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Abstract—This paper presents MOSIQS, a persistent memory
object storage framework with metadata indexing and querying
for scientific computing. We design MOSIQS based on the key
idea that memory objects on shared PM pool can live beyond
the application lifetime and can become the sharing currency
for applications and scientists. MOSIQS provides an aggregate
memory pool atop an array of persistent memory devices to store
and access memory objects. MOSIQS uses a lightweight persistent
memory key-value store to manage the metadata of memory
objects such as persistent pointer mappings, which enables
memory object sharing for effective scientific collaborations.
MOSIQS is implemented atop PMDK. We evaluate the proposed
approach on many-core server with an array of real PM devices.
The preliminary evaluation confirms a 100% improvement for
write and 30% in read performance against a PM-aware file
system approach.

Index Terms—Memory-centric Computing, Persistent Memory
Storage, Scientific Metadata Indexing and Search

I. INTRODUCTION

Large-scale scientific applications, including simulations,
experiments, and observations, generate tens of petabytes of
data objects and are forecasted to grow even further [1], [2].
The critical attributes required by such applications include
parallel I/O for high-performance and minimal I/O latency in
accessing the data objects from storage systems [3]. In addi-
tion, the scientific applications, whether running on a single
server, small clusters, or HPC systems, all deal with creating,
modifying, and processing data objects in memory [4]. The
bottleneck between storage and memory has arisen because
data must be loaded into memory from slow storage.

Memory centric computing (MCC) has recently emerged to
overcome such memory and storage bottlenecks [5]. The HPC
has attempted to adopt MCC by enabling a shared memory
storage abstraction across the hundreds of compute nodes [5],
[6], [7]. Thus, the upcoming construction of larger MCC
infrastructures is expected to be equipped with an array of
persistent memory devices co-located with DRAM on each
node or shared among all the nodes via high-speed intercon-
nects such as Gen-Z [5] and Infiniband to improvise MCC [7],
[6], [5]. However, simply porting scientific applications to
MCC infrastructure is challenging. As, applications are tightly
coupled to the file system interface, i.e., block-addressable,
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limits the performance gain expected from MCC. For instance,
it has been reported that scientific applications spend 64% of
total execution time deserializing file data into memory objects
for further processing and computations [4], [8].

In MCC, the nodes are equipped with non-volatile memories
(NVMs), such as Intel Optane DC Persistent Memory (PM)
which offers high capacity at low cost, byte-addressability,
low idle power, persistence, and performance closer to DRAM
than SSD or disks [9], [10], [11]. A single machine can be
equipped with up to 6 TB of PM providing an opportunity to
build rack-scale shared memory pools for scientific computing
applications [10], [12]. Recently, several studies have shown
PM as a full or partial substitute for DRAM [13], [14]. For
instance, pVM [13] employs NVRAM to seamlessly expand
virtual memory for memory-intensive applications. Similarly,
[15] proposed a data-centric OS based on PM. Due to such
properties, they are considered a major contender for future
main memory fabric and MCC [9].

Therefore, PM given its properties, offers an opportunity to
store and manage the millions and billions of objects beyond
the lifetime of application in shared memory pool [16], [17],
[18]. Such management of application memory objects on
shared PM pool enables multiple benefits, i.e., i) low access
latency, ii) low serialization and deserialization overhead, and
iii) efficient computation via direct byte-addressability. We
refer application objects on PM as Persistent Memory Objects
(PMO1). Such PM application model also brings us the
opportunity to enable PM level object sharing across different
users/scientists and applications to facilitate effective scientific
collaborations.

Unfortunately, the PM application model stated above cre-
ates new data and metadata management challenges. First,
there is a need to ensure data and metadata consistency, i.e.,
data is modified atomically when moving from one consistent
state to another. Applications should be able to access PMOs
after a crash or ungraceful shutdowns [19], [20], [21], [22].
Second, scientific application data objects are self-described
and packed in versatile scientific data formats, i.e., metadata
is embedded inside the data object [23], [24], [25]. Without
additional descriptive metadata, PMO may become unidenti-

1PMO refers to application memory objects resident on persistent memory.



fiable, siloed, and in general, not useful to either scientists
who own the data or the broader scientific community. Third,
where and how to manage, store, and associate object metadata
along with user-defined custom metadata is challenging. It
is a common standard in the scientific community to tag or
annotate data objects with additional descriptive metadata for
a better understanding of data for collaborators [2], [26], [24].
Fourth, to select a subset of PMOs from millions of PMOs
in a shared PM pool based on metadata or user-defined tags
without additional indexing becomes highly challenging [27],
[28], [26], [29].

