR

O¢,

'
L)

Center for Computing Research

My code deadlocks... but only on machine

Device-aware MPI semantics are fuzzy!

MPI Standard provides no mechanism for querying support for devices or buffer

types
Example:

o App runs correctly on most machines, but deadlocks on one.

o MPI appears to be putting garbage into buffers

o Valgrind, etc... report no issues with the code ...

O Substantial R&D effort tries to debug the application and the machine

o Root cause: Managed Cuda memory (UVM) requires device-aware MPI or it
silently produces bogus data.

o No tools existed to report whether the app was using MPI appropriately

#CCR

Center for Computing Research

My code deadlocks... but only on machine

= Developed MPI Profiler (PMPI based) that tests all buffers passed to all MPI
tunctions and report buffer locations.

= Using tool,
= Identified 6 call sites in one kernel of the app that passed UVM buffers to MPL.

* Identified one callsite in a Trilinos package that inadvertently passed a UVM butffer to
MPI

= Different MPI implementations may have different semantics - a headache

= Corrected i1ssue and code behaved as expected.

Moral of the story:
> Tools for asserting Device-MPI correct usage not
existent.
» Understand the rules for your MPl implementation
» Understand how your app uses MPI
(perhaps we can share our profiler)

#CCR

Center for Computing Research

Conclusion

" Moving to Sierra has presented several challenges

" Device-aware MPI presents introduces runtime options that change MPI performance
and semantics

* Device-aware MPI requires developers to be aware of the location of buffer types passed
to MPI

" Buffer location can impact performance, but vendors can optimize performance negating
of reversing premature optimizations

= Kernel launches / memory fencing can be expensive

= Unit testing needs to exercise all code paths, which requires understanding how to
enable/disable MPI features.

" Not understanding device-aware semantics can lead to difficult debugging

Questions and Comments: James Elliott <jjellio@sandia.gov>

#CCR

Center for Computing Research

