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INTRODUCTION

“Begin at the beginning,” the King said, gravely, “and go on till you come to an end;

then stop.”

— Lewis Carroll, Alice in Wonderland

The EOSPAC utility package is a collection of interface routines, which can be used to access the
SESAME data library and perform various data adjustments and interpolations on the SESAME
data. The SESAME data library[l] contains both thermodynamic (e.g., equation of state) and
transport coefficients (e.g., opacity and conductivity). Note, for simplicity, the term EOS (equa-
tion of state) used herein includes both thermodynamic variables and transport coefficients. The
EOSPAC utility package is designed to be used by physics codes (henceforth "host codes”) written
in multiple languages and on multiple platforms. The remainder of this manual is organized into
several sections. Chapter 2 discusses conventions such as data organization and routine names.
Chapter 3 provides a general overview of basic theory and models implemented within EOSPAC.
Chapter 4 provides a general overview of how to use the EOSPAC interface library. Chapters 5 to 7
describe the public interfaces of EOSPAC in detail. Chapter 8 provides a brief introduction to some
related tools, which may be of use to the user. Chapter 9 provides details related to some selected
numerical features of EOSPAC. Chapter 10 gives examples for using the interface routines described
in chapters 5 to 7. Chapter 11 provides technical support contact information. Chapter 12 contains
a brief set of acknowledgments. Chapter 13 contains a list of referenced documents. Finally, chap-
ter 14 lists the “table types: mnemonic conventions”, “table types: grouped by category, sorted by
name”, “table types: eospac version 5 cross reference”, “options: setup phase”, “data information
parameters”, “meta-data information parameters”, “options: interpolation phase”, and the “error

codes”.
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CONVENTIONS

I'm a sworn enemy of convention. I despise the conventional in anything, even the arts.

— Hedy Lamarr

In spite of the opening quotation, several conventions are used throughout this document, and they
are described in this chapter. These conventions are categorized as “data organization”, “routine

names”, “constant identifier names”, and “data types”.

1 DATA ORGANIZATION

Conceptually EOSPAC is organized around data tables. A data table is specified by the material
identification number, by the table type (e.g. pressure as a function of density and temperature),
and the processing options (e.g. smoothed, monotonic, etc.). Two data tables differ if any option
differs; thus, a smoothed data table is different than a monotonic data table. This is just common
sense because the values returned for the two data tables will be different. The i-th data table will

be referred to as T;.

A table handle is used to access the data table. The table handle is a language independent mecha-
nism for a host code to access a specific instance of the data tables being managed by EOSPAC. Note
that table handles are not implemented using native language pointers. The details of establishing

a table handle is discussed in chapter 5 and usage is shown in chapters 6 and 7.

Multiple table handles are returned from the setup routine within a user-supplied array. The host
code then uses the table handles to specify on which data tables EOSPAC is to operate. Typical
operations are interpolating to get data at points desired by the host code, and to destroy the data
tables.
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2 ROUTINE NAMES

Routine name standardization is applied according to the following rules:

1. EOSPAC is a package of routines that provides a cohesive set of logically related functionality
to host codes. The package name “eos” (or the internal variant “_eos_”) is used as a prefix
for all routine names in the package. This practically guarantees unique routine names when
linked to the host codes. The prefix of a routine name allows users to instantly identify the

physical package from which it came, and the prefix gives users a hint about functionality.

2. A routine name takes the form of ActionSubset where Action specifies a given operation
and the optional Subset specifies a property, information, etc. The complete name will be

eos_ActionSubset (or the internal variant _eos_ActionSubset).

3. The names of certain actions on tables have been standardized. The standardized action
names are as follows:
e “Create” will instantiate data object(s) to store a table or collection of tables
e “Destroy” will destroy a table or collection of tables
e “Get” retrieves information about a table
e “Interpolate” performs interpolation using the table’s member data
e “Load” will create a new table and fill the table’s members with appropriate information
e “Reset” reasserts any default information to a table (i.e., option setting)

e “Set” assigns information to a table (i.e., option setting)

To summarize, routine names are generally defined by eos_ActionSubset.

3 CONSTANT IDENTIFIER NAMES

Names of constant identifiers available to host codes are standardized by applying the following

rules:

1. All identifiers begin with the following four characters: “EOS_".
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2. Either the underscore is used to separate words or camel case' is used if the name is comprised

of multiple words.

4 DATA TYPES

Throughout this document language data types will be referred to generically. The actual definition
is machine-, language-, and compiler-specific. The data types used by EOSPAC are:

e EOSINTEGER a 32-bit signed integer data type
e EOS_REAL a 64-bit signed floating point data type
e EOS_CHAR an 8-bit character type.

Some parameters of data type EOS_INTEGER that are related to the data types are:

e EOS_TRUE a constant specifying a Boolean true
e EOS_FALSE a constant specifying a Boolean false
e KOS MaxFErrMsglen a constant specifying the maximum character string length as-

sociated with an EOSPAC error message

LCamel case is the practice of writing compound words or phrases such that each word or abbreviation in the middle
of the phrase begins with a capital letter, with no intervening spaces or punctuation. Common examples include
”iPhone”, "eBay”, "FedEx”, "DreamWorks”, and ”HarperCollins”. It is also sometimes used in online usernames

such as ”JohnSmith”, and to make multi-word domain names more legible, for example in advertisements.
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BASIC THEORY AND MODELS

In theory there is no difference between theory and practice. In practice there is.

— Yogi Berra

SESAME typically contains EOS and Vaporization data, Melt Shear Modulus data, Opacity data
and Conductivity data[l]. Where EOS data is missing from SESAME, EOSPAC will often attempt

to calculate it. In some cases, the host code can determine the models used to calculate EOS data.

1 Nomenclature

Qeyp  Thermal expansion alpha

a Intrinsic Helmholtz free energy

Cevk Electron-volt to Kelvin conversion factor (11604.5221 K/eV)
c Adiabatic (isentropic) sound speed

Cp Constant-pressure specific heat

cr Isothermal sound speed

Cy Constant-volume specific heat

Electron degeneracy parameter
Fermi integral
Gruneisen coefficient

Ui

F

r

h Intrinsic enthalpy
h Reduced Planck constant
K

K

s Isentropic compressibility
T Isothermal compressibility
k Boltzman constant
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K Ratio of specific heats
M Average atomic mass
m Mass

P Total pressure

i Ion pressure

Pe Cold curve pressure (at T' = 0)
Ion number density
Density

N;

p

S Intrinsic Entropy

R Universal Gas Constant (8.3144598e-03 kJ/K/mol)
T

Temperature
T; Ion temperature (eV)
Tp Debye temperature (eV)
T Lindemann melting temperature (eV)
u Intrinsic Total internal energy
u; Intrinsic Ion internal energy
v Intrinsic volume (v = %)

Free electrons per ion

It is important to note that the intrinsic variables used in this section are lowercase, but are typically
uppercase throughout the remainder of this document (specifically in the appendices). The upper
case variants are a nomenclature artifact used to improve the readability of the mnemonics in which
they are used. If questions arise regarding the units of a given quantity, then one should assume
they are consistent with the documented SESAME data units[1].

2 Entropy

Entropy is an example of data, not stored within SESAME, which is simple to calculate using

equation (3.1) if both the internal energy and Helmholtz free energy data are available.

a=u—1Ts (3.1)

If only the internal energy data is available, as is the case with older EOS data, then equations (3.2)

and (3.3) are used to calculate entropy and equation equation (3.1) is subsequently used to calculate
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the Helmholtz free energy data.

T 1 du U U
= ——dT = = —dT 3.2
5 / TdT T ) T2 (3:2)
U
S’T:O - u‘T:O T T—0 =0 (3.3)

This integral form avoids the numerical sensitivities of other differential forms, which are discussed

further in chapter 9 section 5.

3 Ion EOS Models

Other models are available to calculate EOS data corresponding to SESAME subtables[1]. These
analytical models include the Ideal Gas Model, the Cowan Model and the Number Proportional
Model. These models are used to create two-temperature! EOS data by subtracting the analytically-
calculated data from SESAME’s tabulated total EOS data. Due to cautionary guidance[2], experi-
mentation with different ion EOS models is recommended if problems occur with two-temperature

calculations.

3.1 Ideal Gas Model

The ideal gas law is a simple set of relationships describing the properties of a perfect monatomic

gas.

pi(p,T) = A (3.4)
3RT
RT 3 M
a;(p, T) = i (—7.7072343 + §ln(MT) +In (p)) (3.6)

I Two-temperature EOS data allows a host code to perform calculations with temperature fields associated with

ions and electrons separately.
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Equation (3.6) was taken directly from the OpenSesame software[3], which is used to generate
SESAME EOS data. Equation (3.1) supplements equations (3.4) and (3.6) to calculate the entropy
data. Curiosity drives the author to determine the origin of equation (3.6). The entropy differential
(T'dS equation) is defined as equation (3.7).

du p
ds = —+ =d .
T + T (3.7)
Equation (3.7) may be rewritten as equation (3.8)
dudl'" R dv
ds =4, TV .
STarT M (3:8)
Given % = 3B from equation (3.5), equation (3.8) yields equation (3.9).

T,
/ds [ 3Rd R dv 39)

2M T M v
Integrating by substitution (f = MT,df = dT and g = Mwv,dg = dv) equation (3.9) results in

equation (3.10).

3R R
—In(MT)+ —In(M 1
s = 2Mln( )+ Mln( v) + s (3.10)

The Helmholtz free energy is determined by combining equations equations (3.1) and (3.10) to yield

equation (3.11), where v = %.

3RT RT 3 M

Equation (2.11) can be rewritten as equation (2.12).

o= —}j\f ((so - ;) + ;ln(MT) “in (f)) (3.12)

The general form of equations (3.6) and (3.12) are identical. The value of (so — %) is the result of

applying the ideal gas limit for a monatomic gas, and it is beyond the scope of this document.
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3.2 Cowan Model

This section describes the simple analytical model developed by R. D. Cowan and documented for
the IONEOS Fast, Analytic, Ion Equation-of-State Routine[4]. A normalized local mass density

and a dimensionless constant are defined by equations (3.13) and (3.14) respectively.

920‘3p
= 3.13
= (3.13)
B=06Z3 (3.14)
It is convenient to define the specific heat relationship:
Ju ds
v = o= =1 3.15
“=orl,” "arl, (3.15)

The Debye temperature and the Lindemann melting temperature are defined by equations (3.16)

and (3.17) respectively.

o (1.68)e*”
o= (Z +22)(1 + €)? (3.16)
Ty = M (3.17)

1+8)*

The ion temperature variables (¢ and ¢g) and Gruneisen parameters (yr and 7g) are described
in equations (3.18) to (3.23) for the fluid (F) and solid (S) phases.

w—(ﬂ) (3.18)
b5 = 72 (319
Yr=30—-1+ 6 (3.20)

(1+¢)
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2
Vs =0+ 1+9 (3.21)
ey e 6 (3.22)
/ 2
Vs =0+ Atep (3.23)
Use equations equations (3.24) to (3.26) for the fluid region (T; > Ty).
RTp
P = 3.24
Pi =31 — (L+7ror) (3.24)
3RT
Ui = a7 i (1 +¢r) (3.25)
R 3 0.027;
si=—|7T—3¢p+ =ln (l) - ln(f)] (3.26)
|7 s

Equation (3.26) was taken directly from the OpenSesame software[3], and it can be shown to satisfy
the specific heat relation of equation (3.15). Equation (3.1) supplements equations (3.24) to (3.26)

to calculate the Helmholtz free energy data.

Use equations (3.27) to (3.29) for the high-temperature solid region (7; < Ty, and 37; > Tp).

—— (3.27)
31 o5 _ %

.= 14 22 3.28

Vi ( 20 7 1680 (3.28)

Si =

[4 +3 <¢S (410 222()) — ln(¢5)>] (3.29)

i\:u
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Equation (3.29) was taken directly from the OpenSesame software[3], and it can be shown to satisfy
the specific heat relation of equation (3.15). Equation (3.1) supplements equations (3.27) to (3.29)

to calculate the Helmholtz free energy data.

Use equations (3.30) to (3.32) for the low-temperature solid region (7; < Ty, and 37; < Tp).

pi = posu (330
_3RT (3 7 9 18 18\ 4.
_ R m 9 9 18 18 4.
w Bl (20210 15 )] .

Equation (3.32) was analytically derived using equations equations (3.2) and (3.3). Equation (3.1)
supplements equations (3.30) to (3.32) to calculate the Helmholtz free energy data.

It is important to note that the Cowan Model may introduce unwanted pathologies due the fact that
its functions are discontinuous at ¢g = 3. Figure 3.1 demonstrates the aforementioned discontinuity
between equation (3.29) and equation (3.32), and it is quantified to be approximately a three percent

deviation.
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e 9 (46%4745 (8+8¢+4¢>2+¢3 ) )
fnew = 5¢3 5

¢=>3

Frew =443 (6* (%5 — 5555) — In(0)), ¢ <3

1.40
1.35.
130
1.25 i
1.20 -
115

ent

C
2.90 2.95 3.00 3.05 3.10

k//_

e

kA

1 2 3 4 5 6

k______‘__\__———_

Figure 3.1: Dimensionless parameters from the high-temperature solid en-

tropy expression and the new low-temperature solid entropy expression.

3.3 Number Proportional Model

Since a subtraction of the analytical model values from the tabulated total EOS data is performed
to calculate an electron EOS, pathologies will typically exist within the resultant data at low
temperatures and high densities due to the fact that the chosen ion EOS was not used to calculate
the original EOS data. The number proportional model, in principle, albeit not always, mitigates

such pathological data in that it uses simple ratio equations to model the ion EOS[2].

pi(p,T) = GED (3.33)




3. ION EOS MODELS 15

w(p, 1) = 427 (3.34)
w(p. 1) = 427 (3.35)

Equations (3.1) and (3.3) are used to calculate the entropy and, subsequently, the Helmholtz free
energy in the event that no Helmholtz free energy data is tabulated; otherwise, equation (3.1)

supplements equations (3.33) to (3.35) to calculate the entropy data.