To address the aforementioned challenges, we propose to
build MOSIQS, an application framework that enables appli-
cations, scientists, and researchers to create, modify, search,
and delete memory objects on a large shared PM pool. A PMO
is a self-described object, i.e., an object can contain a single
value, multi-dimensional array or composite value similar to
scientific data formats such as HDF5 and netCDF data objects.
We design MOSIQS based on the key idea that memory objects
on PM pool can live beyond the application lifetime and can
become the sharing currency for applications and scientists.
Moreover, providing controls and annotations to memory
objects will bring more friendly storage model in scientific
computing environments. Such attractive properties drive the
scientists and research communities to have a new memory
object style management system which offers scalability, high-
performance, easy and flexible data sharing controls.

Our key contributions in this paper are:

• We propose an application framework for PM to store
and access memory objects via persistent pointers beyond
the application lifetime and to share objects across ap-
plications, scientists, and collaborators with flexible data
sharing controls (Section III).

• For effective storage and easier data sharing, we provide
namespace abstraction. Such an abstraction enables a
process to share its PMOs with other processes accessing
the namespace. We also provide post-storage attribute
tagging and annotation to PMO and enable indexing
on such application or user-defined metadata attributes
annotations(Section III).

• We develop a prototype implementation of the proposed
PM application framework using Intel’s PMDK [19].
We conduct preliminary evaluations on a Intel many-
core server equipped with 1.5 TB real Intel Optane DC
3D-XPoint PM. (Section IV). Experimental results show
that MOSIQS gains a 100% performance improvement
compared to the PM-aware file system approach.

II. BACKGROUND AND MOTIVATION

In this section, we present the background on emerging
persistent memory (PM) and elaborate a need for object
storage abstraction to manage scientific data objects on PM
pool.
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Fig. 1: Traditional scientific computing model vs PM-aware com-
puting model.

A. Memory Centric Computing

The memory centric computing (MCC) has emerged re-
cently to satisfy the requirements of memory-intensive sci-
entific computing applications [30], [31]. MCC architecture
benefits scientific applications in many ways. First, MCC
provides a high storage capacity and can store large scientific
datasets that could not traditionally fit in the memory. Second,
MCC mitigates the performance gap between storage and
memory, i.e., fast computation is provided on in-memory large
datasets. Third, MCC enables in-memory data sharing across
the applications and processes. In particular, MCC operates
on the principle of memory-first, i.e., the data resides in
memory to provide in-memory speeds to deliver tremendous
performance. In MCC, each node is equipped with a storage-
class non-volatile such as Intel Optane DC PM. The PM
technology can potentially reduce latency and increase band-
width of I/O operations by many orders of magnitude, but
fully harnessing the device capability requires overcoming the
legacy IO stack of disk-based storage systems [10]. A few
studies have enabled the use of PM in scientific applications,
e.g., NV-Process [32] proposed a fault tolerance process model
based on PM and provides an elegant way for the applications
to tolerate system crashes. Similarly, [16] evaluates different
fault-tolerance approaches for porting scientific applications
to use PM. DAOS-M [17] employs PM to store metadata and
small writes, whereas larger writes are redirected to NVMe
SSDs. Similarly, [15] proposed a data-centric OS based on
PM. There are also a few other applications of PM hosting
key-value stores and various index data structures to accelerate
performance of applications [33], [34].

