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2 High-Order Methods Usage in SPARC

Wall-Modeled LES



I3 High-Order Methods in SPARC

Summation-by-Parts Methods:

hntropy-Stable High-Order Finite Difference
(Multi-block Structured)

Hybrid WENO or Artificial Viscosity for shock
capturing

Cell-centered for strong inter-block coupling

hntropy-Stable Spectral Collocation Klements
(Unstructured)

No need for over-integration

Tensor product elements

Artificial Viscosity for shock capturing

Legendre-Gauss or Legendre-Gauss-Lobatto
solution points
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4 Entropy-Stable Spectral Collocation Element Operators
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5 Entropy-Stable Spectral Collocation Element Operators

Continuous

Otq + Oxkfk(q) = Oxkckiaxiq

Entropy Stable
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6 Entropy-Stable Spectral Collocation Element Operators

Volume terms (operators are sparse)
Simple gradient complexity: 3*(p+1) per solution point [LG and LGL]

—Q7c: tv(q)

Flux divergence complexity: 3*(p+1) inviscid and viscous flux evaluations
per solution point [LG and LGL]

1
[2(Qk - -n bkr bT2 r kr k 1 + (2.TekitAki ikej = qi)

Concurrency over (p+1)^3 solution points per element

Halo for ghosting

Mass matrix always diagonal: Exact for LG points, approximate for
LGL points
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7 Entropy-Stable Spectral Collocation Element Operators

Interface terms (operators are sparse)

Simple gradient complexity: 2*(p+1) [LG-] or 2 [LGL] per face point
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0 Flux divergence complexity:
• 2*(p+1)+1 [LG] or 1 [LGL] non-dissipative inviscid flux evaluations
• 1 [LG and LGIA dissipative inviscid flux evaluation
• 2*(p+1)+1 [LG] or 3 [LGL] viscous flux evaluations
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Concurrency over (p+1)^2 face points per interface

Use face coloring to manage conflicts
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8  Performance Analysis — Taylor-Green Vortex (TGV)

Methods:

•

•
•

Architectures:

Structured cell-centered finite volume (SCCFV)

Structured high-order finite difference (HOFD)

Unstructured spectral collocation element (SCE)
Note: All cases using LGL points

• Intel Haswell (HSW) CPU (32 cores/node)

• ARM64 Cavium ThunderX2 (TX2) CPU (56 cores/node)

NVIDIA Volta (V100) GPU (4 GPUs/node)

Configuration:

Single node simulations (1-2mil DOFs/node)

30s simulation time; explicit time step control 3D Cartesian Meshes:
• 963, 885k DOFs

•
HSW - 32(MPI+10MP) vs. 2(MPI+320MP)

High-order performed better with latter
• 1283, 2.1mil DOFs

• OpenMP threads mapped to hardware-threads

• TX2 - 8(MPI+140MP) vs. 2(MPI+560MP)



9 I Performance Analysis —TGV Figure of Merit
10

First attempt to quantify performance of high-order

C
Figure of Merit = 

tSCCFV • errscFv
t • errE

2,6
• t - Wall-clock time for 30s simulation time (s)

• errE = f IE(t) - Ere f (t) 12 d t - Enstrophy error

• Reference: Spectral element solution, 5123

• Note: results are architecture independent

Analysis: 

Current optimal is near SCE5
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10 Performance Analysis —TGV Node Utilization

Analysis: 

—11-16x GPU node speedup over HSW node

Speedup is greater at high-order with more DoF

SCCFV faster on CPU, lower order SCE matches on GPU
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11 Performance Analysis — TGV Timer Breakdown

SCE Kernel Analysis: 

High-order trends:

CPU — Volume increases, interface decreases

GPU — similar, communication and remainder dominant
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12 Future Performance Work

Optimization for HOFD and SCE: 

ore detailed profiling

• More work on hierarchical parallelism (memory layouts, shared memory)

SIMD for CPUs

Better communication pattern for SCE-LGL

Evaluate efficiency of high-order methods: 

ore analysis/feedback on figure of merit

Measure and compare communication cost and computational throughput

Benchmark with open-source software

Performance analysis of more complex problems: 

• Wall-modeled large eddy simulation

High-speed boundary layer with chemical reactions


