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Wall-Modeled LES

Pressure (Pa)
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High-Order Methods in SPARC

Summation-by-Parts Methods:

Entropy-Stable High-Order Finite Difference
(Multi-block Structured)
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4 | Entropy-Stable Spectral Collocation Element Operators
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5 | Entropy-Stable Spectral Collocation Element Operators
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6 | Entropy-Stable Spectral Collocation Element Operators
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Volume terms (operators are sparse) - > s
> Simple gradient complexity: 3*(p+1) per solution point [LG and LGL]
|
° Flux divergence complexity: 3*(p+1) inviscid and viscous flux evaluations
per solution point [LG and LGL]
O ® ®
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Concurrency over (p+1)"3 solution points per element
Halo for ghosting

Mass matrix always diagonal: Exact for LG points, approximate for
LGL points
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Entropy-Stable Spectral Collocation Element Operators

Interface terms (operators are sparse)
o Simple gradient complexity: 2*(p+1) [LG] or 2 [LGL] per face point
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° Flux divergence complexity:
o 2¥(p+1)+1 [LG] or 1 [LGL] non-dissipative inviscid flux evaluations
> 1 [LG and LGL] dissipative inviscid flux evaluation
o 2¥(p+1)+1 [LG] or 3 [LGL] viscous flux evaluations
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Concurrency over (p+1)"2 face points per interface

Use face coloring to manage conflicts
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Performance Analysis — Taylor-Green Vortex (TGV)

Methods:
*  Structured cell-centered finite volume (SCCFV)
*  Structured high-order finite difference (HOFD)

*  Unstructured spectral collocation element (SCE)
*  Note: All cases using LGL points

Architectures:

* Intel Haswell HSW) CPU (32 cores/node)

* ARMO64 Cavium ThunderX2 (TX2) CPU (56 cotres/node)
*  NVIDIA Volta (V100) GPU (4 GPUs/node)

Configuration:

*  Single node simulations (1-2mil DOFs/node)
*  30s simulation time; explicit time step control

« HSW - 32(MPI+10OMP) vs. 2(MPI+320MP)

*  High-order performed better with latter
*  OpenMP threads mapped to hardware-threads

°  TX2 - 8(MPI+14OMP) vs. 2(MPI+560MP)

3D Cartesian Meshes:

* 963, 885k DOFs
* 1283, 2.1mil DOFs




9 I Performance Analysis — TGV Figure of Merit

First attempt to quantify performance of high-order
&
Lsccrv * €TTscerv
t-erré®

Figure of Merit =

t - Wall-clock time for 30s simulation time (s)
« err® = [ |e(t) — &er(t)|*dt - Enstrophy error
*  Reference: Spectral element solution, 5123

* Note: results are architecture independent
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Analysis:

* Current optimal is near SCE5
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*  High-order performing better on GPUs

Figure of Merit

*  Bottlenecks
*  CPU — Residual (computation)

*  GPU - ConsRelations (gradient, communication)
*  Remainder also needs more profiling/improvement
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10 I Performance Analysis — TGV Node Uetilization b = Consclrions
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11 I Performance Analysis — TGV Timer Breakdown , W Comm
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12 1 Future Performance Work

Optimization for HOFD and SCE:

*  More detailed profiling

*  More work on hierarchical parallelism (memory layouts, shared memory)

*  SIMD for CPUs

* Better communication pattern for SCE-LGL

Evaluate efficiency of high-order methods:
*  More analysis/feedback on figure of merit
*  Measure and compare communication cost and computational throughput

*  Benchmark with open-source software

Performance analysis of more complex problems: I
*  Wall-modeled large eddy simulation ‘

* High-speed boundary layer with chemical reactions