B. Serialization/Deserialization on PM

In the conventional scientific computing model, application
relies on the CPU to handle the task of deserializing file
contents into memory objects. Such an approach requires the
application to first load raw data into the system main memory
from the storage. Then, the CPU parses and transforms the file
data to objects in other main memory locations for the rest of
the computation in the application [4]. Such deserialization
takes up almost 64% of the application’s total execution



time [4], [8]. Figure 1(a) demonstrates the traditional DRAM-
based computation model. Figure 1(b) provides a conceptual
overview of the scientific computing model based on PM,
where application objects persist in PM address space, and
direct computation is performed, avoiding additional serial-
and deserialization operations. Such usage of PM-based stor-
age and computing model also minimizes the decades-old file
system IO stack overhead (paging, context switching, kernel
code executions), as reported in [12].

C. Object Management on PM

Employing PM directly for legacy scientific applications is
challenging. As, the existing applications are built on notion
of block-based file system interface and are a clear mismatch
with PM hardware, i.e., byte-addressable. A simple solution
is to deploy a PM-aware file system and enable applications
to use PM but as reported in [12], ext4-DAX [35] specially
designed for PM incurs up to 13x overhead compared to raw
PM device write bandwidth. Thus, deploying file system is not
an optimal choice for PM. Whereas, an object storage model
offers much simpler interface but requires additional metadata
book keeping and object sharing controls.

D. Motivation

Arguably, storing application objects directly on PM without
a file system interface provides multiple benefits such as faster
storage without file system overhead and direct computations.
But, it poses several challenges at the same time. First,
sharing/protection semantics of PMOs across applications and
other scientists are an essential requirement of the scientific
community [26], [36]. It is challenging to access, select and
share a PMO without additional descriptive metadata. As,
object access and sharing require object semantics such as
object name, size, and owner provided by the application, user
or scientists, whereas, PMOs are memory allocated objects
and can only be accessed and shared via persistent pointers.
For instance, with Intel’s PMDK libpmemobj API, each
stored object on PM is represented by an object handle of
type PMEMoid as shown in Figure 2.

Unique Pool Identifier Object Offset in Pool 

Persistent Memory Object Identifier (PMEMoid)

32 bits 32 bits

Fig. 2: The layout of PM object identifier (PMEMoid) [19], [9].

The PMEMoid value for given object does not change
during the life of an object/application unless a realloc()
operation is invoked. Therefore, accessing and sharing a PMO
requires an additional metadata mapping or index of objects
with user or application provided semantics. Furthermore, self-
describing metadata for scientific files, i.e., metadata embed-
ded inside the scientific data file and tags/annotations to data
objects by the scientist, also needs to be persisted along with
memory objects. Second, a persistent memory object should
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be crash consistent, i.e., system should ensure access and
consistency of memory object in case of application crash or
ungraceful power failures.

To this end, we intend to build an application framework
with object storage abstraction on top of the shared PM pool.
The proposed application model employs PMDK provided
transactions to ensure atomicity and consistency. The metadata
is indexed and managed in a lightweight persistent key-value
(KV) store with a persistent B+-tree storage backend. Note
that, our focus is not to provide an optimal PM programming
API. Instead, we focus on building an application model for
the PM to accelerate memory centric scientific computing.

III. MOSIQS: DESIGN AND IMPLEMENTATION

In this section, we present our key design goals, target
architecture and system overview.

A. Design Goals

Our key design goals include:

• Simple and Generic Storage Model: MOSIQS should have
a simple, generic, and schema-less storage model to ensure
the compliance to diverse scientific formats and applica-
tions, i.e., persistent memory objects should be orthogonal
to a domain-specific datatype or format.

• High-Performance and Scalability: One critical goal of
MOSIQS is to meet the performance and scalability re-
quirements of scientific applications by fully exploiting the
underlying hardware architecture, i.e., Shared PM Pool.
Furthermore, MOSIQS should be capable of handling con-
current workloads in a scalable manner while ensuring the
correctness of individual transactions.

• Metadata Indexing and Query Support: Self-described
scientific data formats such as HDF5 and NetCDF contain
additional descriptive metadata. Oftentimes data is retrieved
based on additionally stored metadata. Thus, MOSIQS
should provide a capability to search based on object
metadata.
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• Flexible Data Sharing and Controls: Another important
goal of MOSIQS is to facilitate scientists and researchers
with easier data sharing controls, i.e., ability to export or
publish a particular PMO or a collection of PMOs based on
certain criteria with other scientists and collaborators. Such
PMO sharing also minimizes data movement overhead.

