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Abstract—Machine learning implements backpropagation via
abundant training samples. We demonstrate a multi-stage learn-
ing system realized by a promising non-volatile memory device,
the domain-wall magnetic tunnel junction (DW-MTJ). The sys-
tem consists of unsupervised (clustering) as well as supervised
sub-systems, and generalizes quickly (with few samples). We
demonstrate interactions between physical properties of this
device and optimal implementation of neuroscience-inspired plas-
ticity learning rules, and highlight performance on a suite of
tasks. Our energy analysis confirms the value of the approach,
as the learning budget stays below 20µJ even for large tasks
used typically in machine learning.

I. INTRODUCTION

The drive towards autonomous learning systems requires
computing tasks locally or in-situ, defraying rising energy
costs due to inefficiencies in the modern computer architecture
[1]. A variety of emerging non-volatile memory devices, such
as phase-change materials, filamentary resistive RAM, and
magnetic memories (spin-transfer-torque-RAM (STT-RAM)
and spin-orbit-torque-RAM (SOT-RAM)), may implement this
vision. Critically, emerging devices can perform not only
data storage but complex physics-powered operations such as
vector-matrix multiplies (VMMs) when densely wired [2].
The workhorse algorithm in AI workloads is backpropa-

gation of error (BP). BP relies upon a teacher signal sup-
plied to all layers and the storage of high-quality gradients
on each layer during the parameter update phase [3]. In
contrast, competitive learning or adaptive resonance methods
provide labels sparsely, e.g. only to some parts of the system;
the rest learn according to internally adaptive units and/or
dynamics [4]. Competitive learning relies upon the winner-
take-all (WTA) motif, a cascadable non-linear operation that
can be used to build deep systems, just as perceptrons can
be used to build multi-layer perceptrons (MLP) [5], [6].
Original proposals for building WTA circuits relied upon a
chain of inhibition transistors [7]. Analog and digital WTA
or spike feedback CMOS systems have been realized [8], [9],
and conceptual proposals for WTA systems using emerging
devices exist [10], [11]. However, these works either do
not discuss scalable (local) learning rules that might lead to
large-scale WTA systems, or do not adequately benchmark
against state-of-the-art tasks in the machine learning field .
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Fig. 1. (a) An illustration of the DW-MTJ analog synapse. (b) abstract learning
rule (top) and its temporal implementation using physical currents in the
system for the WTA competitive learning system (first layer) and (c) the
same for the supervised learning system (second layer).

In order to implement efficient WTA learning, we draw upon
the spike-timing-dependent plasticity (STDP) rule, a primitive
predictive/correlative engine [12]. As in [13], we implement
STDP and WTA learning together with emerging memory,
however our chosen synapses are analog and, as in [14],
we closely study neuronal behavior/interactions to implement
optimal competitive learning with hidden units.

Our chosen analog memory is the three-terminal magnetic-
tunnel-junction (3T-MTJ) device. These devices: 1) achieve
high switching efficiency due to the SOT interaction at in-
put/output terminals; 2) possess a non-volatile state variable,
a domain-wall interface (DWI) moving through a soft ferro-
magnetic track; 3) can be dually utilized as a synapse, holding
an internal conductance state GMTJ when the output terminal is
long, or implement the neuron function, when the track is long.
In the former case, domain wall synapses notably possess good
energy footprint and advantageous operation on neural net-
work tasks in comparison to other nanodevice synaptic options
[15]. In the latter case, assuming tight spacing lateral inhibition
exists between neighboring DW-MTJ neuron tracks, and the
physics-derived leak function can be used to implement rapid
inference operations given pre-trained weights [16]. In this
work , we describe an efficient combination of unsupervised
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Fig. 2. (a) The clustering layer(s) takes as input and output analog currents.
Following spiking of 3T-MTJ neurons, a separate (4th) terminal back-
propagates spikes to the row implementing clustering. The clock terminal is
typically grounded but may be connected to a homeostatic regulation signal.
(b) The read-out layer takes spikes from the hidden layer doubled using
current mirrors and encodes real-valued weights with 2 MTJ synapses per
cell. Programming follows comparison of spikes to expected values.

(WTA+STDP) and supervised (label-driven) learning in an all-
DW-MTJ device array that approaches BP-level performance
and remarkable energy efficiency on difficult tasks.

