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= Holes in Ge/SiGe heterostructures
= Physical properties

= Quantum Hall ferromagnetic transition
= Spin qubits in Ge/SiGe
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Band alignment of SiGe heterostructures Sandia
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Properties of Silicon Germanium and SiGe: Carbon. Edited by: Kasper, Erich; Lyutovich, Klara (2000)




Undoped Ge/SiGe heterostructure field-effect transistors

Al O, (90 nm)

Ge QW (25 nm)

HT-Ge Buffer (100 nm)
LT-Ge Buffer (200 nm)

= Si Buffer (200 nm)
p-Si(100) substrate
HH
LH
Laroche, Appl. Phys. Lett. 108, 233504 (2016)

Su, Phys. Rev. Mater. 1, 044601 (2017)
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Device operation — 2D hole density Soncin
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« The 2D hole density saturates. 103 10 T=0.3K
‘ 9. x10"

« Shallow channels : « 58 nm

» High saturation densities, depth dependent. 8|

» Small slopes (capacitances)
« Deep channels 6 116 nm

» Low saturation densities, depth independent.

» Large slopes (capacitances) 1.6 1.2 0.8 '04
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Su, Phys. Rev. Mater. 1, 044601 (2017)




Physical properties — spin-orbit coupling Sonda

* Low densities
» Weak localization only -y ‘ ] —Best Fits
* Intermediate densities : _ Low Densi
» Weak anti-localization on top of weak
localization only
* High densities
» Weak anti-localization only

‘ 1] . | f | L
-30-20-10 0 10 20 30 10 5 0 5 10
Cubic Rashba: ~(sin38,-cos36) B (mT) B (mT)

Chou, Nanoscale 10, 20559 (2018)




Physical properties — spin-orbit coupling Sonda

» Spin-orbit length decreases with 1000 E’
density and can be as short as 0.1 um - -
(< mean free path), while the phase I i
coherence length can be a few 100? — 15_
microns long (>mean free path) m) » &
o 10¢ = [
S = S—
« This means the hole spin can rotate ™ = 0141
at a high yet controlled rate, maintain 1;__ -.-ng
its phase coherence, and suffer no 3 - |- Lty
scattering. - ) | | o
]_ 1 1 L L 1
_ O 01— 55 7 W% 7
=< [%v x10"" em? 11 -2
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g " I(V-c:n" ;
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S I
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E (kV-cm™) Chou, Nanoscale 10, 20559 (2018)
¥4




Physical properties — weak antilocalization beyond diffusive regime =z sme
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Conventional theories for weak (anti)localization are only valid in the diffusive regime at low magnetic fields.

» QOur data lie outside this regime. E
i = G&G
« Numerical methods and code for HPC available with paper. ; I . alilas
[ w -
£ 1¢
S =
o [
n L
g |
0.1
PR IR R B A
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11 -2
p(x10 'cm”)

Chou, Nanoscale 10, 20559 (2018)




Physical properties — effective mass Sandis

lNaat}(iJ(:g?(llries
. ~0.08m,. a b
-~ density independent. IR W pe” - iy e | T
» This mass is small compared to the 0.2} - gﬁjf_ I HZ |
mass of electrons in Si (0.19), the mass | £ $07 (s 1
of holes in GaAs (0.2-0.4), and is %ol 5 © N0 g
comparable to the mass of electrons in  ~ o i 1" oost
GaAs (0.07). S
-100 " x et | gt
« Smaller mass v Samperz T :: -
=> more extended wave functions TR W R e e B holedinsnyuo:cma) 5 T e
=> easier gate controls for Hardy et al., Nanotechnology, 30, 215202 (2019)

S Lodari et al., PRB, 100, 041304(R) (2019)

» Delft results
* ~0.06-0.12 m,.
« ~ density dependent.

=> larger orbital gaps
=> can use higher T cryostats




Physical properties — effective mass
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The quantum Hall effect Sandia
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In a perpendicular magnetic field, the spectrum of a 2D gas is a series of Landau levels:

Ec is cyclotron gap: heB/(2rm¥*)

¥ < tEZ

Ez is Zeeman gap: g*uB

Ec ] EC-EZ>EZ
4 ,' t E m* and g* are material parameters.
ry . Z

Ec 1 Ec-Ez>Ez
v -’

- 1"
Ec 1 Ec'Ez>Ez

.15

Landau level degeneracy (# electrons / area):
eB/h

Lu, Scientific Reports 7, 2468 (2017)
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Quantum Hall ferromagnetic transition
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In most cases, Ec >> Ez
—> Strong even states, weak odd states

If Ec ~ 2Ez
= Strength of even states ~ strength of odd
states

If Ec < 2Ez
—> Strong odd states, weak even states

Ez/Ec increases with decreasing density.