The number of free electrons per ion is estimated by assuming the thermal electron EOS is deter-

mined using the Fermi-gas model.

2 (mkT*?

m
H=—|— 3.37
! NZ <2Wﬁ2> ( )
YAV
2?7y (3.39)

p(p, T) — pc(p)

Zy = .
0 NAT (3.39)
The Fermi integrals satisfy equation (3.40) to at least one-percent accuracy.
10/3\ 5
Fyj = Fijo (14 (0.88388) Fyjo + (0.37208) 7, + (0.02645) F))°)° (3.40)

Upon substituting equations (3.36) and (3.38) into equation (3.40), equation (3.41) is produced.

Z+1=2 (1 + (0.88388) (ZZ) + (0.37208) (ZZ>2 + (0.02645) (Z>10/3>5 (3.41)

1 1 1

Equation (3.41) can be solved iteratively, and it is constrained by equations (3.42) and (3.43).
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Z >0 (3.42)

Zo>1 (3.43)

4 Additional Thermodynamic Quantities

Often users of EOSPAC are interested in calculating quantities, which are not directly provided
by the EOSPAC interface. Distributed with EOSPAC is a utility named get_sesame_data (see
chapter 8), which provides a command line interface to various EOSPAC capabilities like querying
the content of SESAME data file(s). Additionally, get_sesame_data can calculate various derived

thermodynamic values, which are described in this section.

Given density (p) and temperature (T'), calculate the following: pressure (p), specific internal energy
(u), specific Helmholtz free energy (a), specific entropy (s), sound speed (c), adiabatic bulk modulus
(8), Gruneisen Coefficient (T'), isothermal bulk modulus (87 = pc3), and specific heats (¢, and ¢,).
The pressure, specific internal energy, specific Helmholtz free energy, and specific entropy are simply
calculated by interpolating the respective SESAME data at the given density and temperature. The

other quantities require more effort as described in the following sections.

4.1 Identities

oy| 0z| Ox

Al il i) RSN | 44

0zl 0x 1y 0y |, .
Jy| Ox
) i e | 4
0zl 0yl. (349

1
g = —p2g where v = — and Jv = —@ (3.46)

ov dp p p?
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4.2 Sound speed

The adiabatic (isentropic) sound speed is defined by equation (3.47).

dp op
2 2
— 2 E = £ 3.47
¢ ! Ovls  Jpls ( )
Using equation (3.44), equation (3.47) can be rewritten as equation (3.48).
_0s
2 3.48)
¢ = .
o (
Op
P

Equation (3.48) is a simple means to validate the adiabatic sound speed calculation.

Other variations, which accommodate the interpolation features of EOSPAC, may be derived, and
they are listed in equations (3.49) to (3.51).

OP T (0P|’
2 —_— P PR
¢ = olr T o <8T p) (3.49)
P~ ar
p
oP P OP
2 —_— [ —
¢ =55t 7ou, (3.50)
oP oP oT P OoT
2 _ 7 o = -
¢ - Op T+8Tp<8p U+p28Up> (3:51)

It is useful for the reader to note that equation (3.49) may be calculated using the interpolated
values associated with the following non-inverted data table types, which are described in AP-
PENDIX B: EOS_Pt_DT and EOS_Ut_DT. The advantage of using non-inverted data table types
is that the numerical errors are minimized — especially for the partial derivative values. Therefore,
equation (3.49) is the recommended method to calculate the adiabatic sound speed using SESAME
data.

Similarly, equation (3.50) can be evaluated using the interpolated values associated with the EOS_Pt_DUt

inverted data table type. Equation (3.51) can be evaluated using the interpolated values associated
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with the inverted data table type, EOS_T_DUt, and the non-inverted data table type, EOS_Pt_DT.
Finally, equations (3.47) and (3.48) can be evaluated using the interpolated partial derivatives
associated with the inverted data table types, EOS_Pt_DSt and EOS_St_DPt, respectively. An as-
sessment [5] has been performed to compare the numerical sensitivities of these various adiabatic
sound speed calculation methods, equations (3.47) to (3.51), and it has been determined that equa-
tion (3.49) produces interpolated results using SESAME data with the minimal numerical noise.
This is concluded to be the result of no required tabular inversions/transforms. As a result of the
assessment, all table types that are dependent upon the isentropic sound speed (i.e., EOS_BSt_DT,
EOS_BSt_DUt, etc.) use data that is calculated using equation (3.49).

4.3 Isentropic Compressibility

The adiabatic bulk modulus is defined by equation (3.52).

B = pc? (3.52)

The isentropic compressibility is subsequently defined by equation (3.53).

1 dp - 10v
Ky=-=|p=— = ——— 3.53
B <pap s) v 6]? s ( )
4.4 Isothermal Compressibility
The isothermal bulk modulus is defined by equation (3.54).
Br = pci (3.54)
This isothermal compressibility is defined by equation (3.55).
1 Op - 10v
Kp— — — [ ,2£ - 3.55
’ &ﬂ<%m> vOplr (3:55)
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The %‘T partial derivative is a calculated side effect of interpolating the tabulated data for p =
p(p,T).

It may be of interest to the user to empirically verify the constraint of equation (3.56), which

compares isothermal and adiabatic entropy.

& < 2 (3.56)

4.5 Gruneisen Coefficient

The Gruneisen Coefficient is defined by equation (3.57).

_10p

r=-2¢
pOul,

(3.57)

The %‘ partial derivative is a calculated side effect of interpolating the tabulated data for p =
p

p(p,u).

Alternatively,

9p
107 1
r=-—"~= L op (3.58)
P ou cop OT' |y
orT
p
4.6 Specific heats
The constant volume specific heat is defined by equation (3.59).
ou ou
= | = 3.59
“=9rl,” oTl, (3:59)

The g—;‘ partial derivative is a calculated side effect of interpolating the tabulated data for u =
P

u(p,T).
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The constant pressure specific heat is defined by equation (3.60).

0s

oh
= TaiT

= — 3.60
, T (3.60)

Cp

p

Unfortunately, at this point, we find that the constant pressure specific heat cannot be calculated

using EOSPAC 6’s interpolation results. This is due to the fact that the g—;
p

EOSPAC 6 does not calculate s = s(p,T). In an attempt to derive an alternative equation, the

is not available since

following derivation is performed. The specific enthalpy is defined by equation (3.61).

h =u+pv (3.61)

Using equations (3.60) and (3.61), the constant pressure specific heat is derived in equation (3.62).

ou dp ov ou ov
= & ] = = — 3.62
“=ar|, "arl, TPar|, = ar|, TP, (3:62)
Given equation (3.44), the g—; partial derivative is alternatively defined by equation (3.63).
p
5 op
v or
—| =—— 3.63
i (3.63)
ov T
Using equations (3.46) and (3.63), equation (3.62) can be rewritten as equation (3.64).
9p
ou p |,
= — — 3.64
Cp aT » + pQ ap ( )
dp T

Unfortunately, the g—;ﬁ partial derivative is generally-unavailable using EOSPAC 6’s interpolation
P
methods on the SESAME data; therefore, an alternative form is required. Consider the ratio of

specific heats as defined in equation (3.65).

e (3.65)
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equation (3.65) can be rewritten as equation (3.66).

Os
Tor

K =

— P (3.66)
T5r

Using equation (3.44), both &% and are derived.

Os
or

It follows that equation (3.66) can be rewritten as equation (3.67).

or), o ov| 0 or| o
Os ov v S D
= 1 =\ 3 | 77 3.67
) dp| or (88 T(%T) (@v sOT s) (3.67)
asTaps

Using the Chain Rule, equations (3.68) and (3.69) are derived.

ov ov| Os
—| == =— 3.68
Oplr  Oslrdplr (3.68)
dp| _ Op|oT
dvls 9Tl dvls (3.69)
Applying equations (3.68) and (3.69) to equation (3.67) yields equation (3.70).
ov| Op
R = 871) T% . (370)

From equations (3.45), (3.52) to (3.55) and (3.65), equation (3.70) can be rewritten as equa-
tion (3.71).

Cp= —Cy = —5Cy (3.71)
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4.7 Thermal expansion alpha

The thermal expansion alpha is another derived quantity of interest, which is defined in equa-
tion (3.72).

_ 1%
Aexp = BT oT

i P
p— —_— . 2
,  laTl, (872)




GENERAL INTERFACE
DESCRIPTION

In many cases, the user interface to a program is the most important part for a

commercial company: whether the programs works correctly or not seems to be secondary.

— Linus Torvalds

This section describes, in general, the EOSPAC interface library and how a host code will use it.
Figure 4.1 shows how the EOSPAC public interface will interact with host codes written in various

languages.

Five host code languages are specifically targeted by the public interface of EOSPAC: C++, C, FOR-
TRAN 77, Fortran 90, and Fortran 2003. As shown in Figure 4.1, EOSPAC provides a flat! public
interface with unmangled? procedure definitions. The Fortran 2003 interface is the sole exception
to the flat interface paradigm; host codes written in Fortran 2003 may leverage a language-specific
interface, which uses the more modern mixed-language features of the Fortran 2003 specification.
The current interface definitions have the distinct advantage of providing the user with consistent
data types and procedure interfaces regardless of the host code’s language and working platform.
To ensure language interoperability and platform portability EOSPAC Version 6 is written using
the POSIX[6, 7] subset of C.

IProcedure arguments are reduced to a set of basic data types common to all applicable programming languages.
2Procedure names are ensured to be visible, unique and sensible across the multiple-programming-language in-

terface. In software compilation, name mangling (sometimes called name decoration) is a technique used to solve
various problems caused by the need to resolve unique names for programming entities in many modern programming

languages.

23
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EOSPAC A Public Interface A Host Code
< » Ct+
L > C
Flat
Internal Routines < » Interface
< » Hortran 77
< » Hortran 90

Figure 4.1: General graphical description of the public user interface of

EOSPAC.

1 USE CASES

The use cases give an overview of typical user interactions with EOSPAC. There are only two such
cases, which may be used in various ways by a host code, a serial host code case and a parallel host

code case.

1.1 Serial Case

The serial case is shown in Figure 4.2. During the host code’s setup phase the data tables are
loaded, and setup options may be set or reset prior to and/or after the data is actually loaded
into memory. During the host code’s calculation phase the data of selected tables is accessed using

either interpolation or mixing, and interpolation/mixing options may be set or reset prior to and/or
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after the data is actually accessed. This is done N times where N is problem dependent, but should
include at least one evaluation per data table so memory consumption is not frivolously wasted.
An optional step is to get information and comments about the loaded data tables, for example,
for debugging/informational purposes. This is done M times where M can vary from zero to the
number of data tables or a multiple thereof. The data tables are destroyed when the host code is

done using them.

EOSPAC Version 6 |

| Load Tables )} - - - - -« v oo .
Host Code

Interpolateor Mixy Check Error
(N times) Codes
Get Table Information ™
(M times)

Get Table Comments
(M times)

Destroy Tables ) - -« -« -« s

Figure 4.2: Serial host code use of EOSPAC.

1.2 Parallel Case

The parallel case is shown in Figure 4.3. The “Load Tables” occurs on a single process (P0) and
is identical to the serial case. The same process, P0, then queries the size of the packed tables and
allocates storage to hold them. The PO process then extracts the packed tables from EOSPAC. The
packed tables are then distributed to all child processes. Each child process then loads its packed

tables into EOSPAC. The data is then accessed on each process just as if it was a serial run. Each
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process then destroys its data tables when it is done using them.

EOSPAC Version 6 |

create Tables ..............................
(One Process) .
Load Tables
(One Process)

Get Packed Tables
(One Process)

Set Packed Tables
(All Child Processes)

Host Code

Check Error
Codes

Interpolate or Mix
(All Child Processes, N times)

Destroy Tables ) - - - .- --. ... ;

Figure 4.3: Parallel host code use of EOSPAC.




SETUP MATERIAL DATA

You can have data without information, but you cannot have information without data.

— Daniel Keys Moran

The setup phase consists of calls to interface routines that establish EOSPAC data tables, which
are associated with unique identifiers called table handles, and loads them with appropriate data.
In addition to this setup routine, there exist routines to destroy data tables, pack their member
data into a portable array, and unpack such an array into data tables. The packed array features

allow parallel host codes to share data between processes if necessary.

1 DATA LOCATIONS

Before any description of how data is loaded, discarded, packed or unpacked within memory, it
is vital to know how EOSPAC is able to find the SESAME data files desired. To do so, three
algorithms are used to build a list of file names: 1) Environment-variable-defined and default search
paths, 2) Index file, and 3) Default file name list. Once all of these algorithms are completed,
the result is an ordered list of absolute-referenced file names that is subsequently edited to remove
all duplicate file references. File attributes and, if necessary, bitwise file comparisons are made to
eliminate any duplication of files. It is important to note here that two files are not considered
duplicates if only part of the contained data is identical. The ordered list of file names is written
to the TablesLoaded.dat file when either the EOS_APPEND _DATA or EOS_DUMP_DATA option
is set (see APPENDIX D).

