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Outline

■ Holes in Ge/SiGe heterostructures

■ Physical properties

■ Quantum Hall ferromagnetic transition

■ Spin qubits in Ge/SiGe
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Band alignment of SiGe heterostructures
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Properties of Silicon Germanium and SiGe: Carbon. Edited by: Kasper, Erich; Lyutovich, Klara (2000)



Undoped Ge/SiGe heterostructure field-effect transistors
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Device operation — 2D hole density

• The 2D hole density saturates.
0...

• Shallow channels r'.1
> High saturation densities, depth dependent. E 8
> Small slopes (capacitances) 0

kii—po

• Deep channels >I 6
> Low saturation densities, depth independent. :1-P
> Large slopes (capacitances) (1)
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Physical properties — spin-orbit coupling

• Low densities
> Weak localization only

• Intermediate densities
> Weak anti-localization on top of weak

localization only
• High densities

> Weak anti-localization only

Cubic Rashba: -(sin30,-cos39)
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Physical properties — spin-orbit coupling

• Spin-orbit length decreases with
density and can be as short as 0.1 um
(< mean free path), while the phase
coherence length can be a few
microns long (>mean free path)

• This means the hole spin can rotate
at a high yet controlled rate, maintain
its phase coherence, and suffer no
scattering.
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Physical properties — weak antilocalization beyond diffusive regime Sandia
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• Conventional theories for weak (anti)localization are only valid in the diffusive regime at low magnetic fields.

• Our data lie outside this regime.

• Numerical methods and code for HPC available with paper.
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Physical properties — effective mass

• — 0.08 mo.
• — density independent.

• This mass is small compared to the
mass of electrons in Si (0.19), the mass
of holes in GaAs (0.2-0.4), and is
comparable to the mass of electrons in
GaAs (0.07).

• Smaller mass
=> more extended wave functions
=> easier gate controls for
nanostructures

=> larger orbital gaps
=> can use higher T cryostats
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• Delft results
• — 0.06-0.12 mo.
• — density dependent.



Physical properties effective mass

Theory

Fto. 8. Figures of constant energy in the (100) plane of k-spalt,
for the two fluted energy surfaces which arc dcfrneratc at th,-
valence band edge; constants as for germanfri,1
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The quantum Hall effect

In a perpendicular magnetic field, the spectrum of a 2D gas is a series of Landau levels:
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Ec is cyclotron gap: heB/(2nm*)

Ez is Zeeman gap: g*p.B

m* and g* are material parameters.

Landau level degeneracy (# electrons / area):
eB/h
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Quantum Hall ferromagnetic transition
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In most cases, Ec >> Ez

Strong even states, weak odd states

If Ec 2Ez

Strength of even states N strength of odd

states

If Ec < 2Ez

Strong odd states, weak even states

Ez/Ec increases with decreasing density.

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition
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A spin transition (unpolarized <-> polarized)

at v=2 occurs at p-2.4x101° cm-2.

This transition marks the point where Ec—Ez
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Quantum Hall ferromagnetic transition

• Local gating to create counter-propagating edge states with opposite spins
• Depending on the strength of the effective spin-orbit coupling, topological

superconductivity and Majorana modes can emerge.
• Bc "' 0.5T -> very friendly for superconductivity.

Helical domain wall
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Physical properties — g factor
P<1.6 x 1011 cm-2

• — 5 — 30
0.5 Ec < Ez < Ec

• — density dependent.
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Approach
• Single hole confined to lateral quantum dot in

Ge heterostructure (small mass)

• Spin qubit states: mi=-F3/2 (no valley splitting)

• EDSR qubit control through microwaves applied
to gates (strong SOC)

• Qubit readout and initialization through energy
selective tunneling to reservoir

• Occupancy detected through nearby charge
sensor

• P-orbital nature -> suppressed hyperfine.

• Enrichment is possible.
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Spin qubits in Ge/SiGe

Single Layer Devices
can be tuned to low-
hole regime in
transport
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3-layer device fabrication

1: isolation gates

SE 10.00 kV 5084m 5.1mm 0°

2: accumulation gates

E-beam lithography
ALD A1203 oxide
Ti/Pt gates
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3: barrier gates

3. Barrier gates
ALD oxide

2. Accumulation gates
ALD oxide

1. Isolation gates
ALD oxide

SiGe

s-Ge

SiGe
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3-layer device modeling: surface charge density

Without horizontal
isolation gate:
reservoirs merge

Add horizontal
isolation gate:
reservoirs separated
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Improved Coulomb blockade by adding center isolation gate
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Charge sensing: Comparison of isolation gate widths

a

150% improvement in charge sensing
signal when w is reduced by 2x
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In-plane B field
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• Charge sensed lines appear insensitive to in-plane
B-field

gin _piane is very small (estimate < 0.5)
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Perpendicular B field
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Perpendicular B field
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Modeling SOC in Ge QDs

Goal: Develop device-level models to guide & interpret experiments

■ Challenges

■ The form of the SOC Hamiltonian remains ambiguous in Ge quantum dots

■ No existing software for device-level modeling with SOC

■ Our trajectory

■ Use Rabi oscillation frequency as a connection to experiment

■ Calibrate expectations with a simple model

■ Enhance device-level modeling tools to accommodate SOC physics

■ Use tools to explore various SOC models (e.g., single-band vs. multi-band)

■ Integrate more physical details into our theory
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Luttinger Hamiltonian for SOC modeling 

• Include externally applied potential and (spin-3/2) Zeeman term

fiz = KPB

3B, \IIEL 0 0
VIE3+ B, 2B_ 0
0 2B+ -Bz aBs_
0 0 Alia+ —3Bz_

; B+ = Bx ± iBy

• Select a basis in which to expand Rix, e.g. eigenstates of the potential

ilb

0

• Calculate ground state lg) and first excited state le)

• Rabi frequency:

fR ocCelblg)
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Summary

■ Induced 2D holes in Ge/SiGe heterostructure field effect
transistors demonstrated.

■ Physical properties (mass, g factor, spin-orbit coupling
strength) characterized.

■ Gate controlled quantum Hall ferromagnetic transition
observed at low densities. Potential platform for topological
superconductivity.

■ Development of spin qubits in Ge/SiGe