Lu, Scientific Reports 7, 2468 (2017)
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Quantum Hall ferromagnetic transition Sanin
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* Local gating to create counter-propagating edge states with opposite spins

* Depending on the strength of the effective spin-orbit coupling, topological
superconductivity and Majorana modes can emerge.

* Bc ™~ 0.5T -> very friendly for superconductivity.

“Impurity-generated non-Abelions”

Helical domain wall Simion Phys. Rev. B 97, 245107 (2018)




Physical properties — g factor

P<1.6 x 1011 cm~2
0.5Ec<Ez< Ec

« ~5-30
« ~ density dependent.
» The g factor is large compared to the g —_— (/__z
factor of electrons in Si (~2) and the g E Y FEE<E
factor of electrons in GaAs (~0.44). ¢ ,/—?c £
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Lu, Appl. Phys. Lett. 111, 102108 (2017)
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holes with m=+3/2

= Single hole confined to lateral quantum dot in E
Ge heterostructure (small mass) T
HH
= Spin qubit states: m=+3/2 (no valley splitting) 32 / TH= +3/2
= EDSR qubit control through microwaves applied P(/=1)<:\ /\mj= +1/2
to gates (strong SOC) 12 S

= Qubit readout and initialization through energy
selective tunneling to reservoir

= QOccupancy detected through nearby charge
sensor

= P-orbital nature -> suppressed hyperfine.

T um -
1. Isolation 2. Accumulation 3. Plunger

= Enrichmentis possible.

19




Spin qubits in Ge/SiGe Sandi
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Hardy et al., Nanotechnology, 30, 215202 (2019)
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3-layer device fabrication .

3: barrier gates

t

I 3. Barrier gates
ALD oxide

I 2. Accumulation gates
ALD oxide

I . Isolation gates
ALD oxide

SiGe

s-Ge

SiGe

E-beam lithography
ALD Al,O5 oxide
Ti/Pt gates

21
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3-layer device modeling: surface charge density @) &..

Without horizontal
Isolation gate:
reservoirs merge

Add horizontal
Isolation gate: ———
reservoirs separated
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Improved Coulomb blockade by adding center isolation gate

Without horizontal
isolation gate

UDot
ULP  URP

With horizontal
Isolation gate
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Charge sensing: Comparison of isolation gate widths

150% improvement in charge sensing Sensed
signal when w is reduced by 2x quzr(')ttum
Charge
sensor

' Parallel diagonal lines are

i sensed charge transitions
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In-plane B field

Sensed
quantum
dot

Charge
sensor

= Charge sensed lines appear insensitive to in-plane
B-field

" 8in-plane IS VEry small (estimate < 0.5)
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Perpendicular B field

Sensed
quantum
dot

Charge
sensor
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Perpendicular B field

- " Erernenticular 12 (based on N=1)

% 004 ~18 (based on N=2)

Ej = Consistent with estimates from transport
: measurement on 2DHGs.

-2 -1.5 -1 -0.5 ] 0.5 1 1.5 2
B (Tesla)
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Modeling SOC in Ge QDs .

Goal: Develop device-level models to guide & interpret experiments

= Challenges
= The form of the SOC Hamiltonian remains ambiguous in Ge quantum dots
= No existing software for device-level modeling with SOC

= Qur trajectory
= Use Rabi oscillation frequency as a connection to experiment
= Calibrate expectations with a simple model
= Enhance device-level modeling tools to accommodate SOC physics
= Use tools to explore various SOC models (e.g., single-band vs. multi-band)
= |ntegrate more physical details into our theory

28
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Luttinger Hamiltonian for SOC modeling mmm

Include externally applled potential and (spin-3/2) Zeeman term

3B, V3B_. 0 0
_ V3B B 2B 0
H, = xu * z - s B, =B, +iB
77l o 2B, -B, V3B.| T 77
0 0 3B, -3B,l

= Select a basis in which to expand ﬁLK, e.g. eigenstates of the potential

. o) e ) 3! ) 69 [110)
”»

Calculate ground state |g) and first excited state |e)

= Rabi frequency:
fr < (e|D|g)

29
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Rabi frequency vs. dot stretching e\ cqule
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Summary

= |nduced 2D holes in Ge/SiGe heterostructure field effect
transistors demonstrated.

= Physical properties (mass, g factor, spin-orbit coupling
strength) characterized.
= Gate controlled quantum Hall ferromagnetic transition

observed at low densities. Potential platform for topological
superconductivity.

= Development of spin qubits in Ge/SiGe