27
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1.1 Environment-variable-defined and default search paths

Initially, the current working directory is put at the top of an ordered list of search paths. If EOSPAC
detects that the current environment has set the variable named SESAMEPATH, it parses it for
a list of search paths. Within the UNIX and Windows environments, this environment variable is
delimited by colons and semicolons respectively. These path names are appended to the ordered

list of paths. Finally, a default list of search paths is appended to the ordered list of paths:

DESCRIPTION PATH NAME
LANL Production data path /usr /projects/data/eos
LANL X-Div LAN data paths /usr/local/codes/data/eos

Jopt/local/codes/data/eos
LANL Cray unclassified data path /usr/local/udata/ses
LANL Cray classified data path /usr/local /cdata
LLNL Production data path /usr/gapps/lanl-data/eos
SANDIA Production data path /projects/lanl-data/eos

1.2 Ordered File Names List Creation

For each of the search paths found by the algorithm described in chapter 5 section 1.1, the two
remaining algorithms are executed in order. These two remaining algorithms are described in
chapter 5 sections 1.3 and 1.4 respectively, and Figure 5.1 contains a flowchart description of how

they are implemented.

NEW for 6.2.2

As of version 6.2.2, EOSPAC will parse a “sesameFilesDir.txt” found in the current

working directory every time the eos_CreateTables routine is called. This modification allows the

host code to dynamically incorporate changes to the ordered files list.

1.3 Index file

EOSPAC tests for the existence of an index file, a text file named “sesameFilesDir.txt” (Figure 5.2),
within the specified search path found by the algorithm described in chapter 5 section 1.1.
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Step 4.1.1
Create a search path list: PathList

v
Step 4.1.2
Create an ordered file list: FileList

Foreach PathList Steg;;é2'1 Append file names to
entry “sesameFileDir.txt” file FileList —‘

h 4

Step 4.1.2.2
Faoreach default
file name

Append default file
name to PathList entry
to create file name

y

Append file name to
FileList

End Foreach loop

End Foreach loop «

End

Figure 5.1: Flowchart description of file search algorithms.

If the index file is found, it is parsed according to the following rules to find references to SESAME
data files:

e Delimiters include linefeed, carriage return, and semicolon.

e Comments are ignored and begin with #.

e Leading white space is ignored.
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# Distributed Sesame file list

# Unix absolute reference (two file names per line)

/usr/local/codes/data/eos/sesame;/usr/local/codes/data/eos/sescu

# Unix absolute reference (one file name per line)
/usr/local/codes/data/eos/sescul
/usr/local/codes/data/eos/sescu9

/usr/local/codes/data/eos/sesou

# DOS/Windows absolute reference (two file names per line)

I:\data\eos\sesame;I:\data\eos\sescu

# alternative D0S/Windows absolute references
\\xfiles\codes\data\eos\sescul
\\xfiles\codes\data\eos\sescu9

\\xfiles\codes\data\eos\sesou

# relative references with respect to this index file’s location
export-controlled/ieee64/sesame;export-controlled/ieee64/sescu
export-controlled/ieee64/sescul

export-controlled/ieee64/sescu9

export-controlled/ieee64/sesou

# associate material id and Sesame file
MATID 9001 sesame3

MATID 9002 ../../../sesame3

MATID 9003 /usr/local/codes/data/eos/sesame3

Figure 5.2: Example of sesameFilesDir.txt.

Paths that are relative to the opened index file are converted to absolute paths.

Invalid file names are silently ignored. A file name is invalid if it doesn’t exist or it exceeds
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the maximum number of characters (PATH_-MAX) for the current file system. The value of
PATH_MAX is discussed further in chapter 5 section 3.4.

. NEW for 6.2.1

If the the case-sensitive token, END, is found as the first non-whitespace
characters on a line in the index file, then no other files will be added to the ordered file list,

which is defined in chapter 5 section 1.2. This feature is available as of version 6.2.1.

NEW for 6.2.2

° ‘ If the case-sensitive token, MATID, is found as the first non-whitespace

characters on a line in the index file, then the remainder of the line shall contain a material ID
(integer) and the associated SESAME file name. A file association to a material ID supersedes
any previous associations (e.g., associating 9001 to sesame3 and then to sesame2 will retain
the last association). See Figure 5.2 for examples. [t is important to note that once a material
ID is associated with a specific SESAME file, the association will remain until either the code
terminates or another explicit association is provided — there exists no mechanism to reset to

the default data search algorithm. This feature is available as of version 6.2.2.

e The MATID and END tokens constrain the data loaded for all table handles (i.e., it is a global
effect). To set table handle-specific constraints, see the eos_GetMaxDataFileNameLength and

eos_SetDataFileName functions described in chapter 5 sections 3.4 and 3.9 respectively.

Once parsed, the list of file names found in “sesameFilesDir.txt” is appended to the list of SESAME

data file names to be searched.

1.4 Default file name list

For compatibility with earlier versions of EOSPAC and old distributions of SESAME files, a default
list of file names has been preserved. This ordered list of file names is provided in Table 5.2. This
list of file names, if found within the specified search path found by the algorithm described in
section chapter 5 section 1.1, is appended to the ordered list of files that will be searched for any

requested data.

Table 5.2: Ordered list of default SESAME file names.

File Name File Name File Name
1 sesameu 2 sesameul 3 sesameu?2
4 sesameu3 5 sesameud 6 sesamea

Continued on next page
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Table 5.2: Ordered list of default SESAME file names. (Continued from previous page.)

File Name

File Name

File Name

10
13
16
19
22
25
28
31
34
37
40

sesameal
sesamec
sesame?2
sesep
sesep3d
sesoul
sesou4
sesop2
sescu
sescud
sescp

sescp3

11
14

20
23
26
29
32
35
38
41

sesamea?2
sesame
sesame3d
sesepl
sesep4
sesou2
sesop
sesop3
sescul
sescud
sescpl

sescp4d

12
15
18
21
24
27
30
33
36
39

sesameb
sesamel
sesame4
sesep2
sesou
sesoud
sesopl
sesop4
sescu2
sescu9

sescp2

1.5 Ordered File Names List Example

Assume that the current working directory is defined as follows:

~/FILES/eospac6.00branch/Source/tests

Assume that the following SESAME data files exist for the machine being used:

~/FILES/tmp/tests/data/sesamel
~/FILES/tmp/tests/data/sesame3
~/FILES/sesame/081105/sesame_bin_081105

~/FILES/sesame/081105/sesame_bin_081105_sgi
~/FILES/sesame/081105/sesame

~/FILES/code/bll/test/sesame/sesame
~/FILES/code/bll/test/sesame/sescresu
~/FILES/code/bll/test/sesame/sescu
~/FILES/code/bll/test/sesame/sescul
~/FILES/code/bll/test/sesame/sescu9
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“/FILES/code/bll/test/sesame/sesou
~/FILES/eospac6_mainbranch/Source/tests/data/sesamel
~/FILES/eospac6_mainbranch/Source/tests/data/sesame3
~/FILES/eospac6_mainbranch/Source/tests/alt_tests/sesameFilesDir.txt
~/FILES/eospac6_mainbranch/Source/tests/alt_tests/lambda_parallel/sesame3
~/FILES/eospac6_automake_tests/Source/tests/data/sesamel
~/FILES/eospac6_automake_tests/Source/tests/data/sesame3
~/FILES/eospac6.00branch/Source/tests/data/sesamel
~/FILES/eospac6.00branch/Source/tests/data/sesame3
~/FILES/eospac6.00branch/Source/tests/sesameFilesDir.txt
~/FILES/eospac6.10alpha.7/Source/tests/data/sesamel
~/FILES/eospac6.10alpha.7/Source/tests/data/sesame3
~/FILES/eospac6.10alpha.7/Source/tests/sesameFilesDir.txt
~/FILES/eospac6.10alpha.7/Source/tests/alt_tests/sesameFilesDir.txt
~/FILES/eospac6.10alpha.7/Source/tests/alt_tests/lambda_parallel/sesame3

Assume that “sesameFilesDir.txt” in the current working directory that contains the following

information:

# Sesame3 test data file list

./data/sesame3

# Sesamel test data file list

./data/sesamel

Assume the value of the SESAMEPATH environment variable to contain

"/usr/projects/data/eos/export-controlled/ieee64:\${HOME}/FILES
/eospac6.10alpha.7/Source/tests/data: \${HOME}/FILES/code/bll/t

est/sesame"

Given all of the above assumptions, the ordered list of files names would be as follows:

0. ././data/sesame3
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./ ./data/sesamel
/usr/projects/data/eos/export-controlled/ieee64/sesame
/usr/projects/data/eos/export-controlled/ieee64/sesou
/usr/projects/data/eos/export-controlled/ieee64/sescu
/usr/projects/data/eos/export-controlled/ieee64/sescul
/usr/projects/data/eos/export-controlled/ieee64/sescud
/users/myhome/./FILES/eospac6.10alpha.7/Source/tests/data/sesamel
/users/myhome/ . /FILES/eospac6.10alpha.7/Source/tests/data/sesame3
/users/myhome/FILES/code/bll/test/sesame/sesame

10. /users/myhome/FILES/code/bll/test/sesame/sesou

11. /users/myhome/FILES/code/bll/test/sesame/sescu

12. /users/myhome/FILES/code/bll/test/sesame/sescul

13. /users/myhome/FILES/code/bll/test/sesame/sescu9

14. /usr/projects/data/eos/sesame

© 0 N O O b W N -

15. /usr/projects/data/eos/sesou
16. /usr/projects/data/eos/sescu
17. /usr/projects/data/eos/sescul
18. /usr/projects/data/eos/sescu9

2 DATA ORGANIZATION

As briefly described in this chapter’s introduction, the loaded data is referenced by unique table
handles. The arguments of the interface routines are organized into a set of ordered arrays such

that each array element corresponds to a data table.

For example, the table types (see APPENDICES B and C), SESAME material ID numbers, table
options (see APPENDIX A) and error codes (see APPENDIX H) are stored within identically
dimensioned arrays (see Figure 5.3). Each row of Figure 5.3 specifies a data table that is referenced
by the table handle. This conceptual organization is used for all the setup routine arguments that

are arrays.
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Table Handle Table Material ID Table Error Codes
Type Options

tableHandle1 tableType1 matl|Dn tableOptions+ errorCode

tableHandlez tableType:2 matl|D2 tableOptions: errorCodez

tableHandlen tableTypen mat|Dn tableOptionsn errorCoden

Figure 5.3: Input/output data organization.

If the host specifies the loading of identical data for multiple table handles (inadvertently or other-
wise), then EOSPAC will share the identical data between the two table handles (Figure 5.4). In
other words, the two unique handle values will point to the same data object within EOSPAC’s
internal data structures. This practice is not recommended because it unnecessarily complicates

the loaded data’s organization.

Table Handle Table Material ID Table Options
Type
tableHandle1 tableType+ matlD+ tableOptions
< tableHandlez  tableType:z mat|D2 tableOptions:z
tableHandlez tableType:s mat|D+ tableOptions+ tableHTaTcueg.is
equivalent to
tableHandle,,
because the table
types, material
ID’s ?nd table
tableHandlen tableTypen ~ matiDn  tableOptionsn o ivalont

Figure 5.4: Duplicate data organization.
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3 ROUTINES AND PARAMETERS

The routines and their associated parameters for setting up the material data are discussed in this

section.

NEW for 6.3.1

The default EOSPAC behavior is to delay the inversion of tables (i.e., transform
tabulated data to achieve new dependent and independent variables) until the EOSPAC interpo-

lation phase as necessary, according to the requirements of the specified data table type. Since
the release of version 6.3.1, the EOS_INVERT_AT_SETUP option allows the host code to force
EOSPAC to create inverted tables for each specified table handle during the setup phase. The
resulting inverted tables are then used during interpolation, and no iterative search algorithm is
required, which improves interpolation performance. Of course, it must be understood that this will
likely produce different interpolation results than the default behavior, because the inverted table
grid may be of insufficient resolution. The quantification of such numeric differences are beyond
the scope of this manual — see chapter 9 section 7 and APPENDIX D for additional details.

3.1 eos_CreateTables

The eos_CreateTables routine allocates all memory to store the specified data tables. After calling
eos_CreateTables, the host code may need to call eos_SetOption so the desired set up options can

be changed from the documented defaults.

The input arguments are:

nTables This is the scalar EOS_INTEGER total number of data tables
on which to operate.
tableType This is an EOS_INTEGER array containing the list of table

types corresponding to each member data table, T;, where i =
1..nTables. See APPENDICES A and C for table type details.

matID This is an EOS_INTEGER array containing the SESAME mate-
rial identification numbers corresponding to each member data
table, T;, where ¢ = 1...nTables.

The output arguments are:
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tableHandles

errorCode

3.2 eos_DestroyAll

This is an array of EOS_INTEGER handles to particular data
tables. Each handle corresponds to a member data table, Tj,
where ¢ = 1...nTables. The host code is responsible for manag-
ing this array of table handles.

WARNING: If the host code changes any of the tableHandle
values, then the logical effect may be likened to a memory leak
— unpredictable and potentially-catastrophic behavior is to be
expected. This is particularly true if negative values are used in
lieu of the valid tableHandle values.

This is a scalar EOS_INTEGER variable to contain an error
code that may indicate one or more of the tables could not
be created. The host code must call eos_GetErrorCode and
eos_GetErrorMessage to retrieve error details for a specified
tableHandle. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_FErrorCodesEqual routine described

in chapter 7, section 1.1.

The eos_DestroyAll routine releases all memory associated with any remaining data tables and

temporary cached data used by EOSPAC routines internally. It is strongly recommended that this

routine be used when the currently defined set of SESAME data files is no longer used (i.e., just

prior to the end of the host code’s execution).

There are no input arguments.

The output argument is:
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errorCode This is a scalar EOS_INTEGER variable to contain an error
code that may indicate failure to release all memory associ-
ated with temporary cached data. The host code must call
eos_GetErrorMessage to retrieve error details. See APPENDIX
H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

wn chapter 7 section 1.1.

3.3 eos_DestroyTables

The eos_DestroyTables routine releases all memory associated with the specified data tables.

