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evidence

Without dete,
you are just another person
with an opinion.

W. Edwards Deming

Image Source: census.gov




Bringing Rigor into Cyber Experimentation:
The Plan in a Nutshell

SECURE: Science and Engineering of Cyber security througlr s
Uncertainty quantification and Rigorous Experimentation 45 fs)

The Goal: Bring rigor into cyber experimentation

The Idea: Follow the principles of Computational 1
YTICS

Science and Engineering (CSE) EMUL

The Chadllenge: Cyber systems are different than
those in traditional CSE applications.

The Three Thrusts:

* Predict Answer “What if questions” at scale, =
with confidence. DAKOTA

. Assess confidence in predictions; characterize et
and propagate uncertainties Quantification

* Make robust decisions under uncertainty B
and under advanced threat conditions ‘/ PYDMO

Adversarial Optimization

4
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Threat is Real

* The Electric power grid is a cyber-physical
system that is becoming increasingly

information dependent. CRASHOVERRIDE

- The 2015 Ukranian power grid attack f‘;Eig,f’rgg:;gﬁ;“m
showed the potential effects
of a cyber attack on a critical infrastructure.

&) US-CERT

UNITED STATES COMPUTER EMERGENCY READINESS TEAM

DRAGQC

HOME ABOUT US CAREERS PUBLICATIONS ALERTS AND TIPS RELATED RESOURCES C*VP

Alert (TA17-163A) T
CrashOverride Malware

Original release date: June 12, 2017 | Last revised: July 27, 2017

& Print 2 Tweet K send Share

Systems Affected

Industrial Control Systems

Overview

The National Cybersecurity and Communications Integration Center (NCCIC) is aware of public reports from ESET and Dragos cutlining a new, highly capable
Industrial Controls Systems (ICS) attack platform that was reportedly used in 2016 against critical infrastructure in Ukraine. As reported by ESET & and Dragos &,

the CrashOverride malware is an extensible platform that could be used to target critical infrastructure sectors. NCCIC is werking with its pariners to validate the
ESET and Dragos analysis, and develop a better understanding of the risk this new malware poses to U.S. critical infrastructure. 6




Cyber-aware resilience and
Conseqguence-aware cyber defense

Predict Effect on Predict
Resources Conseqguences

o What is a cyber fault linee
 How do we prioritize our defensese

* How effective are our defensese 'y
o Is one solution quantifiable better than another? =z

« How do we improve cyber-systems for
better resiliencee

« How do we operate on physical systems
in a cyber threat-informed way?




Focus on One step of the Kill Chain

Achieve
Initial Command Command loss of

infection and control and control load
( (
Pivot to D Run
engineering vulnerable CRASH
workstation RTUs

» Key Simplifications

KDenver email \ o Analyzed 1 step of kill chain (ID
2. Follow link vulnerable RTUs)
3. Execute » Considered relatively small system
4. Obtain IP of engineering . 8 RTUs total
workstation

o Assumed attacker has prior

5. Command/control knowledge of RTUs
6

. Pivot to engineering

workstation o Metric of interest: load shed in the
7. Scan for RTUs power system
QReody tor attack / « Current Work: Command and
Control




Scenario — Cyber
Notional SCADA/ICS Network

Historian OPC Server

Control Center,

8 substations, 24 remote terminal units (RTUs)

Field|

Vulnerable

Avd Ewlh

substation substation substation substation

S99 99 99T 99 Q

| Intrusion Detection|

=

<
Engineering Wol

(L

(Compromised)

rkstation

« Aftacker scans

network to
potential

vulnerabiliti

find

1es

« Causes disruptions
via RTU payloads

Instrusion Detection

Defender
monitors
network traffic
to detect
attacks

substation substation substation substation

Vulnerable

Vulnerable RTUs not firewalled for maintenance -




Experimental Workflow

- Fixed ICS network topology

Parameter
configuration

—>

« Parameters set

Cyber
Experimentation

Attacker
Strategy

If t>t_go,
then ..

