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evidence
Without  data,
you are just another person
with an opinion.

W. Edwards Deming

Image Source: census.gov o



Bringing Rigor into Cyber Experimentation:
The Plan in a Nutshell

SECURE: Science and Engineering of Cyber security througi-
Uncertainty quantification and Rigorous Experimentation

The Goal: Bring rigor into cyber experimentation

The Idea: Follow the principles of Computational
Science and Engineering (CSE)

The Challenge:  Cyber systems are different than
those in traditional CSE applications.

The Three Thrusts: 

• Predict Answer "What if questions" at scale,
with confidence.

• Assess confidence  in predictions; characterize
and propagate uncertainties

• Make robust decisions  under uncertainty
and under advanced threat conditions
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Cyber experimentation approaches .40
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Threat is Real

• The Electric power grid is a cyber-physical
system that is becoming increasingly
information dependent.

• The 2015 Ukranian power grid attack
showed the potential effects
of a cyber attack on a critical infrastructure.
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Alert (TA17-163A)
CrashOverride Malware

anginal release date: June 12, 2017 I Last revised: July 27, 2017
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Systems Affected

Industrial Control Systems

Overview

More Alerts

The National Cybersecurity and Communications Integration Center (NCCIC) is aware of public reports frorn ESET and Dragos outlining a new, highly capable
Industrial Controls Systerns (ICS) attack platforrn that was reportedly used in 2016 against critioal infrastructure in Ukraine. As reported by ESET and Dragos EY,
the CrashOverride malware is an extensible platform that could be used to target critical infrastructure sectors. NCCIC is working with its partners to validate the
ESET and Dragos analysis, and develop a better undarstanding of the risk this new malware poses to U.S. critical infrastructure.



Cyber-aware resilience and
Consequence-aware cyber defense

Threat
Modeling

Predict Effect on
Resources

(.3

Predict
Consequences

• Cyber attacks lead to correlated physical failures.
o What is a cyber fault line?

• How do we prioritize our defenses?

• How effective are our defenses?
o Is one solution quantifiable better than another?

• How do we improve cyber-systems for
better resilience?

• How do we operate on physical systems
in a cyber threat-informed way?
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Focus on One step of the Kill Chain

Initial
infection

Pivot to
engineering
workstation

Command
and control

1. - Deliver email
2. Follow link
3. Execute
4. Obtain IP of engineering

workstation

5. Command/control
6. Pivot to engineering

workstation
7. Scan for RTUs
8. Ready for attack

ID
vulnerable

RTUs

Command
and control

Run
CRASH

Achieve
loss of
load

• Key Simplifications
o Analyzed 1 step of kill chain (ID
vulnerable RTUs)

o Considered relatively small system
• 8 RTUs total

o Assumed attacker has prior
knowledge of RTUs

Metric of interest: load shed in the
power system

• Current Work: Command and
Control



Scenario - Cyber
Notional SCADA/ICS Network tot
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Experimental Workflow

• Fixed ICS network topology

Parameter
configuration

Cyber
Experimentation

EMU

vs

• Parameters set

• (Thousands) of Cyber experiments are run

• Cyber results saved

• Cyber results are translated to inputs to optimal power flow (OPF) tools

• OPF tools generate physical effects results

_Attacker
Strategy
if t>t_go,
_thgn ... 

Cyber
Effects
Results

• Fixed RTU-grid interconnection
topology

Decouples cyber and grid
experimentation
Cannot capture feedback
effects Physical

Effects
Results
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Results: Vulnerability Identification
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Treatment of uncertainty in scanning Ce

Host Group
Size

Delay  

Minimega
Nmap/Snort

Prob of
Detection

Loss of 12

Various Load
Attack
Strategies:
Some based
on time,
others on
number of
open ports
discovered



Results: Comparing two versions of attacks
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Results: Comparing two versions of attacks
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Next page will compare these strategies at 80 seconds.
Tl 5 strategy: mean load loss of 18.4%
T60 strategy: mean load loss of 32.8%



Results: Zoom in on 4 probes, delay 10

Comparing a T15 strategy vs. a T60 strategy at 80 seconds

0

TIS strategy

TEO strategy

T15 strategy: mean
load loss of 18.4%

T60 strategy: mean
load loss of 32.8%

• T-test comparison for equality of mean load loss at 80 seconds using these
two strategies shows that they are statistically significantly different.