The input arguments are:

nTables This is the scalar EOS_INTEGER total number of data tables
on which to operate.
tableHandles This is an array of EOS_INTEGER handles to particular data

tables. Each handle corresponds to a member data table, T;,
where ¢ = 1...nT'ables. The host code is responsible for manag-

ing this array of table handles.

The output argument is:

errorCode This is a scalar EOS_INTEGER variable to contain an error
code that may indicate one or more of the tables could not
be destroyed. The host code must call eos_GetErrorCode and
eos_GetErrorMessage to retrieve error details for a specified
tableHandle. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

in chapter 7 section 1.1.
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3.4 eos_GetMaxDataFileNameLength

| NEW for 6.2.2

The eos_GetMaxDataFileNameLength routine is used to query the maximum num-

ber of characters (PATH_-MAX) for the current file system. This is a file system-dependent value
with typical values like those shown in Table 5.8.

Table 5.8: Some typical values of PATH MAX.

File System Length (bytes)
Mac OSX (i386 and PPC) 1024

Modern Linux (1686 and x86-64) 4096

Solaris (Sparc) 1024
Windows/Cygwin 260

There are no input arguments.

The output argument is:

max_length This is a scalar EOS_INTEGER to contain the definition of
PATH_MAX.

3.5 eos_GetPackedTables

The eos_GetPackedTables routine fills a character array with the specified data table’s data. The
eos_GetPackedTables routine is used to extract the data tables from EOSPAC to allow multithreaded
codes to share the data. This routine is also useful for preparing data tables to be written to a host

code’s binary restart file.

Before calling this routine the host code must call eos_GetPacked TablesSize to determine packedTa-
blesSize, the total number of bytes required to contain the data associated with the specified data

tables, allowing the host code to allocate adequate storage.

The input arguments are:

nTables This is the scalar EOS_INTEGER total number of data tables

on which to operate.
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tableHandles This is an array of EOS_INTEGER handles to particular data
tables. Each handle corresponds to a member data table, Tj,
where ¢ = 1...nTables. The host code is responsible for manag-

ing this array of table handles.

The output arguments are:

packedTables This is an array of EOS_CHAR that is used to store all of the
member data of specified data tables. This array is designed to
allow the host code to share data between multiple processors.
If dynamic memory allocation for arrays is not possible, then
this routine will prove difficult to use since it is to be allocated
to hold packedTablesSize characters, where packedTablesSize is
returned from the eos_GetPackedTablesSize routine.

errorCode This is a scalar EOS_INTEGER variable to contain an error
code. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

in chapter 7 section 1.1.

3.6 eos_GetPackedTablesSize

The eos_GetPackedTablesSize routine calculates the total number of bytes required to contain the
data associated with the specified data tables. The eos_GetPackedTablesSize routine is used with
the eos_GetPackedTables routine.

The input arguments are:

nTables This is the scalar EOS_INTEGER total number of data tables
on which to operate.
tableHandles This is an array of EOS_INTEGER handles to particular data

tables. Each handle corresponds to a member data table, Tj,
where 1 = 1...nT'ables. The host code is responsible for manag-

ing this array of table handles.
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The output arguments are:

packed TablesSize This is the scalar EOS_INTEGER number of bytes required
to hold a specified list of data tables’” member data -— size of
packedTables.

errorCode This is a scalar EOS_INTEGER variable to contain an error

code. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

wn chapter 7 section 1.1.

3.7 eos_GpuOffloadData

| NEW for 6.5

In relation to porting the EOSPAC interpolation functionality to the GPU!, version

6.5 introduces a new API? function that is used to offload all currently-loaded data onto the first
available GPU device. This new function is only available if the EOSPAC library is compiled with
the requisite DO_OFFLOAD preprocessor macro. The OpenMP? 4.5 framework is used to offload data
and kernels to the GPU device.

There are no input arguments.

The output arguments are:

errorCode This is a scalar EOS_INTEGER variable to contain an error
code. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesFqual routine described

wn chapter 7 section 1.1.

This new API function’s purpose is to finish the setup phase of EOSPAC’s operation by offloading
the loaded data to the available GPU and preventing the loading of additional data before the host
code calls eos_DestroyAll. Figure 5.5 augments figure 4.2 by graphically-describing the usage of
eos_GpuOffloadData in relation to the various phases of EOSPAC operation. Each instance (e.g.,

! Graphics Processing Unit
2 Application Programming Interface
3https:/ /www.openmp.org/
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MPI rank) is responsible for calling eos_GpuOffioadData after the data have been distributed to all

ranks.

*x’ *y’ *F,
*derivatives

eos_GpuOffloadData
Offload Sesame tables to GPU
Disable further changes to tables
Setinternal flag

*x, Y, *F,
*derivatives

Figure 5.5: Usage of eos_GpuOffloadData in relation to the various phases
of EOSPAC operation.

If the user’s code is C/C++ and uses the #include "eos_Interface.h", then it must either define
the DO_OFFLOAD preprocessor macro to enable the inclusion of the prototype listed above or explicitly
copy the prototype into his code. In order to simplify usage, this requirement will likely change in

future releases.

When the host code uses the GPU-enabled version of EOSPAC and offloads the loaded data using the
eos_GpuOffloadData function, the host code is responsible for providing device pointers to the input
and output arrays of eos_Interpolate. If this requirement is not met, then a code execution failure is
expected. Of course, if the data is not offloaded using eos_GpuOffloadData, then the standard host
pointers are to be used. As of the release of version 6.5, the interpolation functionality is limited
on the GPU as follows:

e Usage of EOS_INVERT _AT_SETUP— is required for all inverted data types. If this option is

not set for inverted data table types during the setup phase, then unpredictable code execution




3. ROUTINES AND PARAMETERS

failures will occur during the interpolation phase.

e A code assertion will occur during interpolation if any unsupported data table type is used.

Ssee APPENDIX B for a comprehensive list of GPU-compatible data table types.

e Extrapolation checking is disabled during interpolation; however, the host code retains the

option to call eos_CheckExtrap to determine if xVals and yVals cause extrapolation.

e No internal copies of xVals and yVals are created; instead the EOS_USE_HOST _XY is enabled
(see APPENDIX D).

3.8 eos_LoadTables

The eos_LoadTables routine fills a collection of data tables with the requested data tables from
SESAME. Before calling this routine the host code must call eos_CreateTables to initialize memory
for data tables and retrieve valid table handles. The host code may also need to call eos_SetOption,

prior to calling eos_LoadTables, so the desired set up options can be changed from the documented

defaults (see APPENDIX D).

The input arguments are:

nTables

tableHandles

The output argument is:

errorCode

This is the scalar EOS_INTEGER total number of data tables
on which to operate.

This is an array of EOS_INTEGER handles to particular data
tables. Each handle corresponds to a member data table, T;,
where ¢ = 1...nTables. The host code is responsible for manag-

ing this array of table handles.

This is a scalar EOS_INTEGER variable to contain an error code
that may indicate failure to load the data. The host code must
call eos_GetErrorCode and eos_GetErrorMessage to retrieve er-
ror details for a specified tableHandle. See APPENDIX H for
error code details.

NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

in chapter 7 section 1.1.




44 CHAPTER 5. SETUP MATERIAL DATA

3.9 eos_SetDataFileName

| NEW for 6.2.2

The eos_SetDataFileName routine is used to set the file name for a specified table

handle. This will constrain EOSPAC to searching for applicable data within the specified file, if it’s a
valid file. See chapter 5 section 3.4 for details concerning the maximum length of the file name. This
routine will fix an invalid table handle if it was invalidated by a previous call to eos_CreateTables.
This routine must be called prior to eos_LoadTables for the specified table handle; otherwise an error

will be returned. This routine should be used in conjunction with eos_GetMaxDataFileNameLength.

The input arguments are:

tableHandle This is a scalar EOS_INTEGER handle to a particular data ta-
ble. The host code is responsible for managing this table handle.

matlD This is a scalar EOS_INTEGER containing the SESAME ma-
terial identification number corresponding to the member data
table.

tableType This is a scalar EOS_INTEGER containing the table type cor-

responding to the member data table. See APPENDICES B
and C for table type details.

fileName This is a character string, of a maximum length defined by the
constant named PATH_MAX, which is to contain the specified
file name.

The output argument is:

errorCode This is a scalar EOS_INTEGER variable to contain an error
code. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_FErrorCodesFEqual routine described

in chapter 7 section 1.1.

3.10 eos_SetPackedTables

The eos_SetPackedTables routine fills the specified data tables with data tables stored as a char-
acter array. Typically this is used to insert the data tables into the EOSPAC data structures
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after a multithreaded code has shared the data tables extracted by eos_GetPackedTables. The
eos_SetPackedTables routine can also be used to unpack data tables recovered from a host code’s

binary restart file.

The input arguments are:

nTables This is the scalar EOS_INTEGER total number of data tables
on which to operate.

packedTablesSize This is the scalar EOS.INTEGER number of bytes required
to hold a specified list of data tables’” member data -— size of
packedTables.

packedTables This is an array of EOS_CHAR that is used to store all of the

member data of specified data tables. This array is designed to
allow the host code to share data between multiple processors.
If dynamic memory allocation for arrays is not possible, then
eos_SetPackedTables will prove difficult to use since packedTa-
bles must hold packedTablesSize characters, where packedTab-

lesSize is returned from the eos_GetPackedTablesSize routine.

The output arguments are:

tableHandles This is an array of EOS_INTEGER handles to particular data
tables. Each handle corresponds to a member data table, Tj,
where ¢ = 1...nT'ables. The host code is responsible for manag-
ing this array of table handles.
WARNING: The actual table handle value returned to the host
code for any specific table, T}, is not guaranteed to be consistent
with the value generated by eos_CreateTables; this is a behavior
likened to an address returned by C malloc.

errorCode This is a scalar EOS_INTEGER variable to contain an error code
that may indicate failure to unpack the data. See APPENDIX
H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesFEqual routine described

wn chapter 7 section 1.1.
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4 C/C++4+ LANGUAGE BINDINGS

void eos_CreateTables (EOS_INTEGER *nTables,
EOS_INTEGER tableTypel],
EOS_INTEGER matID]],
EOS_INTEGER tableHandles]|,
EOS_INTEGER *errorCode);
void eos_DestroyAll (EOS_INTEGER *errorCode);
void eos_DestroyTables (EOS_INTEGER *nTables,
EOS_INTEGER tableHandles]],
EOS_INTEGER *errorCode);
void eos_GetMaxDataFileNameLength (EOS_INTEGER *max_length);
void eos_GetPackedTables (EOS_INTEGER *nTables,
EOS_INTEGER tableHandles]],
EOS_CHAR *packedTables,
EOS_INTEGER *errorCode);
void eos_GetPackedTablesSize (EOS_INTEGER *nTables,
EOS_INTEGER tableHandles]],
EOS_INTEGER *packedTablesSize,
EOS_INTEGER *errorCode);
void eos_GpuOffloadData (EOS_INTEGER *errorCode);
void eos_LoadTables (EOS_INTEGER *nTables,
EOS_INTEGER tableHandles]]|,
EOS_INTEGER *errorCode);
void eos_SetDataFileName (EOS_INTEGER *tableHandle,
EOS_INTEGER *matID,
EOS_INTEGER *tableType,
EOS_CHAR *fileName,
EOS_INTEGER *errorCode);
void eos_SetPackedTables (EOS_INTEGER *nTables,
EOS_INTEGER *packedTablesSize,
EOS_CHAR *packedTables,
EOS_INTEGER tableHandles],
EOS_INTEGER *errorCode);
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Use the header file named “eos_Interface.h” to define both the function prototypes listed above and

the necessary constants used by EOSPAC. See chapter 10 for usage examples of these routines.

5 FORTRAN LANGUAGE BINDINGS

subroutine eos_CreateTables

subroutine eos_DestroyAll

subroutine eos_DestroyTables

subroutine eos_ GetMaxDataFileNameLength
subroutine eos_GetPackedTables

subroutine eos_GetPackedTablesSize

subroutine eos_GpuOffloadData

subroutine eos_LoadTables

subroutine eos_SetDataFileName

(EOS_INTEGER nTables,
EOS_INTEGER tableType(*),
EOS_INTEGER matID(*),
EOS_INTEGER tableHandles(*),
EOS_INTEGER errorCode)
(EOS_INTEGER errorCode)
(EOS_INTEGER nTables,
EOS_INTEGER tableHandles(*),
EOS_INTEGER errorCode)
(EOS_.INTEGER max_length)
(EOS_INTEGER nTables,
EOS_INTEGER tableHandles(*),
EOS_CHAR packedTables,
EOS_INTEGER errorCode)
(EOS_INTEGER nTables,
EOS_INTEGER tableHandles(*),
EOS_INTEGER packedTablesSize,
EOS_INTEGER errorCode)
(EOS_INTEGER errorCode)
(EOS_INTEGER nTables,
EOS_INTEGER tableHandles(*),
EOS_INTEGER errorCode)
(EOS_INTEGER tableHandle,
EOS_INTEGER matID,
EOS_INTEGER tableType,
EOS_CHAR fileName,
EOS_INTEGER errorCode)




48 CHAPTER 5. SETUP MATERIAL DATA

subroutine eos_SetPackedTables (EOS_INTEGER nTables,
EOS_INTEGER packedTablesSize,
EOS_CHAR packedTables,
EOS_INTEGER tableHandles(*),
EOS_INTEGER errorCode)

Within a Fortran 77 host code, use the header file named “eos_Interface.fi” to define the necessary
constants used by EOSPAC. See chapter 10 for Fortran 77 host code examples of using these

routines.

Within a Fortran 90 host code, use the Fortran module named “eos_Interface” to define the necessary
constants used by EOSPAC. See chapter 10 for Fortran 90 host code examples of using these

routines.