N~
Cyber
Effects
Results

T

A

2

4

» Fixed RTU-grid interconnection
topology

=

T

Optimal
Power Flow

« Decouples cyber and grid
experimentation
« Cannot capture feedback
effects

* (Thousands) of Cyber experiments are run

« Cyberresults saved

« Cyberresults are translated to inputs to optimal power flow (OPF) tools

» OPF tools generate physical effects results

Y
N—

Physical
Effects
Results

N—
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Treatment of uncertainty in scannin
Y g \"

Prob of

H.OST Group - Detection
Size Minimega
Delay Nmap/Snort

Loss of 12

Various Load
Attack

Strategies:

Some based

on fime,

others on

number of

open ports

discovered




Results: Comparing two versions of aftacks
- U

4 probes, Delay 10 sec 6 probes, Delay 5 sec

Host Group:4 Scan Delay:10 Host Group:6 Scan Delay:5

——— 1 open 1 ——— 1 open
= 2 open —— 2 open
= 3 open —— 3 open
0.3 P 0.8 P
—— 4 open —— 4 open

[ —— 5 open —— 5 open

detection probabibility
o
; X
detection probabibility

é 0.2
0 0

0 50 100 150 0 10 20 30 40 50

Time (s) Time (s)

« Detection occurs much earlier when attacker runs 6 probes every
5 seconds.

« Aftacker has significant probability of NOT being detected in the
4 probe, 10 second delay case.




Results: Comparing two versions of aftacks
- U

4 probes, Delay 10 sec
Wait for a specified time

Host Group:4 Scan Delay:10

% load loss

Time (s)

Next page will compare these strategies at 80 seconds.
T15 strategy: mean load loss of 18.4%
T60 strategy: mean load loss of 32.8%




Results: Zoom in on 4 probes, delay 10 78

—‘

2

A

« Comparing a T15 strategy vs. a T60 strategy at 80 seconds

603
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T15 strategy: mean
load loss of 18.4%

T60 strategy: mean
load loss of 32.8%

« T-test comparison for equality of mean load loss at 80 seconds using these
two strategies shows that they are statistically significantly different.
« If you only look at the mean, you don’t see the differences in the distribution

15
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Reproducibility of Experiments
o Y o “’

We did verify that we get the SAME exact results across all 1000 realizations
for both serial and parallel when we have no probability of dropping a
packet and a fixed port order for scanning.

Open

5 Closed

Numberof open ports found

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Time (sec)

e narallel_norand_nodrop ® e o @ serial_norand_nodrop

Number of closed ports found
o = N w B v o ~ o] (=]

These are consistent with our

understanding of the protocol

and the fastest the topology : 8 5 7 3 M B G BB BT B WG @ E
can be scanned. fmeteed

e parallel_norand_nodrop ® e o o serial_norand_nodrop
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Dealing with discrete high dimensional spaces {.:
A\

* There is arich literature on uncertainty quantification for
continuous, low-dimensional spaces.

« Our problems are discrete and high-dimensional.

« We have an all-hands on deck approach:

o Better models for discrete spaces
PCEs based on discrete polynomials:

o Dimensionality Reduction
- Models for the full system. What corresponds to PCA in this space?

Reduced set of representatives/observables in the system based on
functionality

o Multi-fidelity Models
Monte Carlo should be a part of the toolset.

- Can wereduce the tfime for each sample by lower-fidelity models without
compromising accuracye
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Dealing with high dimensionalit
g g Y “0

- U
« Multifidelity approach

o Take a large number of low fidelity runs and a small number of
high fidelity runs to achieve statistics on high fidelity responses

- Low fidelity runs are assumed to have bias
o Relies on variance reduction: must have correlation between
the low and high fidelity model
Fidelity definition
» minimega — HF: 100 Requests (average over 10 repetitions)

» ns3 — LF: 10 Requests (Delay 50ms)
» ns3 — LF*: 1 Requests (Delay 5ms)

C Host Userland Host Userland
HF 1 CHTTR
LF | 0.016 | corver |  Clomt |
LF* 0.002
Host OS Host OS
) L] T
TABLE: Normalized Cost l l

low-fidelity model, however we might easily
increase the efficiency of LF (ns3) by FIGURE: Network Configuration

running multiple concurrent evaluations

. . 1Gbps Switch
We assume serial execution for the




Multi-fidelity modeling results —
variance reduction

]
The variance reduction we obtain w.r.t. MC is
Number of Requests/s Var(Q (aACV)) _ Var(Q) 1 ¥ —1 p2
1000 e - — - ry 1
- Single Fidelity —— ]
Multi Fidelity (HF-LF) —e— |
Multi Fidelity (Lﬁ*/* —e— ] The number of low-fidelity simulations is
N Npp = N X r{ where
>
3 2
% Cur P1
it 'L =\| 5 5
2 Cor 1—p
©
£
0 For each HF simulation we need to spend an extra
cost in LF simulations
C
, Eq.Cost : Ciot = N (1 +ry E)
1 N A CHF
10 100 1000
Equivalent HF cost For this case
StDev P1 ri r1Crr/Cur
LF 0.86 4.69 0.075
Number of HF runs: N = 500 LF* 0.90 10.83 0.022

Number of LF* runs: r; Xx N =5

CHr

More than 70% variance reduction is

> Total estimator cost (HF + LF*): ObTOined by Odding Only dan eqUiVCIlel‘l‘I'

Ciot = 500 + 11 = 511

2 : ri—1,
P Variance reduction: [ 1 — p1 | =0.23
r1

cost of 11 HF runs.

