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Two Topics
• Pd-H-He potential

• Mg-B-H potential
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Pd-H-He Potential Motivation

• Pd is a solid-state tritium storage material

• Tritium decays to He, forming He bubbles

• Bubbles causes PCT shift, swelling, He

release, all leading to failures

• MD can study bubble nucleation / growth

FjAc'ciRC eb

February 23-27, 2020

San Diego, California. USA
#TMSAnnualMeeting



Criteria for Acceptable Pd-H-He Potential

• Octahedral interstitial sites in fcc

• Low He diffusion barrier (~0.1 eV)

• Large He swelling MO A3)

• Short He-He spacing in Pd (~1.7 A)

• Non-bonding in pure He (equation of state)

• Strong He-He attraction in Pd (~-0.85 eV)

• Correct volume and energy for PdHe rock-salt

• Correct Pd vacancy and He insertion energies as a function of He number

• Stringent MD tests
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Two Paradoxes

• Increasing swelling is against a low

diffusion energy barrier

• Increasing He-He attraction in Pd is

against He-He repulsion in pure He
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Past MD Simulations of He Bubbles
• Two papers are published after 2016

• Nuc. Sci. Tech. 27, 106 (2016) prescribes incorrect

tetrahedral H sites and manually creates He bubbles

• J. Chem. Phys. 144, 194705 (2016) prescribes a He

diffusion energy barrier of > 3.0 eV

• He bubbles in W have been successfully studied, see, for

example, Nucl. Fusion, 53, 073015 (2013), and J. Nucl.

Mater., 432, 61 (2013)
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Difference between Pd and W
(a) He sites in fcc Pd

octahedral sites
(with spacing = 2.75 A)

(b) He sites in bcc W

tetrahedral sites •
(with spacing 1.58 A)

DFT He-He spacing in Pd = 1.7 A

• He at octa sites in fcc Pd

but tetra sites in bcc W

• Diffusion barrier is smaller

in bcc than in fcc

• Octa spacing in Pd is way

longer than He-He spacing

Tetra spacing in W is short

than He-He spacing
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Solution

• Use the EAM potential by Finnis-Sinclair*: pi = pii(rd, as

opposed to the one by Daw-Baskes**: pi = pi(rii)

• Electron density created by Pd at He sites is negative

• Electron density created by He at He sites is positive

• He embedding energy is minimum at zero electron density

• Use EAM's many-body effect to increase swelling

*Phil. Mag. A 50, 45 (1984), **Phys. Rev B. 29, 6443 (1984).
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DFT Justification
(a) octahedral site (b) step 1 (c) step 2

(d) step 3 (e) step 4 W saddle point
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• He always

repels electrons

towards Pd

• The electron

transfer

processes are

complex
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Validation of Some Critical Properties

methods 0.1-le C20,H

e

C2He,He QH,He EHe rHe-He EHe-He AC2Pc1->Pd

He

AEN--->PdH

e

DB 0.19 10.1 10.0 9.7 3.63 1.75 -0.87 9.2 2.92
FS 0.14 8.7 18.8 8.4 4.04 1.72 -1.49 13.6 2.95
PBE 0.11 9.7 10.3 9.5 3.64 1.7 -0.87 6.7 2.99
LDA 0.07 7.3 8.0 10.1 3.63 1.7 -0.85 7.4 2.96
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Validation of He Equation of State

• Our He-He interactions

are purely repulsive and

can capture well the He

equation of state

• Our pure He potential is

not that different from

literature LJ potential**
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*literature equation of state: Phys. Rev. B, 21, 5137 (1980), **LJ: J. Chem. Phys. 144, 194705 (2016)
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Validation of He Insertion and Pd
Vacancy Energies

(a) normalized He insertion energy (at He # 1) (b) Pd vacancy formation energy
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Validation of Critical He Size
rire=

(a) He cluster size 6
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(b) He cluster size 7

Pd interstitial
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o : Pd • : He

• At He size 6, few Pd

interstitials are

seen

• At He size 7, all He

clusters induce Pd

interstitials, in

good agreement

with DFT results
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(a) t = 0
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Stringent MD Tests
(b) t = 5.0 ns

periodically
the same
bubble

PdH0.6He0.01 at 400 K

o: Pd • : H • : (single or clustered) interstitial He (1) : bubble He

• Initially, He atoms are

randomly populated at

octahedral sites in a PdH0.6

lattice

• After MD simulations at

400 K for 5 ns, He bubbles

are formed

• Enables simulations of

bubble formation without

assumptions
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Mg-B-H Potential - Motivation

• Hydrogen is an efficient and clean energy carrier

• Solid state hydrogen storage materials draw interests due

to an ideal combination of volumetric and gravimetric

densities

• HyMARC (Hydrogen Materials Advanced Research

Consortium) aims to develop an understanding on how to

improve (de)hydrogenation kinetics

• Magnesium boron hydrides are one type of materials being

explored within HyMARC



Perspective
Example Molecules

1:1 LLNL is developing a phase field
model for (de)hydrogenation
kinetics of MgBxl-ly

1:1 The phase field model requires
thermodynamic and kinetic
properties as inputs

0 Many molecules may occur, and
many exhibit amorphous structures

challenging for DFT studies

CI We will use MD to fill the gaps

1B6H6]
2-

[BioHiol2

1B31-1712-

g2+

113711712—

B11H1112- 1B121112]2-

11391-19 2-

113811812

11311H141



Mg(BH4)2<=>MgB2+4H2...