INTERPOLATE MATERIAL DATA

Those who rule data will rule the entire world.

— Masayoshi Son

The interpolation phase consists of calls to interface routines that use an established EOSPAC data
table and return interpolated data requested by the host code. These routines are the most common

way to use the data tables.

1 DATA ORGANIZATION

Unlike the setup routines, the interpolation routines perform their function on data associated with

a single table handle.

2 ROUTINES AND PARAMETERS

| NEW for 6.3

For each of the routines described in this section, all of the interpolation options de-

fined in APPENDIX F are applicable; however, two new interpolation phase options have been intro-
duced that are of particular interest to users wanting to improve performance: EOS_XY_MODIFY
and EOS_XY _PASSTHRU.

NEW for 6.3.1

A new setup option has been introduced: EOS_INVERT _AT _SETUP —- see chap-
ter b section 3, chapter 9 section 7 and APPENDIX D for additional details.

Normally, EOSPAC will create temporary internal copies of the xVals and yVals arrays passed from

49
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the host code into the following routines. These temporary arrays are then modified according to
the conversion factors that may have been previously set using the eos_SetOption routine. The
EOS_XY_MODIFY and EOS_XY_PASSTHRU options disable the creation of the temporary copies
of xVals and yVals. The EOS_XY_MODIFY option instructs EOSPAC to directly change the values
in the host code’s xVals and yVals arrays into SESAME-compatible units using the conversion fac-
tors that may have been previously set using the eos_SetOption routine. The EOS_XY_PASSTHRU
option instructs EOSPAC to make no changes to the xVals and yVals arrays — rather the values in

the host code’s xVals and yVals arrays are assumed to already be in SESAME-compatible units.

NEW for 6.5

A new interpolation option, EOS_USE_HOST_XY has been added. This new option
enables the EOS_XY_MODIFY option’s associated logic, and then it enables new logic to revert the
modified xVals and yVals inputs after interpolation is completed. Be aware that the application of
the host-supplied conversion factors may not identically-reproduce the original xVals and yVals in-
put values. Another interpolation option, EOS_SKIP_EXTRAP_CHECK, disables all extrapolation
checks except when the host code calls the eos_CheckExtrap function, which is described below.
Both of these new options are defined in APPENDIX G, and they are implemented to provide use
cases to the end user that maximize the performance of eos_Interpolate on either the CPU! or the
GPU2.

Using the OpenMP 4.5 target offload features, GPU kernels have been created for selected API

functions as described below.

2.1 eos_CheckExtrap

If the EOS_INTERP_EXTRAPOLATED error code is returned by either eos_Interpolate or eos_Mix,
then the eos_CheckExtrap routine allows the user to determine which (z,y) pairs caused extrapola-

tion and in which direction (high or low), it occurred. The units of the xVals, and yVals arguments
listed below are determined by the units listed for each tableType in APPENDICES B and C.

The input arguments are:

tableHandle This is a scalar EOS_INTEGER handle to a particular data ta-
ble. The host code is responsible for managing this table handle.
nXY Pairs This is the total number of pairs of independent variable values

provided for interpolation for the specified table.

!Central Processing Unit
2Graphics Processing Unit




2. ROUTINES AND PARAMETERS 51

xVals This is an array of the primary independent variable values to
use during interpolation. There are nXY Pairs elements in xVals.
yVals This is an array of the secondary independent variable values
to use during interpolation. There are nXYPairs elements in

y Vals.

The output arguments are:

xyBounds This is an array of size nXYPairs elements that returns EOS_OK
if extrapolation did not occur. If extrapolation occurred the
variable and direction are determined from Table 3.

errorCode This is a scalar EOS_INTEGER variable to contain an error
code. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

wn chapter 7, section 1.1.

In the case that eos_Mix returned EOS_INTERP_EXTRAPOLATED as an error code, an additional
series of steps must be performed to determine which table handles correspond to the extrapolation

error:

1. For each tableHandle sent to eos_Mix, call eos_GetErrorCode and, optionally, eos_GetErrorMessage.

2. For each of these tableHandles, call eos_CheckExtrap to determine one of codes listed in

Table 6.3.
Table 6.3: Extrapolation return codes.

Code Definition
EOS_OK No extrapolation occurred.
EOS xHi_yHi Both the x and y arguments were high.
EOS xHi_yOk The x argument was high, the y argument was OK.
EOS xHi_yLo The x argument was high, the y argument was low.
EOS xOk_yLo The x argument is OK and the y argument is low.

Continued on next page
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Table 6.3: Extrapolation return codes. (Continued from previous page.)

Code Definition

EOS xLo_yLo Both the x and y arguments were low.

EOS xLo_yOk The x argument was low, the y argument was OK.

EOS xLo_yHi The x argument was low, the y argument was OK.

EOS xOk_yHi The x argument is OK and the y argument is high.

EOS_CANT_INVERT_DATA Can’t invert with respect to the required independent
variable.

EOS_CONVERGENCE_FAILED Iterative algorithm did not converge during inverse inter-
polation.

EOS_UNDEFINED The result is undefined.

Some additional details regarding the error codes listed in Table 6.3 are listed as follows:

1. If the y argument corresponds to a temperature value, then a zero temperature was used for

interpolation rather than the value supplied by the host code.

2. If the x argument corresponds to a density value, then a zero density was used for interpolation

rather than the value supplied by the host code.

2.2 eos_Interpolate

The eos_Interpolate routine provides interpolated values for a single material using a table handle
associated with data stored within a data table. Before calling eos_Interpolate, the host code may
need to call eos_SetOption so the desired interpolation options can be changed from the documented
defaults. The units of the xVals, yVals, fVals, dFx and dFy arguments listed below are determined
by the units listed for each tableType in APPENDICES B and C.

NEW for 6.5

If the eos_GpuOffloadData function has been used by the host code, then it is
assumed that all pointers passed into and out of this eos_Interpolate function are GPU device
pointers that reference memory on the GPU itself rather than the traditional CPU memory heap.
Specifically, for C/C++ hosts, the OpenMP? method named omp_target_alloc (or its equivalent)

is assumed to have been used by the host to allocate memory on the GPU device. Similarly, a Fortran

3https:/ /www.openmp.org/
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host is assumed to use a compatible allocation method and a corresponding device attribute (i.e.,
CUDA") to define and allocate device memory for the input/output arrays of eos_Interpolate. To
leverage the interpolation GPU kernel it is important for the user to ensure that the table type(s)
used is compatible for offload to the GPU; APPENDIX B indicates which table types are actually

compatible with the GPU offload.

The input arguments are:

tableHandle

nXYPairs

xVals

yVals

The output arguments are:

fVals

dFx

dFy

This is a scalar EOS_INTEGER handle to a particular data.
The host code is responsible for managing this table handle.
This is the scalar EOS_INTEGER total number of pairs of in-
dependent variable values provided for interpolation.

This is an EOS_REAL array of the primary independent variable
values to use during interpolation. There are nX'YPairs elements
in xVals.

This is an EOS_REAL array of the secondary independent vari-
able values to use during interpolation. There are nXYPairs

elements in yVals.

This is an EOS_REAL array of the interpolated data correspond-
ing to the given independent variable data (x and y). There are
nXYPairs elements in fVals, unless the tableHandle is associ-
ated with the EOS_M_DT table type (see chapter 9, section 4
for details).

This is an EOS_REAL array of the interpolated partial deriva-
tives of fVals with respect to x. There are nXYPairs elements
in dFx.

This is an EOS_REAL array of the interpolated partial deriva-
tives of fVals with respect to y. There are nXYPairs elements
in dFy.

4https://developer.nvidia.com /cuda-fortran
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errorCode This is a scalar EOS_INTEGER variable to contain an error
code. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described
in chapter 7, section 1.1.
2.3 eos_Mix

The mixed material interpolation uses established EOSPAC data tables and returns interpolated
data of mixed materials requested by the host code. The eos_Mix routine is the typical way to
generate mixed material data using the data tables’” member data tables. The data tables to be
mixed must be of the same table type. An error code is returned if the table type is not valid for
mixing (EOS_NullTable, EOS_Info, etc.). The table types that are valid for eos_Mix are limited to
the following short list® of 29 table types:

EOS_.B.DT EOS_ Ktc.DT | EOS_Pt_.DT | EOS_T_DUic | EOS_Uic.DT
EOS_Kce DT | EOS_Pc_D EOS_Pt DUt | EOS_T_DUt EOS_Ut_DPt
EOS_Kec_DT | EOS_Pe_DT EOS_T_DPe | EOS_Uc.D EOS_Ut DT

EOS_Keo DT | EOS_Pe_ DUe | EOS_T_DPic | EOS_Ue_.DPe | EOS Zfc DT
EOS_Kp_DT | EOS_Pic.DT EOS_T_DPt | EOS_Ue DT EOS_Zfo DT
EOS_Kr_DT | EOS_Pic_DUic | EOS_T_DUe | EOS_Uic_DPic

The eos_Mix routine will provide interpolated values corresponding to mixtures of materials in
pressure (or pressure and temperature) equilibrium, and the algorithm was derived from the original
MIXPACI10] package. Additional information concerning the EOS mixing algorithm is found in
reference[11]. Before calling eos_Mix, the host code may need to call eos_SetOption so the desired
interpolation and/or mixing options can be changed from the documented defaults. The units of
the xVals, yVals, fVals, dFx and dFy arguments listed below are determined by the units listed for
each tableType in APPENDICES B and C.

The input arguments are:

nTables This is the total number of data tables on which to operate.

®These are cross-referenced to those of EOSPAC 5[8],[9] within APPENDIX C.
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tableHandles

nXYPairs

concInMix

xVals

yVals

The output arguments are:

fVals

dFx

dFy

This is an array of EOS_INTEGER handles to the tables to be
mixed.

This is the total number of pairs of independent variable values
provided for interpolation for each table.

This is an EOS_REAL array containing the number fraction
concentration corresponding to each independent variable value
pair and to each tableHandle of the desired data to mix. There
are nTables*nXYPairs elements in concInMix, and it is stored
sequentially in memory as follows:

[concInMix (i+(j-1)*nXYPairs): i=1 to nXYPairs], j=1

to nTables

Note that the index, i, varies fastest as memory addresses in-
crease incrementally.

This is an EOS_REAL array of the primary independent variable
values to use during interpolation. There are nXYPairs elements
in xVals.

This is an EOS_REAL array of the secondary independent vari-
able values to use during interpolation. There are nXYPairs

elements in yVals.

This is an EOS_REAL array of the interpolated data correspond-
ing to the given independent variable data (x and y). There are
nXYPairs elements in fVals.

This is an EOS_REAL array of the interpolated partial deriva-
tives of fVals with respect to x. There are nXYPairs elements
in dFx.

This is an EOS_REAL array of the interpolated partial deriva-
tives of fVals with respect to y. There are nXYPairs elements
in dFy.
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errorCode

This is a scalar EOS_INTEGER variable to contain an error

code. See APPENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now

requires the usage of the eos_ErrorCodesEqual routine described

in chapter 7, section 1.1.

3 C/C++ LANGUAGE BINDINGS

void eos_CheckExtrap

void eos_Interpolate

void eos_Mix

(EOS_INTEGER *tableHandle,
EOS_INTEGER *nXYPairs,
EOS_REAL *xVals,
EOS_REAL *yVals,
EOS_INTEGER *xyBounds,
EOS_.INTEGER *errorCode);
(EOS_INTEGER *tableHandle,
EOS_INTEGER *nXYPairs,
EOS_REAL *xVals,
EOS_REAL *yVals,
EOS_REAL *fVals,
EOS_REAL *dFx,

EOS_REAL *dFy,
EOS_.INTEGER *errorCode);
(EOS_INTEGER *nTables,
EOS_INTEGER *tableHandles,
EOS_INTEGER *nXYPairs,
EOS_REAL *concInMix,
EOS_REAL *xVals,
EOS_REAL *yVals,
EOS_REAL *fVals,
EOS_REAL *dFx,

EOS_REAL *dFy,
EOS_INTEGER *errorCode);
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Use the header file named “eos_Interface.h” to define both the function prototypes listed above and

the necessary constants used by EOSPAC. See chapter 10 for usage examples of these routines.

4 FORTRAN LANGUAGE BINDINGS

subroutine eos_CheckExtrap

subroutine eos_Interpolate

subroutine eos_Mix

(EOS_INTEGER tableHandle,
EOS_INTEGER nXYPairs,
EOS_REAL xVals(*),
EOS_REAL yVals(*),
EOS_INTEGER xyBounds(*),
EOS_INTEGER errorCode)
(EOS_INTEGER tableHandle,
EOS_INTEGER nXYPairs,
EOS_REAL xVals(*),
EOS_REAL yVals(*),
EOS_REAL f{Vals(*),
EOS_REAL dFx(*),
EOS_REAL dFy(*),
EOS_INTEGER errorCode)
(EOS_INTEGER nTables,
EOS_INTEGER tableHandles(*),
EOS_INTEGER nXYPairs,
EOS_REAL concInMix(*),
EOS_REAL xVals(*),
EOS_REAL yVals(*),
EOS_REAL f{Vals(*),
EOS_REAL dFx(*),
EOS_REAL dFy(*),
EOS_INTEGER errorCode)

Within a Fortran 77 host code, use the header file named “eos_Interface.fi” to define the necessary

constants used by EOSPAC. See chapter 10 for Fortran 77 host code examples of using these

routines.
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Within a Fortran 90 host code, use the Fortran module named “eos_Interface” to define the necessary

constants used by EOSPAC. See chapter 10 for Fortran 90 host code examples of using these

routines.




MISCELLANEOUS INFORMATION
ROUTINES

Data is a tool for enhancing intuition.

— Hilary Mason

This section provides descriptions of some routines that submit or return miscellaneous information
about or related to a data table or its contents. These routines are the only way to set or retrieve

this information.