12




Decision Making: Cyber-aware resilience and

Consegquence-aware cyber defense

Threq‘r Attack Effect on
Resources

o What is a cyber fault linee

How do we prioritize our defensese

How effective are our defenses?
o Is one solution quantifiable better than another?

How do we improve cyber-systems for
better resiliencee

How do we operate on physical systems
in a cyber threat-informed way?

Conseguence
Prediction




@
SECURE Optimization Research Challenge %

Problem: Decision-makers need to protect power grids against
informed, adaptive, malicious adversaries attacking their cyber
networks

Decision-makers need to:
o Account for likely adversarial behaviors/responses
o Plan response strategies
o Discover effective investment options

Challenge: There are exponentially
many adversarial behaviors, response
stfrategies, and investment options
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PAO — A Python Library for Adversarial ‘g.‘
Optimization A
- U
IDEA: Extend Pyomo to model bilevel optimization problems that
explicitly include both defender and attacker decisions

Pyomo: An Optimization Modeling Example: Linear Bilevel Programs

Tool Built in Python = Hard problems (NP-hard)
= Diverse modeling capabilities = NO general-purpose commercial
= Disjunctive programs, stochastic programs, solvers for discrete lower level
dynamic optimization problems, etc. decisions

= Can express modular, hierarchical
model structure Ming clx+dly

= Automatic model fransformations s.t. Aix + Byy < by
min,5 cix+diy
Azx + Bzy < b2

= Upper level problem

INFORMS Computing = Lower level problem
Society Prize - 2019

"WINNER |

22




Defending Against: Empowered adversaries

Stackelberg Game:

Defender: An entity operates a
cyber-enabled infrastructure

and takes certain measures to
defend it.

Do Not
Enforce

Attacker: A cyber adversary No Action
attacks the entity to cause
service disruption and
physical damage.

Detected
Defender: An entity operates a
cyber-enabled infrastructure

and takes certain measures to
defend it.

Detected

Defend &
Counter-Attack

) 4

Intercept

New software (soon) available: Python Adversor-iol Opﬁmizo’rion (PAQO)
23




Cyber-Aware Operations: Attack by a "’

sophisticated adversary “0

-l
Which RTUs should be hardened in order to minimize power grid effects
(measured in megawatts load unserved) from a CRASHOVERRIDE attacke

Nominal Operations: Attack Budget of 2 RTUs:
=Total Load: 320.81 MW "RTU-4 and RTU-7 Compromised
=No Security Violations =Total Load Shed: 298.81 MW (93%)
Attack Budget of 1 RTU: "|ncreased Voltage Security Violations
"RTU-4 Compromised Attack Budget of 3 RTUs:
=Total Load Shed: 237.97 MW (75%) "RTU-4, RTU-7 and RTU-8 Compromised
=\/oltage Security Violations =Total Load Shed: 320.81 MW (100%)

=Severe Voltage Security Violations

Max voltage

Y

Min voltage

a

e e

Nominal 1 RTU Compromised Multiple RTUs Compromised

« DAKOTA performed a sensitivity analysis on the power grid topology
configured in SCEPTRE

« Adversarial Optimization identified worst-case outcomes for increasing
afttacker budgets (instead of full enumeration of all possible events)

« The exercise indicated inconsistency between SCEPTRE and the Optimization,
enabling an improved representation of the exemplar model

24




Consequence-Aware Cyber Defense

« Network Design _ [ |
- How do we avoid placing s [l soron
critical resources away from each . O7C

other on the cyber network
o Avoid dependent components
placing on the same
cyber fault line
o Burden on system operators
o Our goalis to
quantify return on investment ,/~>

« Sensor Placement:
o How do we prioritize cyber defenses
to limit physical damage
o INncreases operational costs
o How do we guantify the return on investment?

25



Conclusions
e

2

Cyber experimentation is a crucial tool for cyber security.

Emulation (abstract hardware/real software) provides predictive
capability.

Prediction should be support with confidence bounds to be used
for high-consequence decisions.

We need the ability to identify exireme events in systems.

We face algorithmic challenges in

o Dimension reduction for disconfinuous systems

o Ability to sample high-dimensional, categorical spaces
o V&V for discrete systems

o Threat Characterization

o Glass-box models for cyber systems

o Scalable solvers for design/interdiction problems

o Scalable solvers stochastic design/interdiction problems

We welcome collaborations

26