II. OPERATION OF NANOMAGNETIC WTA PRIMITIVE

Our system relies upon three operations 1) Inference: a
vector-matrix-multiplies on clustered weights IN, generate
post-synaptic outputs 2) Domain-Wall Competition : A dy-
namic step whereby interacting neuron units evolve according
to post-synaptic inputs (a vector of currents /post), as well as
the behavior or nearby neighbor units, according to a physics-
informed model. 3) Learning/Programming: An update step
where weights VV, are updated according to a simplified
version of the spike-timing-dependent plasticity (STDP) rule;
neurons implement different hidden statistical models of the
input [17]. These stages are progressively implemented in the
unsupervised phase (label-free). Once Nus unlabeled examples
from the training set have been seen, weights are frozen and
a least-mean-squares (LMS) filter is progressively built in a
second weights matrix 14), using N, labeled data points.

A. Details of Lateral Inhibition Model

As in [16], the dependence of a magnetic stray field's trans-
verse (vertical) component impinges upon that of neighboring
wires. This can be described by:

Hz 4M,
= (arctan

2s +3w
  arctan

2s + w

) 
(1)

7T t

based on [18]. Here, M, is the magnetic saturation field set
at 1.6T, w, t, and s are width, thickness of the track and
inter-wire spacing respectively. When Hz is in the proper
range, it can effectively reduce DW velocity v. Instead of

rigorously calculating H, in the neural simulator, we focus
on an ensemble parameter 7 that modifies naive, current-
dominated DW motion vo:

vo t, Vinhib(W, t, S)
=   (2)

vo(w, t,

This ratio captures the predominance of current-driven vs.
coupled (field-driven) DW behavior. At very low y, field
influences are negligible; at 7 0.5, coupling is interme-
diate, and current and field DW influences are mixed; as 7
approaches 1, neighbor field effects outweigh the influence
of input current. Physically, the spacing s can vary between
lOnm and 150nm spacing in order to reflect a full spectrum
of coupling strength. However, -y may not evolve linearly in
this regime, as demonstrated in [19].

B. Details of Analog Plasticity Model

As in [20], the number of weights given a domain wall
length Ldw, track width w, and length of output MTJ terminal
Linti (where the analog conductances are realized) is

Lint. Lint.
nn, <  — 4  (3)

Given w = 32nm, 6 bits could be implemented given an
output port length of 512nm. Analog weights can be imple-
mented with the use of notches for precise control and non-
linearity [21], or can be obtained intrinsically via fine current
controlled pulses. Due to DWI momentum effects, notch-free
systems will typically require greater output/synapse length.

During plasticity events, differences in currents between
synaptic input and output 3T-MTJ ports determines the motion
of the DWI modulating GMTJ. As in Fig. 1, the circuit potenti-
ates the synapse/increases the conductance when the two cur-
rents are coincident and depotentiates the synapse/decreases
the conductance when they are not. This implements an
approximate version of Hebbian/anti-Hebbian learning , or
approximate STDP (hereafter A —STDP). The teacher signal
implementation relies upon a fourth terminal of the DW-MTJ
neurons which is connected backward to the synaptic devices
of that layer , as in the orange wires shown in Fig. 2(a). Further
details on the scheme are given in [22].

C. Integration with Companion Supervised Learning System

A WTA primitive can be difficult to interface, leading to
the desire to efficiently combine unsupervised and supervised
sub-systems [23]. In our case, the results from the compet-
itively learning DW-MTJ system are forward-propagated to
a supervised learning layer that is constructed additionally
from DW-MTJ synapses and neurons, as shown in Fig. 2 and
first suggested in [24]. This system contains 2MN total DW
synapses to encode both positive and negative weights, where
M is the number of hidden nodes and N is the label-applied
terminal set of neurons. We have considered two possible
strategies for the supervised learning policy. The first sign-
based learning policy can be implemented with great energy
efficiency in neuromorphic hardware [25], and reduces to:

A1/17.7,k = AGo-(Xj(Tk — Ok)), (4)
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Fig. 3. Calibration of 7 ; MNIST, M = 600 , Nus = 1000, Ns = 30000.

where X3 is the input from hidden neuron j, Ok is the output
at the kth terminal neuron, Tk is the target (correct) label, o- is
the sign function and AG is the unit of conductance change
per update. The second policy, softmax learning, requires
an analog computation but can achieve superior results in
machine learning contexts. Given the original post-synaptic
update Yk , the softmax function is computed subsequently.
Weights are ultimately updated according to AW3,k =
given a learning rate n, and 63,k = 113(0k — Tk) following
the cross-entropy formulation , where Hi is the pre-synaptic
activation values of that layer j, as in [26].