1 ROUTINES AND PARAMETERS

The routines and parameters that provide miscellaneous information are shown below.

1.1 eos_ErrorCodesEqual

NEW for 6.3

The eos_ErrorCodesEqual routine is used to determine if the provided EOSPAC

error code corresponds to a specified standard error code. This routine is required because the

error codes returned by most EOSPAC 6 routines are now encoded with an associated table handle,
which means their values are dynamic. Only the EOS_OK error code is exempt from using this

routine to test equivalence.

The input arguments are:
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errl This is a scalar EOS_INTEGER that corresponds to either the
error code in question or a standard error code defined in AP-
PENDIX H.

err2 This is a scalar EOS_INTEGER that corresponds to either the
error code in question or a standard error code defined in AP-
PENDIX H.

The output arguments are:

result This is a scalar EOS_.BOOLEAN to contain the true/false equiv-

alence status of errl and err2.

1.2 eos_GetErrorCode

The eos_GetErrorCode routine is used to the most recent EOSPAC error code that corresponds to

a specific table handle.

The input argument is:

tableHandle This is a scalar EOS_INTEGER handle to a particular data ta-
ble. The host code is responsible for managing this table handle.

The output argument is:

errorCode This is a scalar EOS_INTEGER to contain the requested error
code. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_FErrorCodesFEqual routine described

in chapter 7 section 1.1.

1.3 eos_GetErrorMessage

The input argument is:
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errorCode This is a scalar EOS_INTEGER to contain an error code.

The output argument is:

errorMsg This is a character string of a maximum length defined by the
constant named EOS_MaxFErrMsglLen.

1.4 eos_GetTableCmnts

The eos_GetTableCmnts routine returns the comments available about the requested data table.
The eos_GetTableCmnts routine operates on a single data table corresponding to a valid table
handle.

Before calling eos_GetTableCmnts, the host code must call eos_GetTablelnfo to find out the length

of the comments, lenCmnts, allowing the host code to allocate adequate storage.

The input argument is:

tableHandle This is the scalar EOS_INTEGER handle to particular data ta-
ble.

The output arguments are:

cmntStr This is a string of EOS_CHAR, of length lenCmnts, containing
the requested comments. The value of lenCmnts for each table-
Handle can be obtained by calling eos_GetTableInfo using the
constant named EOS_Cmnt_Len (see APPENDIX E for details).
If dynamic memory allocation for strings is not possible, then

eos_GetTableCmnts will prove difficult to use.




62 CHAPTER 7. MISCELLANEOUS INFORMATION ROUTINES

errorCode This is a scalar EOS_INTEGER variable to contain an er-
ror code that may indicate the comment table(s) could not
be loaded. The host code must call eos_ GetErrorCode and
eos_GetErrorMessage to retrieve error details for a specified
tableHandle. See APPENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

wn chapter 7 section 1.1.

1.5 eos_GetTablelnfo

The eos_GetTablelnfo routine is returns the values of requested information about data table mem-
bers. This routine operates on a single data table corresponding to a valid table handle. Information
is requested by passing a list of parameters to the routine that returns the requested information
in the same order. The information that can be requested is in APPENDIX E.

The input arguments are:

tableHandle This is the EOS_INTEGER handle to particular data table.
numlInfoltems EOS_INTEGER scalar number of information items requested.
infoltems This is an EOS_INTEGER array of information items requested.

The allowed values are in APPENDIX E.

The output arguments are:

infoVals This is an EOS_REAL array containing the information items
requested. It contains numlInfoltems values. The values are in
the same order as requested in the infoltems array.

errorCode This is a scalar EOS_INTEGER to contain the error code. The
host code must call eos_GetErrorCode and eos_GetErrorMessage
to retrieve error details for a specified tableHandle. See AP-
PENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

wn chapter 7 section 1.1.
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1.6 eos_GetMetaData

| NEW for 6.3

The eos_GetMetaData routine returns the value of requested meta information cor-

responding to a pair of constants, which are supplied to the routine by the host code. This routine

reveals meta-data that is used internally by EOSPAC; therefore, no valid table handle is required
prior to its use. The information that can be requested is defined in APPENDIX F.

The input arguments are:

infoltem

infoltemCategory

The output arguments are:

infoStr

errorCode

This is a scalar EOS_INTEGER used to specify the desired in-
formation item. The allowed values are in APPENDIX F.
This is a scalar EOS_INTEGER used to specify the category

of the desired information item. The allowed values are in AP-
PENDIX F.

This is a character string containing the information item
requested. This string must be allocated by the host
code, and it is required to be the minmum length of
EOS_META DATA _STRLEN characters.

This is a scalar EOS_INTEGER to contain the error code. The
host code must call eos_GetErrorCode and eos_GetErrorMessage
to retrieve error details for a specified tableHandle. See AP-
PENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesFEqual routine described

wn chapter 7 section 1.1.

1.7 eos_GetTableMetaData

| NEW for 6.3

corresponding to a valid table handle and a constant, which is defined in APPENDIX F.

The input arguments are:

The eos_GetTableMetaData routine returns the value of requested meta information
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tableHandle This is the EOS_INTEGER handle to particular data table.
infoltem This is a scalar EOS_INTEGER specifying the desired informa-
tion item. The allowed values are in APPENDIX F.

The output arguments are:

infoStr This is a character string containing the information item
requested. This string must be allocated by the host
code, and it is required to be the minmum length of
EOS_META DATA _STRLEN characters.

errorCode This is a scalar EOS_INTEGER to contain the error code. The
host code must call eos_GetErrorCode and eos_GetErrorMessage
to retrieve error details for a specified tableHandle. See AP-
PENDIX H for error code details.
NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesFqual routine described

i chapter 7 section 1.1.

1.8 eos_GetVersion

The eos_GetVersion routine is used to retrieve a character string defining the current version of
EOSPAC.

There are no input arguments.

The output argument is:

Version This is a character string of a maximum length defined by the

value returned by eos_GetVersionLength.

1.9 eos_GetVersionLength

The eos_GetVersionLength routine is used to retrieve the length of the string returned by eos_Get Version.
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There are no input arguments.

The output argument is:

Length

This is a scalar EOS_INTEGER defining the length of the string
returned by eos_GetVersion. This length includes the null (’\0’)
terminating character, which is used in the “C” programming

language.

1.10 eos_ResetOption

The eos_ResetOption routine is used to reset an option related to a specified table handle to it
default state (see APPENDICES D and F for default settings). The eos_ResetOption routine is

used prior to calling eos_LoadTables, eos_Interpolate, and/or eos_Mix to specify applicable options

for each table handle.

The input arguments are:

tableHandle

tableOption

The output argument is:

errorCode

This is a scalar EOS_INTEGER handle to a particular data ta-
ble. The host code is responsible for managing this table handle.
This is a scalar EOS_INTEGER containing the option flag in-
dicating what option to set corresponding to the tableHandle.
See APPENDICES D and F for table option details.

This is a scalar EOS_INTEGER to contain the error code. The
host code must call eos_GetErrorCode and eos_GetErrorMessage
to retrieve error details for a specified tableHandle. See AP-
PENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

wn chapter 7 section 1.1.
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1.11 eos_SetOption

The eos_SetOption routine is used to set an option related to a specified table handle.

The

eos_SetOption routine is used prior to calling eos_LoadTables, eos_Interpolate, and/or eos_Mix to

specify applicable options for each table handle.

The input arguments are:

tableHandle

tableOption

tableOptionVal

The output argument is:

errorCode

This is a scalar EOS_INTEGER handle to a particular data ta-
ble. The host code is responsible for managing this table handle.
This is a scalar EOS_INTEGER containing the option flag in-
dicating what option to set corresponding to the tableHandle.
See APPENDICES D and F for table option details.

This is a scalar EOS_REAL containing the option value to be
assigned to the tableHandle. Note that not all of the option
flags defined in APPENDICES D and F use this value; however,
a variable or literal is required when calling eos_SetOption due

to the limitations of a flat public interface.

This is a scalar EOS_INTEGER to contain the error code. The
host code must call eos_GetErrorCode and eos_GetErrorMessage
to retrieve error details for a specified tableHandle. See AP-
PENDIX H for error code details.

NOTE: As of version 6.3, comparison of two error codes now
requires the usage of the eos_ErrorCodesEqual routine described

in chapter 7 section 1.1.

2 C/C++ LANGUAGE BINDINGS

void eos_ErrorCodesEqual (EOS_INTEGER *errl,

EOS_INTEGER *err2,
EOS_BOOLEAN *result);
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void eos_GetErrorCode

void eos_GetErrorMessage

void eos_GetMetaData

void eos_GetTableMetaData

void eos_GetTableCmnts

void eos_GetTablelnfo

void eos_GetVersion

void eos_GetVersionLength

void eos_ResetOption

void eos_SetOption

(EOS_INTEGER *tableHandle,
EOS_INTEGER *errorCode);
(EOS.INTEGER *errorCode,

EOS_CHAR errorMsg[EOS_MaxErrMsgLen));

(EOS_INTEGER *infoltem,
EOS_INTEGER *infoltemCategory,
EOS_CHAR *infoStr,
EOS_INTEGER *errorCode);
(EOS_INTEGER *tableHandle,
EOS_INTEGER *infoltem,
EOS_CHAR *infoStr,
EOS_INTEGER *errorCode);
(EOS_INTEGER *tableHandle,
EOS_CHAR *cmntStr,
EOS_INTEGER *errorCode);
(EOS.INTEGER *tableHandle,
EOS_INTEGER *numlnfoltems,
EOS_INTEGER infoltems]],
EOS_REAL infoVals][],
EOS_INTEGER *errorCode);
(EOS_CHAR *version);
(EOS_INTEGER *length);
(EOS_INTEGER *tableHandle, const
EOS_INTEGER *tableOption,
EOS_INTEGER *errorCode);
(EOS_INTEGER *tableHandle, const
EOS_INTEGER *tableOption, const
EOS_REAL *tableOptionVal,
EOS_INTEGER *errorCode);

Use the header file named “eos_Interface.h” to define both the function prototypes listed above and

the necessary constants used by EOSPAC. See chapter 10 for usage examples of these routines.
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3 FORTRAN LANGUAGE BINDINGS

subroutine eos_ErrorCodesEqual (EOS.INTEGER errl,
EOS_INTEGER err2,
EOS_BOOLEAN result)
subroutine eos_GetErrorCode (EOS_INTEGER tableHandle,
EOS_INTEGER errorCode)
subroutine eos_GetErrorMessage (EOS.INTEGER errorCode,
EOS_CHAR errorMsg(EOS_MaxErrMsgLen))
subroutine eos_GetMetaData (EOS.INTEGER infoltem,
EOS_INTEGER infoltemCategory,
EOS_CHAR infoStr,
EOS_INTEGER errorCode)
subroutine eos_GetTableMetaData (EOS_INTEGER tableHandle,
EOS_INTEGER infoltem,
EOS_CHAR infoStr,
EOS_INTEGER errorCode)
subroutine eos_GetTableInfo (EOS_INTEGER tableHandle,
EOS_INTEGER numlInfoltems,
EOS_INTEGER infoltems,
EOS_REAL infoVals,
EOS_INTEGER errorCode)
subroutine eos_GetTableCmnts (EOS_INTEGER tableHandle,
EOS_CHAR cmntStr,
EOS_INTEGER errorCode)

subroutine eos_GetVersion (EOS_CHAR version)
subroutine eos_GetVersionLength ~ (EOS_INTEGER length)
subroutine eos_ResetOption (EOS_INTEGER tableHandle,

EOS_INTEGER tableOption,
EOS_INTEGER errorCode)
subroutine eos_SetOption (EOS_INTEGER tableHandle,
EOS_INTEGER tableOption,
EOS_REAL tableOptionVal,
EOS_INTEGER errorCode)
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Within a Fortran 77 host code, use the header file named “eos_Interface.fi” to define the necessary
constants used by EOSPAC. See chapter 10 for Fortran 77 host code examples of using these

routines.

Within a Fortran 90 host code, use the Fortran module named “eos_Interface” to define the necessary
constants used by EOSPAC. See chapter 10 for Fortran 90 host code examples of using these

routines.
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TOOLS

I can make just such ones if I had tools, and I could make tools if I had tools to make
them with.

— Eli Whitney

If one is interested in calculating quantities without the need to write a host code to use the EOSPAC
interface, then there are some utilities, which are distributed with EOSPAC, to accomplish various
tasks. Onme such utility was previously mentioned (see section 4), get_sesame_data. Given a
Sesame material ID and table number, get_sesame_data will extract data from Sesame database
and send it to stdout in a format compatible with GNUPLOT’s input requirements for a 2-D plot.

There are several command line variations for get_sesame_data :

get_sesame_data [OPTIONS] <sesMaterialNum> <sesTableNum> [ <sesSubtableIndex> ]
. get_sesame_data [OPTIONS] id [ <file> ]

. get_sesame_data [OPTIONS] tables <sesMaterialNum> [, <sesMaterialNum> [,

. get_sesame_data [OPTIONS] comments <sesMaterialNum> [, <sesMaterialNum> [,
. get_sesame_data [OPTIONS] <sesMaterialNum>

a > w NN -

<sesMaterialNum> Sesame material ID number
<sesTableNum> Sesame table number

<sesSubtableIndex> Optional Sesame subtable number (default=1).

Another utility named interp_sesame_data is also distributed with EOSPAC that allows a user
to perform various data interpolations from the command line. There are multiple command line

variations for interp_sesame_data:
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1. interp_sesame_data [<OPTIONS>] <sesMaterialNum> <tableType> <x>[:<x1>]
[ <y>[:<y1>] ]
2. interp_sesame_data [<OPTIONS>] <sesMaterialNum> <tableType> -i <file>

<sesMaterialNum>

Sesame material ID number

<tableType>
EOSPAC 6 table type (case insensitive)

<x>
First independent variable value of the table type (64-bit floating point)
This argument is required unless either the ’-i’ or the ’-x’ option is used.
The optional :<x1> defines an upper bound for a randomly-sampled range of
values between <x> and <x1>.

