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2 NV diamond overview

Naturally-occurring paramagnetic color centers

Discrete electronic states
Magnetically-sensitive ground state

0 Optical initialization Et readout

Sublevel-dependent fluorescence

DC to GHz magnetometry

D. Le Sage et al., PRB 85 121202(R) (2012)
R. Schirhagl et al., Ann. Rev. Phys. Chem. 65 83-105 (2014)
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3 Optically detected magnetic resonance (ODMR)

Optically pump NVs to m = 0 bright state

Resonant MW drive transitions to m = ±1, spoil. optical. pumping

Use resonance frequencies to extract B
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4 I Optically detected magnetic resonance (ODMR)

Optically pump NVs to m = 0 bright state

Resonant MW drive transitions to m = ±1, spoil. optical. pumping

Use resonance frequencies to extract B
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5 I Vector magnetometry

Bias field splits resonances for each NV orientation

Reconstruct {B„, By, Bz} from the NV Hamiltonian
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6 Why use NV magnetometry?

Optical control a readout

Few-ms lifetime at room temperature

Works in ambient conditions, biocompatible

Small sensor-target separation

Ideal for sensing small samples
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7 NVs are good for high-res magnetic imaging

NV imager details:
Few-mm FOV, micron spatial resolution

Overlay optical. and magnetic images

O Sensitive to deep sources (rather than surface magnetization)

O Parallel acquisition (no sensor scanning)

No cryogens or vacuum

Contributions to magnetic spatial. resolution:
Standoff distance

O NV layer thickness

O Optical diffraction limit
Microscope
objective

Diamond (without NVs)

„N-V16y. 
Magnetic sources

D. R. Glenn et aL, Geochem Geophys Geosyst 18, 8 (2017)
E. V. Levine et aL, Nanophotonics 8 11 1945-1973 (2019)
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8 NV magnetic imaging highlights

Geomagnetism

B. P. Weiss et al., Geology 46 5, 427-430 (2018)
E. Farchi et aL, Spin 07 03 1740015 (2017)
D. Le Sage et aL, Nature 496, 486-489 (2013)
I. Fescenko et aL, Phys. Rev. Applied 11 034029 (2019)
D. A. Simpson et al., Sci. Rep. 6 22797 (2016)
M. Lesik et aL, Science 366 6471 (2019)
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9 I NV single-pixel magnetometry highlights
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Scanning NV on a cantilever
P. Maletinsky et aL, Nature Nano. 7 320 (2012)
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Magnetic field from a marine worm neuron
J. F. Barry et aL, PNAS 496 113 14133-14138 (2016)

AP
magnetic

field

NV hard-drive read-write head magnetometer
I. Jakobi et aL, Nature Nano. 12, 67-72 (2017)
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10 I NV magnetometry technique summary

DC to 10 kHz 10 kHz to 10 MHz 10 MHz to 100 GHz

Techniques

Application

- CW ODMR

- Pulsed ODMR

- Ramsey interferometry

- Paleomag & rock mag

- Biomag

- Navigation

- 2D magnetic structures

- Low-frequency electronics
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- Dynamical decoupling

- Correlation spectroscopy

- Spin locking

- Small-volume NMR
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- RF electronics
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11 I NV AC magnetometry highlights
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NV T1 relaxation from Gd3+ magnetic noise
S. Steinert et al.., Nat Comm 4 1607 (2013)
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NV microwave imaging of a meandering waveguide
A. Horsley et al.., Phys Rev Applied 10 044039 (2018)
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2D correlation spectroscopy of 40 pL 1,4-difluorobenzene
J. Smits et al., Sci Adv 5 eaaw7895 (2019)

protein

NV center

h-BN flake

Diamond containing
shallow NV centers

NMR spectroscopy of a single protein molecule
and a single sheet of h-BN
I. Lovchinsky et al., Science 351 6376 (2016)
I. Lovchinsky et al., Science 355 6324 (2017)



12 I Current limitations

T2* linewidth broadening
O Magnetic defects (13C, paramagnetic nitrogen, ...)
O Strain a electric field inhomogeneity
O Diamond sample fabrication challenges

Uniform NV local environments leads to better sensitivity
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13 Current limitations

Optical readout
Poor collection efficiency

Few-percent contrast

0 Photon shot noise limit instead of spin projection noise limit

0 Photon noise only improves like INy

Improved photon noise or non-fluorescence readout can
lead to better sensitivity

K. Jensen et aL, High Sensitivity Magnetometers pp. 553-576 (2017)
D. Le Sage et aL, PRB 85121202(R) (2012)
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14 Current limitations

Gaps in basic properties knowledge
Unobserved singlet states

Single-triplet energy separation

0 Optical. pumping mechanism

0 Photoionization dynamics Et charge-state ratio

A more complete understanding can inform
more optimized sensing Et readout techniques
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15 Outlook

NV sensitivity improvements will enable new applications
Biomagnetism

Magnetic navigation

0 Rotation sensing

0 Diamond anvil cell. sensing

NV photon shot noise magnetic noise floor: AB —
CVN
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16 Outlook

Room for improvement
Linewidth Et contrast boosts are the most promising

Current sensitivity still far from the spin projection noise

Dual approach for improved sensitivity:
Improved diamond samples

Optimized NV readout techniques

Investigate other optically-active defects
In diamond: SiV, SnV, PbV, ST1, ...

In other solids (SiC polymorphs, ...)

Ideas for new NV sensing applications
Magnetic imaging with small standoff

Temperature, pressure, and electric field sensing

Extreme environments
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