III. DESCRIPTION OF DATA SCIENCE TASKS

We consider three tasks: 1) the Human Activity Recognition
(HAR) set of phone sensor data (e.g. body acceleration, angu-
lar speed). There are 5 classes of activity (standing, walking,
etc), 21,000 training and 2,500 examples of dimension L = 60
[27]. 2) the MNIST database of hand-written digits, which
includes 60,000 training and a separate 10,000 test exam-
ples, and L = 784 [28]. 3) The fashion-MNIST (f-MNIST)
database, which is of same dimensionality as 2), represents
items of clothing (sneakers, t-shirt, etc) and is notably less
linearly separable than either of the previous [29].

IV. PERFORMANCE ON TASKS

A. Parameters for successful clustering

For correct clustering system operation, the most critical pa-
rameter tends to be the coupling parameter -y. As visible in Fig.
3, while the intermediate/low amount of stray field interaction
(over-firing) and dominant stray field interaction (under-firing)
both do poorly, the high-intermediate level of interaction in
which current matters but is outweighed by locally dominant
neighbors results generalizes properly. Computationally, this
suggests an intermediate point between 'hard' WTA (in which
one or close to one neurons fire) and 'soft' WTA (in which
most neurons fire) best implements clustering and forces a
useful hidden representations of the input dataset.

Next, we evaluate how critical two common enhancements
to standard WTA operation — homeostasis [30] and rank-order
coding [31] — are to strong performance in the hidden layer.
Fig. 4 shows that these two operations are also important.
In the case of homeostasis, we find that a small number

TABLE I
CLASSIFICATION AND REGRESSION TASK PERFORMANCE

Task Learning Style

Random, Ana-BP STDP, Bin-BP STDP, Ana-BP

HAR
MNIST
f-MNIST

96.13%
93.52%
76.52%

95.83%
93.12%
77.52%

96.93%
94.42%
79.52%
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Fig. 4. Rank order filtering (a) and homeostatic delay mechanism (b)
contribution to competitive learning with DW-MTJ neuron devices on the
MNIST task. Simulated systems had M = 200 hidden layer neurons, given
Nus = 1000 clustering samples, and Ns = 30000 supervised samples.

0110-terf Nor*p effect., syksans.

—1—A-5TOP, Binary Wti
—FA-57DP, Softrnan

Random Weights, Binary WH
Random Wet•hts, Softrnaz

of DW-M115 at Hidden Lay.

so  
DIN.MT) Online learning

Y n

•

—I—A-STDP, Binary WH
—1—A-57DP, Softmax
—i— Random Weights, Binary WH

Random Weights, Softmax 

1 1.5

rnber ar training examples Isttond la 1 0

Fig. 5. The effect on MNIST classification performance of (a) the total
number of competing hidden layer units and (b) the number of samples
provided to the supervised layer to read out the results of the clustering
operation. In (b), there are M = 400 hidden-layer units.

of homeostatically inhibited time steps provides this benefit
already, and a great deal of fine-tuning is not needed. A similar
result is obtained for order coded learning, where a sufficiently
large exponent is needed to clip the updates to a reasonable
number of total neurons firing. Note that when this parameter
is very low, the hidden layer tends to again over-fire and
redundantly sample. Since correct values of -y also naturally
clip the total number that can fire, this suggests that the poor
a-STDP results in Fig. 4(a) are unlikely.

