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Background
• Lithium-ion battery mesostructure contains three phases:

• particulate active material (AM), e.g., LiMn113Niv3Co11302

• carbon black nanoparticles + polymeric binder: carbon binder domain (CBD)
• electrolyte-filled pore space

• Optimal topological arrangement of these phases can enhance electrochemical performance
• Tuning the strength of adhesion between AM and CBD, and strength of cohesion within CBD

provides a powerful knob to control mesoscale topology, but the idea has not been explored
• Discrete element and colloidal simulations are used to demonstrate this proof-of-concept of

mesostructural engineering
• Additionally, simulations facilitate the:

• elucidation of structure-processing-property correlations in lithium-ion batteries
• extraction of local transport features in complex battery mesostructures
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Discrete Element and Colloidal Simulations
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