MgB121{12

Mg(B3H8)2

MgB10H10

MgBxl-ly

• • •

> Many molecules were observed in NMR,
XES, XAS, but not XRD amorphous

> DFT is not sufficient for amorphous
complex hydrides

Goal 1: Use MD to evaluate stabilities of
different intermediates

MgBxHy: Two Goals
A/B interface

Crystal A Crystal B

> Interfaces between crystalline solids are
often exhibit amorphous "soup"
containing different molecular species

Goal 2: Use MD to calculate interfacial
energies



Molecular Dynamics Challenges

❑ Traditional MD can only simulate atoms, but we have molecules

❑ We will develop an innovative "molecular" dynamics method

➢ An intra-molecule force field to stabilize molecules

➢ An inter-molecule force field to capture energetics

➢ MD must track which atom is in which molecule

❑ As a first trial, we parameterize force fields DFT energies between
two isolated molecules

❑ Five molecules (Mg, H2, MgH2, BH4, B12H12) are considered



Mg13„1-1y: Methods

❑ Energy comes from interactions
between atoms from different
(similar and dissimilar) molecules

❑ Perform DFT calculations of
energies of all pairs of molecules at
various distances and angles

❑ Fit pair potentials to DFT energies

❑ Implement the approach in
LAMMPS

Interactions between different
pairs of species are distinguished
by rotation



36 Inter-Molecule Interactions

CIFor a Mg + H2 + BH4 + MgH2 + B121412 model, there
are 36 inter-molecule interactions:

Mg-Mg(Mg-Mg), Mg-H2(Mg-H), Mg-BH4(Mg-B,Mg-H), Mg-
MgH2(Mg-Mg,Mg-H), Mg-B12H12(Mg-B,Mg-H), H2-H2(H-H), H2-
BH4(H-B,H-H), H2-MgH2(H-Mg,H-H), H2-B12H12 (H-B,H-H),
BH4-BH4(B-B,B-H,H-H), BH4-MgH2(B-Mg,B-H,H-Mg,H-H),
BH4-B12H12(B-B,B-H,H-B,H-H), MgH2-MgH2(Mg-Mg,Mg-H,H-
H), MgH2-B12H12(Mg-B,Mg-H,H-B,H-H),B12H12-B12H12(B-B,B-
H,H-H)



MD Implementation

❑ Atom-based MD does not
know molecules

❑ Assign different atom
types for different
molecules

❑ Create mapping tables
between atom types and
pair interactions



Progress
"Molecular" Dynamics Case Example Mg-B12H12 Interaction

Mg

B12H12

-0.20

a, -0.25

to
tit -0.30
=
c-L

-0.35

4 5 6 7 8
Mg-B12H12 distance (A)

LI Fitted all 36 molecular interactions needed for Mg, H2, MgH2, BH4, B12H12

U Implemented the "molecular" dynamics method in LAMMPS

CI Demonstrated successful "molecular" dynamics simulations

CI Performed simulations for MgB12H12 and Mg(BH4)2
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MgB„Hy: "Molecular" Dynamics Simulation
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(a) amorphous MgB12H12
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U MD matches DFT on isolated molecule-molecule cases, but not on condensed phases

U Solution: directly fit condensed phases



rigins of t1- 0 Issues
DFT Energies do not sum up due to charge transfer

ETOT (Hartree) Interaction

Energy (eV)

Mg (Charge = 2) -199.2273

B12H12-1 (Charge = -2) -305.7702

B12H12-2 (Charge = -2) -305.7702

1Vg--k/g (Charge = 4) -397.9869 12.7284

B12H12 -- B12H12 (Charge = -4) -611.2426 8.1035

B12H12-1 -- Mg-1 (Charge = 0) -505.7188 -19.6276

B12H12-1 -- Mg-2 (Charge = 0) -505.7569 -20.6621

B12H12-2 -- Mg-1 (Charge = 0) -505.7569 -20.6630

B12H12-2 -- Mg-2 (Charge = 0) -505.7188 -19.6273

IVgB12H12 (Charge = 0) -505.7188

k/gB12H12 (Charge = 0) -505.7188

R/g2(B12H12)2 (Charge = 0) -1011.6945 -6.9881



Highlights

❑ MD tools for PdHX are mature, and have been
applied to study various hydrogen storage problems
including the diffusion example presented

❑ We have been working on a "molecular" dynamics
tool to study complex hydrides such as Mg13xl-ly