B. Dimensional and learning set requirements

Fig. 5 illustrates performance on MNIST task as a function
of competing units M and number of supervised training
samples given a properly calibrated hidden layer. Ultimately,
94.5% classification on the test-set is achieved when using ana-
BP in the second layer with only N, = 30000 examples drawn
from the training set (but with a fairly large M = 1200). Table
1 summarizes the top results for the other two tasks. For HAR,
97% is reached given N, = 15000 and M = 600; f-MNIST
requires M = 1800 and N, = 60000.This suggests the current
design is adequate on more separable tasks, while deeper
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networks may be required to prevent unacceptable system
size blow-up on very non-separable (difficult) ones. These
are notably low numbers for the total number of labeled data
points presented; a modern memristive MLP requires many
multiples of the task set, e.g. 200-500k samples for MNIST or
f-MNIST [32], [26], and achieves 96% on MNIST and 81 %
on f-MNIST. Thus, our present results are very slightly inferior
to BP. However, as in Table 1, clustering outperforms the
random weights system definitively, given the same learning
procedure in the read-out layer.

C. Resilience to Intrinsic Physics Effects in System

Several issues may occur in the physical learning system
which are non-ideal: a) synapse-level coarseness, e.g. limited
resolution of synapses; b) synapse-level process-induced vari-
ation at the output MTJ cell (which creates different Gon/Goff
states and TMR ratio); c) neuron-level stochastic effects due
to natural fractal edge roughness in DW-MTJ nanotracks [33]
which can cause a neuron, at a given clustering timestep, to
fail to compete/fire. For coarseness, Fig. 6(a) shows that Wc
requires 4 bits per synapse to outperform random weights ,
regardless of second layer policy; performance continues to
increase with more resolution, leveling off at 7-8 bits. Mean-
while, the supervised layer is sensitive to synaptic depth when
using the binary BP rule but insensitive to it when using the
analog rule- regardless of first-layer weight style. Next, Fig.
7(a) shows that the clustering operation is almost unaffected
by synapse-level variability. Finally, Fig. 7(b) shows the effects
of arbitrary domain wall pinning are significant and linear. If
around 5% of neurons do not fire at any given clustering step,
1.0 — 2.5% accuracy is lost. However, the effect of random
pinning is negligible when in low current operation.

V. ENERGY FOOTPRINT OF PROPOSED SYSTEMS

Drawing on methodology in [26], [34], and [35], we es-
timate the energy overhead for the entire online learning
procedure. On the device level, we have assumed that on
average average RMTJ = 1k12, DW velocity is 100T ,
J = 1.0 x 1011 it+ for SOT switching, w = 32nm, d = 4nm,
and Lilnj is chosen according to Equation (3). We assume the
circuit operates in current mode during VMM operations and
during the training/plasticity events, and no additional analog-
to-digital conversion (ADC) is needed at the hidden layer
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Fig. 7. (a) The effect of increasing variability of maximum and minimum
states of DW synapses (G., Goff) in first layere.g. TMR variation. (b) The
effect of random DW pinning. For both cases, M = 600, 1000 clustering,
30000 training examples given on the MNIST task.
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values noted in (a) as the dotted (vertical) lines.

due to the all-DW design. However, at the output layer, a
Ramp ADC, comparators, and softmax subthreshold circuit
are implemented to fully interface with digital labels. Based
on our estimates, this peripheral circuitry dominates the overall
energy footprint and leads to the following results at 6 bits of
ADC accuracy for the three tasks using clustered weights and
ana-BP in Ws : 1.96 p,J for HAR, 7.41 p,J for MNIST, and
18.55 p,J for f-MNIST. Lastly, we parameterize hidden layer
dimension and bits ( Fig. 8). While energy scales linearly with
the system size, it scales quadratically as a function of bits.
Since 6 bits of weight precision is workable for Bin-BP and
far less suffices for Ana-BP, no blow-up in energy is expected.
Future energy efficiencies may be unlocked by further increas-
ing domain wall velocities via material optimization [36], or
increasing the efficiency of spin-orbit torque switching for
more efficient current-mode inference operations.

VI. CONCLUSION

In this work, we have designed and evaluated a learning
system which closely draws upon the dynamics of DW-MTJ
memory devices to learn efficiently. The major positive result
of the work is that current-mode (all DW-MTJ ) internal
operation, low bit requirements, and a low number of required
updates allow us to achieve learning with < 20,uJ energy
budget at very high speed. The major incomplete aspect of the
work is that our accuracy results are still inferior to state-of-
the-art deep networks using BP. Our immediate next steps are
thus to examine deeper (cascaded) implementations of semi-
supervised DW-MTJ systems that may be ML-competitive.
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