• lf you only look at the mean, you don't see the differences in the distribution



Reproducibility of Experiments

We did verify that we get the SAME exact results across all 1000 realizations
for both serial and parallel when we have no probability of dropping a
packet and a fixed port order for scanning.

•

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Time (sec)

..parallel_norand_nodrop • • • • serial_norand_nodrop

These are consistent with our
understanding of the protocol
and the fastest the topology
can be scanned.
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Dealing with discrete high dimensional spaces

• There is a rich literature on uncertainty quantification for
continuous, low-dimensional spaces.

• Our problems are discrete and high-dimensional.

• We have an all-hands on deck approach:
o Better models for discrete spaces

• PCEs based on discrete polynomials:

o Dimensionality Reduction
• Models for the full system. What corresponds to PCA in this space?
• Reduced set of representatives/observables in the system based on

functionality

o Multi-fidelity Models
• Monte Carlo should be a part of the toolset.
• Can we reduce the time for each sample by lower-fidelity models without

compromising accuracy?

1 7



Dealing with high dimensionality

• Multifidelity approach

0 Take a large number of low fidelity runs and a small number of
high fidelity runs to achieve statistics on high fidelity responses
• Low fidelity runs are assumed to have bias

o Relies on variance reduction: must have correlation between
the low and high fidelity model
Fidelity definition

► minimega — HF: 100 Requests (average over 10 repetitions)

► ns3 — LF: 10 Requests (Delay 50ms)

► ns3 — LF*: 1 Requests (Delay 5ms)

C
HF 1
LF 0.016
LF* 0.002

TABLE: Normalized Cost

We assume serial execution for the
low-fidelity model, however we might easily
increase the efFiciency of LF (ns3) by

running multiple concurrent evaluations

Host Userland

HTTP
Server

Host OS

Host Userland

Client

Host OS

1Gbps Switch

FIGURE: Network Configuration



Multi-fidelity modeling results -
variance reduction  v%
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▪ Number of HF runs: N = 500 et*

▪ Number of LF* runs: r1 x N = 57,12t. 4
. Equivale4.Mst: x N x ‘1111114

CHF

11' Total estimator cost (HF LF*):
Ctot = 500 11 = 511

Number of Requests/s

Single Fidelity
Multi Fidelity (HF-LF) •

Multi Fidelity (LF*)
N112
 •

100

Equivalent HF cost

(1 T1 — 1 2
 pi) = 0.23
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StDev

1000

110' The variance reduction we obtain

Var 
(ctACV)) = Vat- (w)

w.r.t. MC

rl —
(1 —
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10' The number of low-fidelity simulations is

NLF = N x r1 where

2
r1 =

CHF pl

CLF 1 —

10' For each HF simulation we need to spend an extra
cost in LF simulations

Eq.Cost : Ctot = N 1(
CLF+ r1
CHF

10' For this case

P1 rl r1CLF /CHF
LF 0.86 4.69 0.075
LF* 0.90 10.83 0.022

More than 70% variance reduction 
i
s

obtained by adding only an equivalent
cost of 11 HF runs.

• Variance reduction:
19



Decision Making: Cyber-aware resilience and
Consequence-aware cyber defense

Threat
Modeling

Attack Effect on
Resources

• Cyber attacks lead to correlated physical
0 What is a cyber fault line?

• How do we prioritize our defenses?

• How effective are our defenses?
o Is one solution quantifiable better than another?

• How do we improve cyber-systems for
better resilience?

• How do we operate on physical systems
in a cyber threat-informed way?

Consequence
Prediction

failures.
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SECURE Optimization Research Challenge V44

Problem: Decision-makers need to protect power grids against
informed, adaptive, malicious adversaries attacking their cyber
networks

Decision-makers need to:

o Account for likely adversarial behaviors/responses

o Plan response strategies

o Discover effective investment options

Challenge. There are exponentially
many adversarial behaviors, response
strategies, and investment options



PAO - A Python Library for Adversarial
Optimization

IDEA: Extend Pyomo to model bilevel optimization problems that
explicitly include both defender and attacker decisions

Pyomo: An Optimization Modeling
Tool Built in Python

Diverse modeling capabilities
Disjunctive programs, stochastic programs,
dynamic optimization problems, etc.

