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Sandia MOS DQD Platform
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Intervalley Hot Spot Spm -Orbit Interactlon
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Voltage Control of Intervalley Interaction
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Fast Qubit Drive Frequency
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Valley Hot Spot S/T Qubit Control

Redefine qubit basis
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CPMG to Extend Coherence
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CPMG as a Noise Filter
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» CPMG prolongs qubit coherence by refocusing
noise on time scales longer than the time between
pulses.
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Noise Spectral Density, S(f) (,:;,VQJ’Hz)

Charge Noise Spectroscopy

CPMG noise spectroscopy
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Summary

= Novel operating mode of a S/T qubit
= Exploits an intervalley SO interaction
= Qubit frequencies exceeding 200MHz

= High-orthogonality and fast electrical-only qubit control.

= High-speed modulation between three qubit control regimes

= Fast CPMG refocusing pulses allow for a probe of high
frequency charge noise
= S(f) ~ 971 over 9 orders of magnitude




Extra Material




Measure of QD Valley Splitting
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Voltage Tuning of Valley Splitting
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Valley Hot Spot S/T Qubit Control
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CPMG to Extend Coherence
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