B. Target Architecture

MOSIQS is a PM object storage framework providing a
scalable data management and metadata search service for
scientific applications. MOSIQS’s target architecture is an array
of PM devices distributed across hundreds of compute nodes.
PM on each compute node is shared with other compute
nodes via a shared PM pool abstraction via high-speed fabric
attached memory (FAM) interconnect such as Gen-Z [5],
[30]. Figure 3 depicts a high-level architectural overview of
the MOSIQS. Multiple compute nodes can create a shared
namespace abstraction atop the shared PM pool via the
MOSIQS library and directly store and manage memory objects
on these namespaces. Multiple processes running at these
compute nodes can access and share PMOs via namespace
abstraction. Figure 3 shows that a process running at compute
node 2 accesses two PMOs from namespace 1 and 2. To
enable memory-level object storage abstraction to applications,
we employ Intel’s PMDK provided lipmemobj library, an
open source PM object storage interface [19]. On top of the
shared memory object storage abstraction, MOSIQS provides
applications and scientists with scientific metadata search
service to further accelerate the performance and overcome
the challenge to find a particular PMO or subset of PMOs.

The main motivation behind our work is to provide an
application model for scientific applications to benefit with
emerging persistent memory devices which are fast, persistent,
byte-addressable, higher in capacity and cheaper than DRAM.

C. System Overview

MOSIQS primarily consists of the following key abstrac-
tions: Shared memory pool, Namespace manager, Metadata

extractor, Sharing manager, Group manager, Index manager,
and Query manager. Figure 4 presents the multi-layered ar-
chitecture of MOSIQS. The bottom layer is the shared PM
pool, which aggregates all PM devices and exposes them as a
single PM pool. Next, the PMDK [19] layer provides low-level
primitives, e.g., transactional and reliable object manipulation,
via libpmemobj and libpmem. All the applications attach
and detach memory objects from PM pool via MOSIQS, which
internally relies on libpmemobj interface.

The metadata extraction and storage management layer is
stacked on top of the bottom layer. The metadata extractor
is responsible to extract and populate the object name and
PMEMoid mappings. Furthermore, it extracts the annotations,
user provided tags and other metadata from the object as well.
All the extracted metadata resides in form of key-value paired
metadata objects. The sharing manager is responsible to enable
the data sharing among applications and collaborators. Group
Manager provides logical organization of PMOs defined by
application and/or scientists. The pool KV store is metadata
storage backend for all the metadata of MOSIQS objects. The
namespace manager enables flexible controls via partitioning
large shared PM pool into application or user-defined names-
paces. The main responsibility of query manager is to serve
the query requests from the users/scientists and applications.

D. Data Model

MOSIQS data model consists of three major building blocks.

• Persistent Memory Object (PMO): A PMO is a self-
described entity and represents a single-value, an array or a
compound datatype. It can be created by application or user.
A PMO is placed in a group, and additional annotations
and hints can be specified. In MOSIQS, a PMO is the
minimum sharing currency between applications and users.
A PMO requires several properties to be supported: crash
consistency to ensure consistent state, system naming, and
permission controls to enable PMO to be discovered and
shared with other processes and collaborators.

• Group: A group represents a collection of PMOs that
share common properties and attributes. MOSIQS supports
inclusive relationships between groups, i.e., a group can
have nested groups similar to nested directories in file
systems. Specifically, the group allow users to organize and
share a collection of PMOs.

• Attribute: An attribute is a <key,value> pair which
enables annotations, user-defined tags, and properties of
groups and objects. Our attribute concept is the same with
attributes in scientific data formats, i.e., HDF5 and netCDF.

Listing 1 shows an example application that creates a group
and a PMO with attribute annotations.