Can express modular, hierarchical
model structure

Automatic model transformations

2016

♦

WINNER

informs
INFORMS Computing
Society Prize - 2019

Example: Linear Bilevel Programs
Hard problems (NP-hard)
No general-purpose commercial
solvers for discrete lower level
decisions

min crx +

s.t. Alx + Bo,

min >0 c2x+d2

A2x + B2 < b2

■ Upper level problem
■ Lower level problem
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Defending Against: Empowered adversaries 4:
Stackelberg Game: 

Defender: An entity operates a
cyber-enabled infrastructure
and takes certain measures to
defend it.

Attacker: A cyber adversary
attacks the entity to cause
service disruption and
physical damage.

Do Not
Enforce

No Action A Attack

Detected

Defender: An entity operates a
cyber-enabled infrastructure
and takes certain measures to
defend it.

1
1
1
1

Recon

No
Action

Do
Not

Defend

Defend &
Counter-Attack

Defend

Recon

Enforce

No
Action

Attack

Detected No
Action

Intercept

New software (soon) available: Python Adversarial Optimization (PAO)



Cyber-Aware Operations: Attack by a
sophisticated adversary

Which RTUs should be hardened in order to minimize power grid effects
(measured in megawatts load unserved) from a CRASHOVERRIDE attack?

Nominal Operations:

•Total Load: 320.81 MW

•No Security Violations

Attack Budget of 1 RTU:

•RTU-4 Compromised

•Total Load Shed: 237.97 MW (75%)

•Voltage Security Violations

Max voltage

Pli

Min ivcige

Nominal

Attack Budget of 2 RTUs:

•RTU-4 and RTU-7 Compromised

•Total Load Shed: 298.81 MW (93%)

•lncreased Voltage Security Violations

Attack Budget of 3 RTUs:

•RTU-4, RTU-7 and RTU-8 Compromised

•Total Load Shed: 320.81 MW (100%)

•Severe Voltage Security Violations

1 RTU Compromised Multiple RTUs Compromised

• DAKOTA performed a sensitivity analysis on the power grid topology
configured in SCEPTRE

• Adversarial Optimization identified worst-case outcomes for increasing
attacker budgets (instead of full enumeration of all possible events)

• The exercise indicated inconsistency between SCEPTRE and the Optimization,
enabling an improved representation of the exemplar model

24



Consequence-Aware Cyber Defense

• Network Design
o How do we avoid placing

critical resources away from each
other on the cyber network

o Avoid dependent components
placing on the same
cyber fault line

o Burden on system operators
o Our goal is to

quantify return on investment 

Historian   10.113.5.60
Win Server
2008 R2

OPC
Win Server
2008 R2

Generator 1

Switch

10 113 5 50

10.113.5.72 

4 1
M Engineering

Workstation
  Windows7

Ultirnate

li10.113.5.71 SCADA
Win Server
2008 R2

10.113

I ")-1.- IEC-104
M5 70 MI Windows7Hl

Agiata, Ultimate

RT 6

PT
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• Sensor Placement:
o How do we prioritize cyber defenses
to limit physical damage

o Increases operational costs
o How do we quantify the return on investment? 

Transformer 1

IEC 104 Commands

•cr

Bus 3

RTIJ41 O

RTU42

Bus 39
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Conclusions

• Cyber experimentation is a crucial tool for cyber security.

• Emulation (abstract hardware/real software) provides predictive
capability.

• Prediction should be support with confidence bounds to be used
for high-consequence decisions.

• We need the ability to identify extreme events in systems.

• We face algorithmic challenges in
o Dimension reduction for discontinuous systems
o Ability to sample high-dimensional, categorical spaces
o v&v for discrete systems
o Threat Characterization
o Glass-box models for cyber systems
o Scalable solvers for design/interdiction problems
o Scalable solvers stochastic design/interdiction problems

• We welcome collaborations
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