<y>

Second independent variable value of the table type (64-bit floating point)
This argument is required unless either the ’-i’ or the ’-y’ option is used.
The optional :<yl1> defines an upper bound for a randomly-sampled range of

values between <y> and <yl>.

All of the utilites described in this section include online help, which can be viewed by using the

desired tool’s “-h” option.




SELECTED NUMERIC DETAILS

The reason is not to glorify “bit chasing”; a
more fundamental issue is at stake here: Numerical subroutines should deliver results that
satisfy simple, useful mathematical laws whenever possible. [...] Without any underlying
symmetry properties, the job of proving interesting results becomes extremely unpleasant.

The enjoyment of one’s tools is an essential ingredient of successful work.

— Donald Knuth, Vol. II, Seminumerical Algorithms, Section 4.2.2 part A, final paragraph

This section provides additional descriptions of some complex EOSPAC features, which are imple-

mented to address some numeric issue or other.

1 CUSTOM SMOOTHING AND INTERPOLATION

At the request of the user community, some very specific data smoothing capabilities of SAGE!
have been added to EOSPAC. These features correspond to the setup and interpolation options
EOS_PT_SMOOTHING, EOS_ADJUST_VAP_PRES, and EOS_.USE_CUSTOM_INTERP. When the
setup option, EOS_PT_SMOOTHING, is enabled for a table handle, the loaded equation of state
data is smoothed in preparation for using the EOS_USE_CUSTOM_NTERP interpolation option.
The setup option, EOS_ADJUST_VAP_PRES, is provided as a mechanism to shift the vapor pres-

sure data according to

P’i
P = P, — Pspige <1 - ) (9.1)
Py

ISAGE is a one-, two-, and three-dimensional, multi-material Eulerian hydrodynamics code (LA-UR-04-2959).
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where Py, f, is the user-provided pressure value (GPa) that is used to ensure the ambient conditions
of the tabulated data are acceptable. This vapor pressure adjustment has often been deemed neces-
sary, and it is material-dependent. Once the data has been loaded and smoothed according to the
rules associated with EOS_PT_SMOOQOTHING and EOS_ADJUST_VAP_PRES, interpolation may be
performed with the EOS_USE_CUSTOM_INTERP option set. This interpolation option is limited
to use with the EOS_Ut_PtT and EOS_V_PtT data types (pressure- and temperature-dependent
internal-energy and specific volume respectively). The EOS_USE_CUSTOM_INTERP interpolation
option uses linear interpolation to calculate the desired values from isotherms, which contain data
made to conform to Maxwell’s relations (Maxwell Construction, or Equal Area Construction). Any

basic thermodynamics textbook should contain a description of Maxwell’s relations.

2 FORCED DATA MONOTONICITY

Much of the data in the SESAME database is not monotonic with respect to one or both of the
tabulated independent variables. This is a problem when a data table is to be inverted with respect
to one of the tabulated independent variables. To ensure either global increasing- or decreasing-
monotonicity, a simple algorithm is used, in which the average of a function’s local minimum and
local maximum is determined and then used to replace the local tabulated function values. Once
that is done monotonicity is achieved, but a small slope is then imposed over the localized region
so that either global increasing- or decreasing-monotonicity is imposed. The aforementioned small
slope is calculated to be three-orders-of-magnitude larger than the machine’s floating point precision
(i.e., 107'% on a 64-bit IEEE machine). It is important to note that this forced data monotonicity
algorithm is not an “equal-area” calculation, which is used to impose Maxwell constructions on an
EOS. Figure 9.1 graphically describes the result (orange line) of this algorithm when applied to
an isotherm (blue line) of an arbitrary pressure function. Although it cannot be seen due to the
plot’s pressure range, the orange line actually has an artificial slope of approximately 1072 in the
nearly-horizontal region, where the left-most pressure value of said region is the average of P,;,
and P,,.,. The aforementioned monotonicity-enforcing algorithm is imposed from the independent

variable’s minimum to maximum values.
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Prmax

Pmin

Figure 9.1: General depiction of P(p) forced to be

monotonically-increasing.

3 EXTENDED PRECISION IS DISABLED

In an effort to improve the portability of EOSPAC, the extended precision features of some machine
architectures are disabled upon entry to any of EOSPAC’s public routines, and then the extended
precision is re-enabled prior to exiting said public routines. The problem of extended precision is
described as follows[12]:

The IEEE-754 standard defines the bit-level behavior of floating-point arithmetic oper-
ations on all modern processors. This allows numerical programs to be ported between
different platforms with identical results, in principle. In practice, there are often minor
variations caused by differences in the order of operations (depending on the compiler

and optimization level) but these are generally not significant.

However, more noticeable discrepancies can be seen when porting numerical programs
between 86 systems and other platforms, because the the x87 floating point unit (FPU)

on x86 processors computes results using extended precision internally (the values being
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converted to double precision only when they are stored to memory). In contrast, proces-
sors such as SPARC, PA-RISC, Alpha, MIPS and POWER /PowerPC work with native
double-precision values throughout. The differences between these implementations lead
to changes in rounding and underflow/overflow behavior, because intermediate values
have a greater relative precision and exponent range when computed in extended preci-
sion. In particular, comparisons involving extended precision values may fail where the

equivalent double precision values would compare equal.

To avoid these incompatibilities, the x87 FPU also offers a hardware double-precision
rounding mode. In this mode the results of each extended- precision floating-point oper-
ation are rounded to double precision in the floating- point registers by the FPU. It is
important to note that the rounding only affects the precision, not the exponent range,
so the result is a hybrid double-precision format with an extended range of exponents.
On BSD systems such as FreeBSD, NetBSD and OpenBSD, the hardware double- pre-
cision rounding mode 1s the default, giving the greatest compatibility with native double
precision platforms. On 86 GNU/Linux systems the default mode is extended precision
(with the aim of providing increased accuracy). To enable the double-precision round-
ing mode it 1s necessary to override the default setting on per-process basis using the

FLDCW 7floating-point load control-word” machine instruction.

As a result of the problem described above, every effort is made to disable extended precision

arithmetic on x86 machines.

4 MASS FRACTION DATA INTERPOLATION

For selected materials, Sesame contains mass fraction data tables, which tabulate phase-specific (i.e.,
beta, gamma, liquid, etc.) mass fraction data. EOSPAC has the capability to access and interpolate
this mass fraction data if it’s available. To implement this capability while minimizing changes to
the public interface specification, the eos_GetTableInfo function (chapter 7 section 1.5) is used with
eos_Interpolate (chapter 6 section 2.2) in an unusual way. Once the material data is loaded into
memory using the EOS_M_DT data type option, the host code must call eos_GetTableInfo to obtain
the total number of tabulated phases (see the EOS_.NUM_PHASES parameter in APPENDIX E).
Then the eos_Interpolate output array (fVals) must be allocated so that all of the material’s phases
can be interpolated at once; however, allocation of the derivative arrays (dFx and dFy) is not

required since they are ignored within EOSPAC. For example, if nXYPairs is set to ten and the
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number of phases is three, then the output array for eos_Interpolate are each allocated to hold
thirty values; whereas, the input arrays (xVals and yVals) are only allocated to hold ten values.
The interpolated output is organized so that each phase’s interpolated mass fractions are stored in

turn. The following “C” code snippet demonstrates how the input and output arrays are organized:

xVals = (EOS_REAL *) malloc (sizeof (EOS_REAL) * nXYPairs);
yVals = (EOS_REAL *) malloc (sizeof (EOS_REAL) * nXYPairs);
fVals = (EOS_REAL *) malloc (sizeof (EOS_REAL) * num_phases * nXYPairs);

for (j = 0; j < num_phases; j++) {
for (k = 0; k < nXYPairs; k++) {
printf ("%23.15e %23.15e %23.15e\n",
xVals[k], yVals[k], fVals[nXYPairsxj + k]);

To maintain data integrity, the interpolation is limited to use only the bilinear (EOS_LINEAR)
interpolator for the EOS_M_DT data type.

5 NUMERICAL INTEGRATION

The capability to calculate entropy data is implemented with multiple algorithms. One such algo-
rithm depends upon the numerical integration of the tabulated internal energy data with respect
to temperature. To perform the numerical integration, a simple trapezoid rule is implemented.
A specific note of interest is that the trapezoid integration equally-divides each tabulated tem-
perature interval into ninety-nine sub-intervals prior to interpolation. The hard-wired number of
sub-intervals was chosen arbitrarily because it seemed adequate. Another, but more subtle, item
to note is that the form of equation (3.2) is implemented within EOSPAC so that the integrand
values, =z, for all applicable tabulated data are passed to the interpolator within the trapezoid
integration algorithm instead of interpolating the internal energy, u = u(p,T), prior to calculating

the integrand. This smoothes the calculated results by damping incurred numerical errors.
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6 LINEAR AND BILINEAR INTERPOLATION

As of EOSPAC 6.2, the default linear/bilinear interpolators were replaced with a new algorithm
that calculates continuous derivatives at the tabulated grid points. This feature was a departure

from the discontinuous derivatives calculated by all previous versions of EOSPAC.

NEW for 6.3

A new interpolation option is introduced to allow a user to mitigate some unforeseen
side effects of the continuous derivatives. The option name is EOS_DISCONTINUOUS_DERIVATIVES,
because it reintroduces the original linear/bilinear interpolator logic that existed before EOSPAC
6.2.

0—- T LIS S S S S | T T T L) .I '.'O'-
dPt/dr continuous on grid

dPt/dr continuous
-0.02 L dPt/dr discontinuous —
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1e-06 1e-05
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Figure 9.2: Comparison of derivative values for three low temper-
ature isotherms using the EOS_LINEAR interpolation option both
with and without the EOS_DISCONTINUOUS_DERIVATIVES

option enabled.
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Figure 9.53: Comparison of derivative values for three low temper-
ature isotherms using the EOS_LINEAR interpolation option both
with and without the EOS_DISCONTINUOUS_DERIVATIVES
option enabled. This demonstrates numerical issues with the cur-
rent default bilinear interpolator’s continuous derivatives at or near
the data table boundary.

Figures 9.2 and 9.3 the differences between the calculated derivatives when using the bilinear inter-
polator both with and without the EOS_DISCONTINUOUS_DERIVATIVES option enabled. On

one hand, Figure 9.2 demonstrates an assumed advantage the continuous derivatives provide.

Unfortunately, Figure 9.3 demonstrates an example of some unforeseen numerical noise introduced
by the same continuous derivative calculations —- particularly near the data table boundaries where
the interpolated values are small. Such numerical noise has been observed away from the tabulated

table boundaries where the interpolated values are small, and this behavior can violate the ex-
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pected monotonicity-preserving characteristics of the linear/bilinear interpolator for the calculated

derivatives.

7 INVERT AT SETUP

| NEW for 6.3.1

The EOS_INVERT_AT_SETUP option, which was previously described in chap-
ter 5 section 3, allows the host code to force EOSPAC to create inverted tables for each specified

table handle during the setup phase. This, of course improves interpolation performance for the af-

fected table(s). The downside to improved performance is that one should expect degraded accuracy
for the interpolated results, because the inverted table grid may be of insufficient resolution. It was
declared that the quantification of such numeric differences are beyond the scope of this manual;
however, it is useful for the user to be aware that additional documentation is available that describes
in detail both numerical and performance results associated with the EOS_INVERT_AT SETUP
option’s usage.[13],[14],[15],[16]

7.1 Data Transformations

In order to highlight how EOSPAC 6 transforms selected data when it is loaded in conjunction with
the EOS_INVERT_AT_SETUP option, first consider that historical versions of EOSPAC [8],[9],[17]

used the following data transforms to create the grids of varied inverted tables:

Pt(p,T) — Pc(p)

P (p,T) = p (9.2)
U(p,T) =Ut(p,T) — Uc(p) (9.3)
A*(p,T) = At(p,T') — Ac(p) (9-4)

In addition to using those historical transforms, EOSPAC 6 now eliminates the isochore at p = 0
prior to table inversion, because it causes P*(p,T') — oo and it is not a physically-meaningful state

of matter.

One can easily recognize that the transforms defined by equations (9.2) to (9.4), eliminate much

of the dynamic range of the Pt, Ut and At by subtracting their associated cold curve data. Ad-
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ditionally, it is apparent from the ideal gas law that internal energy is directly proportional to

temperature. Where v = 1/p, the differential for internal energy is dependent upon (v, T)

oU oU

One of the important features of an ideal gas is that its internal energy depends only upon its

temperature, so equation (9.5) becomes

oU
dU = <8T>UTdT (9.6)

From equations (9.3) and (9.6), it is concluded that

U* T (9.7)

Similar reasoning is applied to conclude that

A T (9.8)

Similarly, the ideal gas law states that the ratio of pressure and density is directly proportional to

temperature:

Pv=RT (9.9)

The R of equation (9.9) is the Universal Gas Constant.

Given v = 1/p, equation (9.9) can be rewritten as

P
~ =RT (9.10)
p

From equations (9.2) and (9.10), it is concluded that

P* T (9.11)
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Semi-Generalized Grid Map for f(D,T)
Material 3720
1le+10 ¢ T T T T T T T T T T

1e+09 | 3
1le+08 | 3
1e+07 F .
1e+06 |- 3
100000 F 3
10000 F 3

1000 3

100 F 3

10 [ . 1 . 1 . 1 . 1 . 1 .
1e-06 0.0001 0.01 1 100 10000 1e+06

Figure 9.4: Rectangular SESAME grid of density (D) and tem-
perature (7).

