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Outline

Challenges when moving from traditional computing platforms to Sierra

❑ A Cautionary Tale of R&D and Preparing for Sierra

❑ D evelopment
❑ Memory types and what not to do ■

❑ Understanding latencies

❑ Testing
❑ Changes and additions to a multiplatform CI framework

❑ My code deadlocks... but only on machine • • •

Or dealing with semantics that the MPI Standard refuses to acknowledge.
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A Cautionary Tale of R&D and Preparing for Sierra
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A Cautionary Tale of R&D and Preparing for Sierra

• Users frustrated that performance extremely different between testbeds.

• Software stack should not be drastically different

• Hardware is nearly identical

• Expert explores MPI performance on both machines

• Device-aware MPI is available on both machines, but the early access machine enables it by
default, while the other disables it by default.

• Different vendors may set different defaults

• Because an implementation supports device-aware MPI, does not mean it is necessarily enabled

Expert user reruns,
carefully ensuring
each MPI impl.

enables the same
features
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Moral of the story:
Device-aware MPI likely a runtime option.
Users must now be aware of additional MPI settings
that vary by vendor.
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A Cautionary Tale of R&D and Preparing for Sierra

Users frustrated that performance extremely different between testbeds.

Software stack should not be drastically different

Focus of talk not on performance with device-aware MPI 

This talk focuses on caveats and gotchas that can lead to headaches and
developer frustration

Expert user reruns,
carefully ensuring
each MPI impl.

enables the same
features
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Development

MPI_Send(void*, int, MPI_Datatype, int, int, MPI_Comm)

• MPI agnostic to men-iory location (device, host, or managed)

• Users may see drastically different performance between different buffer locations

• Performance can change drastically as the software stack matures!

DO: Design code so that memory type can change

DO: Understand MPI implementation default behavior and runtime options

DO: Expect performance to improve for different buffer types

DON'T: Early optimize based on MPI performance

OSU Allreduce - Device-Aware MPI
(2 nodes)
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Development

Latencies in GPU-centric apps

• GPUs offer extremely good data parallelism ... but there is a cost to starting a GPU kernel

• Cost to synchronize / fence around a kernel launch — 30-40 us.

• If algorithm needs to perform communication between computation kernels

• GPU kernel launch latency can inhibit performance.

• Difficult to decide when to leave data on device or forego GPU use in favor of host execution

• No clear answer to this... Kernel fusion can help, possibly cuda-graphs (but that functionality may
not be portable)

■
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Testi ng

Device aware-MPI introduces Compile and Runtime challenges

• Software (Trilinos) uses compile time checks to determine if MPI is device-aware (can device
buffers be passed to MPI)

• Reality: Device-aware MPI is a runtime option  for many MPI implementations.

• Tpetra (distributed linear algebra package) has different code paths for traditional and device-aware
MPI

• Algorithms need to pack, transfer, receive, and unpack data — entails copying device buffers to host if device-
aware MPI is not supported (i.e., older platforms the library must support)

• Unit testing needs to exercise both code paths, which requires two passes through the test suite
(toggling a runtime flag to MPI and changing Tpetra's expected behavior via an ENV variable)

• Not extremely complicated to implement, but requires understanding how to enable/disable MPI features

■
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My code deadlocks... but only on machine

Device-aware MPI semantics are fuzzy!

MPI Standard provides no mechanism for querying support for devices or buffer
types

Example:

o App runs correctly on most machines, but deadlocks on one.

o MPI appears to be putting garbage into buffers

o Valgrind, etc... report no issues with the code ...

Substantial R&D effort tries to debug the application and the machine

Root cause: Managed Cuda memory (UVM) requires device-aware MPI or it
silently produces bogus data.

o No tools existed to report whether the app was using MPI appropriately

I

I
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1
My code deadlocks... but only on machine  

Developed MPI Profiler (PMPI based) that tests all buffers passed to all MPI
functions and report buffer locations.

• Using tool,

• Identified 6 call sites in one kernel of the app that passed UVM buffers to MPI.

• Identified one callsite in a Trilinos package that inadvertently passed a UVM buffer to
MPI

Different MPI implementations may have different semantics - a headache

• Corrected issue and code behaved as expected.

Moral of the story:
> Tools for asserting Device-MPI correct usage not

existent.
> Understand the rules for your MPI implementation
> Understand how your app uses MPI

(perhaps we can share our profiler)
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1 Conclusion

• Moving to Sierra has presented several challenges

• Device-aware MPI presents introduces runtime options that change MPI performance
and semantics

• Device-aware MPI requires developers to be aware of the location of buffer types passed
to MPI

• Buffer location can impact performance, but vendors can optimize performance negating
or reversing premature optimizations

• Kernel launches / memory fencing can be expensive

• Unit testing needs to exercise all code paths, which requires understanding how to
enable/disable MPI features.

Not understanding device-aware semantics can lead to difficult debugging

Questions and Comments: James Elliott <jjelliogsandia.gov>
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