E. Shared Persistent Memory Pool

The shared persistent memory pool empowers MOSIQS to
provide applications with collective view and an aggregate
capacity of an array of PM devices. This satisfies the in-
tense capacity desire of scientific applications [14]. Internally,



MOSIQS creates the shared PM pool via libpmempool
API [19], where the device files, i.e., /dev/pmem[1-6]
as shown in Figure 4, are concatenated to form a single PM
pool. Any object inside the PM pool is reachable via Root

object pointer. When an application opens a pool, it is given
a privilege to access the global memory Root pointer, which
allows applications to locate the PMOs by accessing metadata
stored in the pool KV store. The memory allocations and de-
allocations are conducted via libpmem at the lower level
inside libpmemobj.
/** create, initialize and annotate properties to group **/
struct group_info_t my_group;
group_id = create_group("group-name", parent_group|NULL);
my_group.set_groupid(group_id);
my_group.set_scope(SHARE|PRIVATE);
struct mosiqs_attribute_t group_attr[1];
group_attr[1].key = "file"; group_attr[1].value="sim-v0.1";
my_group.set_attr(group_attr, group_attr.size());
my_group.set_split_value(100);
group_init(my_group);

/** create and annotate PMOs **/
struct pmo_info_t my_pmo;
pmo_id = create_pmo("pmo-name", group_id|NULL);
my_pmo.set_objectid(pmo_id);
my_pmo.set_scope(SHARE|PRIVATE);
my_pmo.set_type(String|Int|Float|Struct);
my_pmo.set_pmovalue(fits); // struct FITS fits = {...};
my_pmo.annotate("file=foo.hdf5");
struct mosiqs_attribute_t pmo_attr[2];
pmo_attr[1].key = "timestamp"; pmo_attr[1].value="t4";
pmo_attr[2].key = "iteration"; pmo_attr[2].value="1401";
my_pmo.set_attr(pmo_attr, pmo_attr.size()));
pmo_persist(my_pmo);

Listing 1: An example of group and object creation with metadata
attribute annotations.

1) Namespace Management: MOSIQS provides a names-
pace abstraction atop its data model to enable easier storage
for applications using a shared PM pool. A namespace in our
design is the same as memory address space for a process
except that our namespace is persistent and stays beyond the
application lifetime. Each namespace has its own metadata
KV storage engine to store and locate PMOs inside the
namespace. Applications or scientists using a shared PM pool
can access PMOs in another namespace, provided awareness
of namespace metadata such as name, owner and access
permissions. Such namespace management offers an easier and
simpler storage model per application or scientist.

F. Metadata Extraction and Storage

1) Metadata Extraction: We analyzed that a general design
technique that proved crucial for MOSIQS is simplifying and
minimizing the number of operations in critical I/O path. The
key idea to extract and store PMO metadata and user/applica-
tion annotated tags is to enable sharing and to build indexes for
quick access, efficient retrieval of PMO and to enable future
analysis. The metadata extractor is implemented as a service
by which application or user annotated tags can be extracted
from group or PMO. It creates a single metadata KV object for
each PMO or group and inserts it in pool KV store. MOSIQS
defines its own layout of metadata object for PMO and group.

Figure 5 shows an overview of extracted and stored meta-
data KV object of both types, PMO metadata and group
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Fig. 5: The self-described metadata KV objects in pool KV store.

metadata object in pool KV store. The OID denotes the PMO
object, whereas GID refers to the group metadata object. The
value in <OID|GID,Value> pair as shown in Figure 5 itself
represents an additional self-described entity, i.e., motivated
by scientific data formats [37], [38]. We further partition
the value part into header part and data part, as shown in
Figure 5. For each OID, the header contains the metadata
information such as PMEMoid, whereas the data part contains
associated attributes and annotated values provided by the user
or application to a particular PMO. Note that, each OID points
to a single PMO stored in MOSIQS. For each GID, the header
contains the metadata of group such as annotated attributes
and sharing scope of the group as shown in Figure 5. Whereas,
the data part contains the list of PMOs sharing the same set
of attributes, along with their unique values which can be a
single-valued string or an integer or a complex composite data
structure such as a tree or a mesh. The motivation behind
storing OID and GID as <k,v> metadata objects in pool KV
store provides multiple benefits, i) easier access to PMO, ii)
flexible and extensible tagging, iii) efficient metadata search
queries.

