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Discrete electronic states 2870 MHz

o Magnetically-sensitive ground state v I

o Optical initialization & readout | m=0 m=0 \Q I

> Sublevel-dependent fluorescence Fine Zeeman

o DC to GHz magnetometry

Synthetic diamond chips (few mm) NV fluorescence under illumination
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3 | Optically detected magnetic resonance (ODMR)

Optically pump NVs to m = 0 bright state

Resonant MW drive transitions to m = *1, spoil optical pumping

Use resonance frequencies to extract B
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4 I Optically detected magnetic resonance (ODMR)

Optically pump NVs to m = 0 bright state

Resonant MW drive transitions to m = *1, spoil optical pumping

Use resonance frequencies to extract B
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6 ‘ Why use NV magnetometry!?

Optical control & readout
Few-ms lifetime at room temperature
Works in ambient conditions, biocompatible

Small sensor-target separation

|Ideal for sensing small samples

Magnetic sensitivity vs. spatial resolution
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7 I NVs are good for high-res magnetic imaging

NV imager details:
o Few-mm FOV, micron spatial resolution
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Overlay optical and magnetic images
Sensitive to deep sources (rather than surface magnetization)
Parallel acquisition (no sensor scanning)

No cryogens or vacuum

Contributions to magnetic spatial resolution:
o Standoff distance

o NV layer thickness

o Optical diffraction limit
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s I NV magnetic imaging highlights

Condensed-
matter physics

Geomagnetism

Biomagnetism
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B. P. Weiss et al., Geology 46 5, 427-430 (2018)
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D. Le Sage et al., Nature 496, 486-489 (2013)

l. Fescenko et al., Phys. Rev. Applied 11 034029 (2019)
D. A. Simpson et al., Sci. Rep. 6 22797 (2016)

M. Lesik et al., Science 366 6471(2019)
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9 ‘ NV single-pixel magnetometry highlights

Optical
addressing s

NV hard-drive read-write head magnetometer
. Jakobi et al., Nature Nano. 12, 67-72 (2017)

Scanning NV on a cantilever
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10 ‘ NV magnetometry technique summary

_ DC to 10 kHz 10 kHz to 10 MHz 10 MHz to 100 GHz

- CW ODMR
- CW ODMR - Dynamical decoupling - Rabi driving
Techniques - Pulsed ODMR - Correlation spectroscopy - Double electron-electron
- Ramsey interferometry - Spin locking resonance (DEER)

- NV T, relaxation

- Paleomag & rock ma :
g 8 - Electron paramagnetic

- Biomag - Small-volume NMR
. .. e ) resonance (EPR)
AVl S - Navigation - 2D magnetic structures .
: . - 2D magnetic structures
- 2D magnetic structures - RF electronics

: - MW electronics
- Low-frequency electronics
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11 ‘ NV AC magnetometry highlights f;( tof @ @‘0:@'00 tof .

F = 5 1 = -
< < @
. IE Ll ate TS
1.000 4 &, H,0 T I |
3 04 S W« -5 @ 1 < -5 .
: g . v
g 0.995 - 3 5 -10+ @ . -10f y
2 - 60 8
£ 0.990 - - 100 E 1 1 1 1 1 1 ] 1 1 1
g 200 § -10 -5 0 5 10 -0 -5 0 &5 10
8 065 | 50y f~ fret (H2) fy = fret (H2)
2 1,000 ©
w b
0.9804, : . . i : 2D correlation spectroscopy of 40 pL 1,4-difluorobenzene
0 1,000 2,000 3,000 4,000 5,000 J. Smits et al., Sci Adv 5 eaaw7895 (2019)
Time (s)
NV T, relaxation from Gd** magnetic noise
S. Steinert et al., Nat Comm 4 1607 (2013)
protein
NMR spectroscopy of a single protein molecule
NV microwave imaging of a meandering waveguide and a S|'ngle sheet of h'BN
A. Horsley et al, Phys Rev Applied 10 044039 (2018) L Lsvchinsley et al., Seiense 351 6376 {2016)

l. Lovchinsky et al., Science 355 6324 (2017)



Current limitations

T,* linewidth broadening
> Magnetic defects (3C, paramagnetic nitrogen, ...)
o Strain & electric field inhomogeneity
o Diamond sample fabrication challenges

Uniform NV local environments leads to better sensitivity

M_. (MHz
r 2 ‘ ,1 ) '
V4 ‘ k KT P 4 lPixelt
o ™ e T N (TN
b o . N SO E 0.99 |-Pixel 2 " q r‘ n]
_ E - |ﬂ‘| | nl
NV, o - R s | (11T V‘ H'”W'\""\ T
=t E Pixel 3
h W ‘ A ! 5 098 e
® o Ve g Pixel 4
Q | Xe
13¢ v 4 g 0.97 -
& =
s ’ ¢ 096 _E%W
2840 2860 2880 2900

E. Bauch et al., arXiv:1904.08763 (2019)

Probe frequency (MHz)
P. Kehayias et al., PRB 100, 174103 (2019)



13 | Current limitations

Optical readout
> Poor collection efficiency

o Few-percent contrast
o Photon shot noise limit instead of spin projection noise limit

> Photon noise only improves like /N,

Improved photon noise or non-fluorescence readout can
lead to better sensitivity

K. Jensen et al., High Sensitivity Magnetometers pp. 553-576 (2017)
D. Le Sage et al., PRB 85 121202(R) (2012)
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14 | Current limitations

Conduction Band
Gaps in basic properties knowledge

o Unobserved singlet states s 1472
o Single-triplet energy separation 1
o Optical pumping mechanism (o £
> Photoionization dynamics & charge-state ratio °E A A O4V?
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15 ‘ Outlook @)

NV sensitivity improvements will enable new applications
o Biomagnetism

o Magnetic navigation

o Rotation sensing

o Diamond anvil cell sensing
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16 ‘ Qutlook

Magnetic sensitivity vs. spatial resolution
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Room for improvement =
. ; & < 1000+
o Linewidth & contrast boosts are the most promising - Scanning
o Current sensitivity still far from the spin projection noise 5 i MTJ
tf 10l ; centers
. e P!
Dual approach for improved sensitivity: 3 SQUID
> Improved diamond samples g O T
. s " Rb cell
o Optimized NV readout techniques ® 102 Ce
10—1[] :
Detectable
Investigate other optically-active defects R A Wl PO
=z microscope
> In diamond: SiV, SnV, PbV, ST1, ... .
. . E 18_ IIIIIII
> In other solids (SiC polymorphs, ...) B A
@
g 107" Detectable with
ﬁ NV centers
Ideas for new NV sensing applications g% N
o Magnetic imaging with small standoff ”
107 ; ; :
10~ 0.01 1 100 10*

o Temperature, pressure, and electric field sensing
o Extreme environments
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