To ensure the consistency of metadata extraction, we
encapsulate each operation as a transaction backed by a
logging approach. To minimize the performance degrada-
tion, we perform metadata extraction in the background
and <OID|GID,Value> pair populates synchronously in
pool KV store. Both metadata extraction operation and
<OID|GID,Value> pair population is executed in parallel. For
data object consistency, we rely on libpmemobj provided
consistency semantics. All the PMOs annotated with bypass
index hint are excluded by metadata extractor from extraction
operations. For such objects, only object mapping, i.e., object
name to PMEMoid is stored.

2) Object Sharing Controls: We design MOSIQS aiming to
make it as simple as possible for scientists and applications to
enable fast memory-level object sharing. PMDK [19] provides
persistent pointers, i.e., PMEMoid and handles an internal
virtual address mapping indirection to the memory base ad-
dress to tolerate application crashes and ungraceful shutdowns.
Therefore, sharing a PMO beyond the application bounds to
other applications or scientists requires storing the persistent
pointer of PMO. Whereas, other applications or scientists are
unaware of such memory pointer addresses and instead use
object naming semantics to share objects. For this reason,
we keep object mapping information in the pool KV store



as explained earlier (Subsection III-F). We provide sharing
controls at two levels, i.e., object and group level. For object-
level sharing, an application or scientist requests an object. The
sharing manager receives the request and checks the requested
object mapping in the pool KV store. If the object entry
is found, the sharing manager checks the object scope and
properties. If the object is shareable, then the sharing manager
returns the PMEMoid to requesting application or scientist.

To further ease the sharing controls and bring similarity
closer to POSIX like permissions controls, a group can be
marked as a shared group that minimizes the data sharing
overhead, i.e., sharing a directory in file system compared to
sharing an individual file. An application or a collaborator
initiates a sharing request for a group. In such a case, the
sharing manager validates the group scope and properties from
the pool KV store. If the group is annotated with a global and
shared scope then, returns the list of OIDs enclosed in the
group data part to the requesting application or collaborator.
Note that, the group-level abstraction provides file system like
semantics, e.g., ls -l on a shared group works similar to
ls -l on a shared file system directory.

G. Metadata Search and Query
With the availability of large memory capacities, in- mem-

ory index structures have become an inevitable need. However,
in-memory volatile structures or DRAM-resident indexes have
an inherent limitation, i.e., they cannot survive power failures
and unexpected crashes [39]. A simple power-failure makes
the index unreachable and requires rebuilding or recovering
the whole index. For instance, MIQS [24] is a state-of-
the-art research, offering an effective in-memory metadata
indexing and querying for scientific data formats such as
HDF5 [37] and netCDF [38]. It extracts metadata in the
form of <key,value> pair from scientific data formats and
uses multiple tree hierarchies such as a Self-balancing Search
Tree (SBST) and Adaptive Radix Tree (ART) to maintain
file, location, path, and attributes inside scientific data file for
fast object retrieval. However, a single update to a scientific
object makes the whole MIQS index go stale/inconsistent
and requires reconstruction of the index, which incurs high
recovery overhead.

Therefore, we intend to employ a persistent index data
structure for metadata search and querying. In current scope
of the work, we provide search and query via a fully persistent
B+-Tree, storage backend of PMEMKV [40]. However, it
is not limited to B+-trees only and other persistent indexes
can be integrated atop MOSIQS to further accelerate the
query performance, e.g., NV-Tree [41], LSM-Trees [33] FP-
Tree [39], and CCEH [42].

IV. PRELIMINARY EVALUATION

This section presents MOSIQS performance evaluation.

A. Experimental Setup
Testbed: We perform our experiments on a machine

equipped with Intel Xeon scalable dual-socket 56-core pro-
cessor (hyper-threading enabled) with 1.5 TB Intel Optane
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Fig. 6: MOSIQS bandwidth analysis via varying PMO size with 4
processes.

DC 3D-XPoint PM, and 768 GB DRAM. PM is configured
in 100% App direct mode, so that application has direct byte-
addressable access to the PM. We used PMDK 1.7 and Linux
Kernel version 5.4.30 (Ubuntu 18.04.2). Note that our target
architecture is a distributed shared PM pool. However, for
evaluation, we consider a single PM device as a shared PM
pool where it is shared multiple processes on the Intel Xeon
scalable server. The peak write and read throughput of 28 cores
measured via Intel’s MLC tool [43] is 6.6 GB/s and 23 GB/s
respectively.

Benchmark and Workloads: We use two PIOK [23]
benchmark provided kernels, i.e., VPIC-IO and BDCATS-
IO to show the read and write performance. VPIC-IO is
an extracted kernel that simulates the particle data write
behavior by the real VPIC scientific application [23]. Similarly,
BDCATS-IO demonstrates the data read patterns of a parallel
program that analyze the particle data generated by VPIC [23].
We modified the two kernels using MOSIQS object storage
abstraction API.

We compare our approach with the following systems:

• MIQS+: We implement and emulate MIQS [24] on top
of ext4-DAX file system mounted PM and refer to it
as MIQS+. MIQS [24] implements various DRAM-based
indexes such as ART and SBST trees to maintain HDF5
file indexes for querying on scientific datasets, stored in
parallel file systems. The metadata indexing is conducted
after the data is written successfully.

• MOSIQS-NoIndex: MOSIQS with no metadata indexing
and search service, but includes the software implementa-
tion overhead of MOSIQS on top of PMDK [19].

• MOSIQS-Sync: MOSIQS with metadata extraction enabled
in inline synchronous mode, i.e., metadata populates in pool
KV store and write operation finishes.

• MOSIQS-Async: MOSIQS with metadata extraction enabled
in inline asynchronous mode, i.e., metadata populates in
pool KV store after the write I/O. We use separate ded-
icated threads executing concurrently, one for processing
application I/O and another for metadata extraction.

B. Bandwidth Analysis

Figure 6 (a) & (b) show the peak bandwidth of read and
write operations with varied PMO sizes on 4 processes. The
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Fig. 7: MOSIQS performance analysis by varying number of processes using 256B and 512KB PMO size.
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Fig. 8: Analysis of serialization and deserialization overhead.

reason to use 4 processes is to enable a realistic, moderate
contention among processes. The peak write bandwidth of
MOSIQS-NoIndex is 63% of 6.6 GB/s due to PMDK’s internal
transaction management, atomic memory allocations, pointer
assignments and MOSIQS’s object to persistent pointer map-
pings. Its peak read bandwidth is 40% of 23GB/s with 512KB
PMO size. It is mainly due to iMC’s cache misses, accessing
object’s persistent pointer and PMDK’s internal persistent
pointer to memory address translation.

Figure 6 (a) presents the write bandwidth with varying
number of processes. All MOSIQS variants outperform MIQS+
in varied PMO sizes. With small PMO size (i.e., ≤ 4KB),
MOSIQS shows significant performance gain compared to
MIQS+. For instance, with 512B PMO, MOSIQS-NoIndex
achieves 100% higher bandwidth than MIQS+ respectively.
Further, with varied PMO sizes, there is slight performance
degradation in MOSIQS-Sync and Async till performance
gets saturated at 512KB PMO. It is because all MOSIQS
variants internally rely on PMDK provided libpmemobj for
memory object allocation [19]. For large memory allocations
(such as ≥1 MB), we observed a high thread contention
inside the global heap of libpmem (PMDK’s memory space
management library). We believe that such overhead can be
amortized by adopting pre-memory allocation techniques.

Figure 6 (b) presents the read bandwidth with varying
number of processes. As expected, we observe a scalable read
performance trend in all MOSIQS variants. The difference
in read and write throughput of MOSIQS and its variants is
mainly derived from PM device characteristics, i.e., the read
and write performance of PM is highly asymmetric. Hence,
shows a big throughput difference.

C. Throughput Analysis

Figure 7 (a) & (b) show the peak throughput of read
and write operations with varied number of processes us-
ing a fixed PMO (i.e., 256 Bytes). As, observed from the
Figure 7 (a) and (c), MIQS+ performs poorly compared to
the proposed MOSIQS variants. MIQS+ access data in the
block size granularity exposed to the OS, which is typically
4KB. Further, MIQS+ always needs to go through the I/O
stack to fetch data, adding extra system call overheads. We
observed that in MIQS+, the IO stack overhead has a much
higher impact than the write amplification due to block size
mismatch, i.e., MIQS+ wastes I/O bandwidth if the required
I/O size is smaller than the block size. If the block size
is bigger, MIQS+achieve better bandwidth, but I/O stack
overhead remains the same. On the other hand, this overhead
can be easily amortized in MOSIQS variants as there is no
file system or kernel involved. However, throughput difference
in MOSIQS variants is mainly attributed to the additional
metadata extraction and management in the critical I/O path.
MOSIQS-NoIndex shows a consistent performance trend with
varied processes. It reaches the peak write bandwidth including
our software implementation overhead. It incurs a single
metadata insertion operation per I/O to populate a mapping
entry in pool key-value store compared to MOSIQS-Sync and
Async approach. Therefore, with varying processes we can
see performance drop in MOSIQS-Sync and Async. For read
throughput, we observe a scalable performance trend as shown
in Figure 7 (b) and (d).

D. Serialization and Deserialization (S/D) Overhead Analysis

We perform a small set of experiments with several sci-
entific utilities provided by middleware I/O libraries such as
HDF5 [37] and netCDF [38] to validate the S/D time of
MIQS+, as shown in Figure 8. We observe that, on average, the
application’s 70% of the execution time is spent on file system
level cumulative serialization and deserialization operations.
Few other studies have made such observations as well [4], [8].
Even with PM-aware file systems such as ext4-DAX and XFS-
DAX, the serialization and deserialization overhead cannot be
omitted, which drives the need for an object storage abstraction
atop PM devices.

E. Metadata Search Query Performance

To analyze the query performance using realistic scientific
HDF5 datasets, we download NASA’s GLAS/ICESat L2 Sea



# Query MIQS+ MOSIQS
kQPS EE kQPS EE

Q1 Locate PMO with name
containing ‘9610/Inf’.

28184 1.25 25478 0.10

Q2 Find PMOs under group
‘GLAH_634_2121’.

37766 8.25 30590 0.19

Q3 Count attributes
annotated to group
‘GLAH_634_2121’.

37756 12.25 29827 1.1

TABLE I: MOSIQS multi-attribute query throughput. EE shows an
end-to-end query and data retrieval time in seconds.

Ice Altimetry real HDF5 dataset [44] and populated PMO
metadata mappings in pool KV store. The dataset contains
4137 HDF5 files (Total size 101GB, Avg. File size 25MB,
Avg. objects/File 2167, and Avg. attributes/Object 37). we
define three realistic PMO metadata based queries, as shown
in Table I. For this experiment, we compare MIQS+ with
MOSIQS. Table I shows the average query throughput and
end-to-end time (query time + time to read the data object).
In real scientific usecases, such queries are used to find and
retrieve the data items. Therefore, we measure end-to-end
time because MIQS+ caches the indexes in DRAM, whereas
data object retrieval requires accessing disk storage system.
We read varied number of PMOs against each query for
MIQS+ and MOSIQS. On average, MOSIQS shows 27% query
throughput degradation compared to MIQS+. However, for
end-to-end time, MOSIQS outperforms the MIQS+ due to
dataset storage location, i.e., PM pool vs parallel file system.

V. CONCLUSION

In this paper, we present MOSIQS, a persistent memory
object management system to accelerate scientific computing.
MOSIQS provides application to efficiently attach and detach
memory objects into their address space and enables effective
sharing of persistent memory resident objects across different
applications and collaborators. The proposed PM-based appli-
cation model not only allows effective metadata extraction and
tagging of memory objects but is also equipped with indexing
and querying service to further accelerate scientific experi-
ments, simulations and analysis. The preliminary evaluation
confirms a 100% improvement for write and 30% in read
performance against a PM-aware file system approach.
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