Semi-Generalized Grid Map for f(D,Ut)
Materia 3720
1e+07 T T T T T

1le+06 - —
100000 ]
10000 [~ —
1000 ]
100 - —

Ut

10 - —

0.01 —

0 X OO l L 1 L 1 L 1 L 1 L 1 L
1e-06 0.0001 0.01 1 100 10000 le+06

Figure 9.5: Non-rectangular SESAME grid of density (D) and
internal energy (Ut).

Given the fact that SESAME data is tabulated with density and temperature as independent
variables, it is reasonable to conclude that the transforms of equations (9.2) to (9.4) create data

that are “temperature-like” quantities, and the non-rectangular grids represented in
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Semi-Generalized Grid Map for f(D,Pt)
Material 3720
let+12 T T T T T T T T T T

1le+10 | —

1e+08 - —
1let+06 B -
10000 B .,
[a 100 B -

0.01 | _
0.0001 -
1le-06 i

1e-08 I L 1 L 1 L 1 L 1 L 1 L
1e-06 0.0001 0.01 1 100 10000 let+06

Figure 9.6: Non-rectangular SESAME grid of density (D) and
pressure (Pt).

Semi-Generalized Grid Map for f(Pt,T)
Material 3720
le+10 F T T T T T T T T T T T T T T T T T T

1e+09 | 3
1e+08 | 3
1le+07 | 3
1e+06 - -;
100000 |- 3
10000 F 3

1000 F 3

100 F 3

10 L . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . ]
1e-08 1le-06  0.0001 0.01 1 100 10000 let06  1et+08 letl0  1letl2

Pt

Figure 9.7: Non-rectangular SESAME grid of pressure (Pt) and
temperature (7).

figures 9.5 to 9.7 are transformed into rectangular grid of density (p) and a “temperature-like”
quantity like the representation in figure 9.4. The tranformed grids of figures 9.5 and 9.6 are shown
in figures 9.8 and 9.9 respectively. While the transformed grids shown in figures 9.8 and 9.9 are
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Semi-Generalized Grid Map for f(D,Ut)
Material 3720
1e+08 T T T T T T T T T T

1let+06

10000

100 - —

U*
=
T
|

001 - —

0.0001

1e-06

1e-08 I L 1 L 1 L 1 L 1 L 1 L
1e-06 0.0001 0.01 1 100 10000 let+06

Figure 9.8: Transformed, rectangular SESAME grid of internal
energy (U*) and temperature (7).

Semi-Generalized Grid Map for f(D,Pt)
Material 3720
1e+08 T T T T T T T T T T

1le+06 - .
10000 [~ —
100 —

0.01 | .
0.0001 - —
1e-06 —

1e-08 i

le_ 10 I L 1 L 1 L 1 L 1 L 1 L
1e-06 0.0001 0.01 1 100 10000 le+06

Figure 9.9: Transformed, rectangular SESAME grid of pressure
(P*) and temperature (7).

not perfectly-rectangular like that of figure 9.4, the distributions are similar enough to stablize the
interpolated results over the entire table ranges. No transforms are applied to data associated with
(P,T) grid like that in figure 9.7.
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7.2 Usage of EOS_ INSERT DATA

It has been shown[14] that using the EOS_INSERT_DATA option can improve the numerical accu-
racy of interpolation associated with the EOS_INVERT_AT _SETUP option; however, the benefit of
this enhancement is dependent upon the selected table type, the chosen SESAME material ID and
the number of points inserted (i.e., the EOS.INSERT_DATA option’s tableOptionVal argument).
Therefore, some trial an error may be required to achieve the desired accuracy when compared to
the default interpolation mode without the EOS_INVERT _AT _SETUP option enabled.

For example, figures 9.10 and 9.11 show the birational interpolation accuracy improvement when
the EOS_INSERT _DATA option’s tableOptionVal=2, which increases the table’s associated memory
usage by an approximate factor of 9. The figures show the relative differences between the interpo-
lation results, both with and without the EOS_INVERT_AT_SETUP option enabled, are compared.

This demonstrates that there is a price to be paid for improved interpolation performance.

With EOS_INVERT_AT_SETUP versus Without EOS_INVERT_AT_SETUP Interpolated Value Relative Difference Map
Table Type EOS_T_DPt ; Material 3720; EOS_INSERT_DATA=0; EXTRAPOLATED DATA IGNORED
le+12 >=100
le+10 7 90
1e+08 . 80
le+06 . 70
I ©
10000 - 60 2
L )
-
£ 100 18850 &
[ 3
1 I : . 40 §
0.01 [ s 30
0.0001 |- . 20
1e-06 |- - 10
r A ' 1 50 percentile rel. diff. = 0.000122
1e-08 ! ! ! ! . L. 1 . 1 ! 0 95 percentile rel. diff. = 0.00399
99 percentile rel. diff. = 0.00997
le-06  0.0001  0.01 1 100 10000  1e+06 it = 0.00%97
D Low Cut-off: 0

Figure 9.10: Color map of relative differences comparing the interpolation
of T'(p, Pt), which was calculated using both of EOSPAC 6’s default and
pre-inverted (i.e., EOS_INVERT AT SETUP) inverse interpolation modes.




CHAPTER 9. SELECTED NUMERIC DETAILS

With EOS_INVERT_AT_SETUP versus Without EOS_INVERT_AT_SETUP Interpolated Value Relative Difference Map
Table Type EOS_T_DPt ; Material 3720; EOS_INSERT_DATA=2; EXTRAPOLATED DATA IGNORED
le+12 T T T T T T T T T T >=100
le+10 - ] 90
le+08 N 80
le+06 T 70
i ©
10000 N 60 2
L 9)
St
& 100 i | 50 %
o]
1 N T 40 §
0.01 4 B9 30
0.0001 & - 20
1e-06 - 10
-8 1 50 percentile rel. diff. = 3.48e-05
1e-08 . L . L . L. L . L . 0 95 percentile rel. diff. = 0.000768
99 percentile rel. diff. = 0.00442
le-06  0.0001  0.01 1 100 10000  1e+06 ff. = 0.00442
D Low Cut-off: 0

Figure 9.11: Color map of relative differences comparing the interpolation
of T'(p, Pt), which was calculated using both of EOSPAC 6’s default and
pre-inverted (i.e., EOS_INVERT_AT _SETUP) inverse interpolation modes
and the EOS_INSERT_DATA=2 option enabled.




USAGE EXAMPLES

Reading computer manuals without the hardware is as frustrating as reading sex manuals

without the software.

— Arthur C. Clarke

It’s time to use the software on the available hardware. This section contains various examples

showing the usage of the interface routines defined in chapters 5 to 7.

1 C HOST CODE EXAMPLE

1/*********************************************************************

2 * Example Program

3 X ———— - - - - ——————————
4 * Filetype: (SOURCE)

5 %

6 * Copyright -- see file named COPYRIGHTNOTICE

70X

8 ********************************************************************/

10 /*! \file

11 * \ingroup examples

12 * \brief This is a simple C example of how to use EOSPAC6 interface.
13 %/

14

15 #include <stdio.h>

16 #include <stdlib.h>

87
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17 #include "eos_Interface.h"

18

-

9 int main ()

20 {

21 enum

22 { nTablesE = 5 };

23 enum

24 { nXYPairsE = 4 };

25 enum

26 { nInfoltemsE = 12 };
27

2s  EOS_INTEGER i, j;

29 EOS_REAL X[nXYPairsE], Y[nXYPairsE], F[nXYPairsE], dFx[nXYPairsE],

30 dFy [nXYPairsE] ;

31 EOS_INTEGER tableType[nTablesE], numIndVars[nTablesE];

32 EOS_INTEGER matID[nTablesE];

33 EOS_INTEGER tableHandle[nTablesE];

3¢ EOS_INTEGER errorCode;

35 EOS_INTEGER tableHandleErrorCode;

36 EOS_INTEGER nTables;

37 EOS_INTEGER nXYPairs;

33 EOS_REAL infoVals[nInfolItemsE];

30 EOS_INTEGER nInfoltems;

40  EOS_INTEGER infoltems[nInfoltemsE] =
41 EOS_Cmnt_Len,

42 EOS_Exchange_Coeff,
43 EOS_F_Convert_Factor,
44 EOS_Log_Val,

45 EOS_Material_ID,

46 EOS_Mean_Atomic_Mass,
47 EOS_Mean_Atomic_Num,
48 EOS_Modulus,

49 EOS_Normal_Density,
50 EO0S_Table_Type,

51 EOS_X_Convert_Factor,
52 EOS_Y_Convert_Factor
53 };

54 EOS_CHAR *infoItemDescriptions[nInfoItemsE]
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"The length in characters of the comments available for the specified data table",

"The exchange coefficient",

"The conversion factor corresponding to the dependent variable, F(x,y)",
"Non-zero if the data table is in a loglO format",

"The SESAME material identification number",

"The mean atomic mass",
"The mean atomic number",
"The solid bulk modulus",

"The normal density",

"The type of data table. Corresponds to the parameters in APPENDIX B and APPENDIX C",

"The conversion factor corresponding to the primary independent variable, x",

"The conversion factor corresponding to the secondary independent variable, y"

3
EOS_CHAR *tableTypeLabel[nTableskE] = {
"EOS_Pt_DT",
"EOS_Dv_T",
"EOS_Ogb",
"EOS_Comment",
"EOS_Info"
3
EOS_CHAR errorMessage [E0OS_MaxErrMsglen] ;

EOS_INTEGER one = 1;
nTables = nTablesE;
nXYPairs = nXYPairsE;

nInfoltems = nInfoltemsE;

/*

* EOS_Pt_DT, material 2140 works for Sesame table 301 (record type 1)
EOS_Dv_T, material 2140 works for Sesame table 401 (record type 2)

*

* E0OS_Ogb, material 12140 works for Sesame table 501 (record type 3)
* EO0S_Comment, material 2140 works for Sesame tables 101-199 (record type 4)
* EOS_Info, material 2140 works for Sesame table 201 (record type 5)

*/
tableType[0] = EOS_Pt_DT;
tableTypel[1] = EOS_Dv_T;
tableType[2] = E0S_Ogb;
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tableType[3]
tableType [4]

EOS_Comment ;
EOS_Info;

]
o O O = N

numIndVars [0]

numIndVars[1]
numIndVars[2]
numIndVars[3]
numIndVars [4]

matID[0]
matID[1]
matID[2]
matID[3]
matID[4]

2140;
2140;
12140;
2140;
2140;

errorCode = EOS_OK;
for (i = 0; i < nTables; i++) {
tableHandle[i] = O;

/*
* initialize table data objects

*/

eos_CreateTables (&nTables, tableType, matID, tableHandle, &errorCode);
if (errorCode '= E0S_OK) {
for (i = 0; i < nTables; i++) {
tableHandleErrorCode = EOS_OK;
eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);
eos_GetErrorMessage (&tableHandleErrorCode, errorMessage) ;
printf ("eos_CreateTables ERROR %i: %s\n", tableHandleErrorCode,

errorMessage) ;

/*
* set some options

*/
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for (i = 0; i < nTables; i++) {
/* enable smoothing */
eos_SetOption (&tableHandle[i], &EOS_SMOOTH, EOS_NullPtr, &errorCode);
if (errorCode !'= E0S_0K) {
eos_GetErrorMessage (&errorCode, errorMessage);

printf ("eos_SetOption ERROR %i: %s\n", errorCode, errorMessage);

/*
* load data into table data objects
*/

eos_LoadTables (&nTables, tableHandle, &errorCode);
if (errorCode !'= E0S_OK) {
eos_GetErrorMessage (&errorCode, errorMessage);
printf ("eos_LoadTables ERROR %i: %s\n", errorCode, errorMessage);
for (i = 0; i < nTables; i++) {
tableHandleErrorCode = EOS_OK;
eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode) ;
eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);
printf ("eos_LoadTables ERROR %i (TH=%i): %s\n", tableHandleErrorCode,

tableHandle[i], errorMessage);

X

}

/*
* interpolate -- errors codes are intentionally produced
*/

X[0] = 3000.;

X[1] = 6000.;

X[2] = 8200.;

X[3] = 8300.;

Y[0] = 20000.0;
Y[1] = 620000.0;
Y[2] = 4000000.0;
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169 Y[3] = 200000000.0;
170

i1 for (i = 0; i < nTables; i++) {

172 printf ("\n--- Interpolate using tableType %s ---\n", tableTypeLabel[i]);
173 eos_Interpolate (&tableHandle[i], &nXYPairs, X, Y, F, dFx, dFy,

174 &errorCode) ;

175 printf ("%s Interpolation Results:\n", tableTypeLabell[il);

176 if (errorCode != EOS_OK) {

177 eos_GetErrorMessage (&errorCode, errorMessage);

178 printf ("eos_Interpolate ERROR %i (TH=%i): %s\n", errorCode,

179 tableHandle[i], errorMessage);

180 }

181 else {

182 for (j = 0; j < nXYPairs; j++) {

183 if (numIndVars[i] == 1)

184 printf ("\ti=%i\tX = %e, F = e, dFx = Ye, errorCode: %d\n",
185 j, X[j1, F[jl, dFx[j], errorCode);

186 if (numIndVars[i] == 2)

187 printf

188 ("\ti=%i\tX = Ye, Y = Y%e, F = %e, dFx = %e, dFy = Je, errorCode: %d\n",
189 j, X[31, Y[j1, F[j1, dFx[jl, dFy[jl, errorCode);

190 }

191 }

02}

193

194 /%

195 * retrieve table info -- errors codes are intentionally produced
196 */

198 for (i = 0; i < nTables; i++) {

199 printf ("\n--- Table information for tableType %s , tableHandle=%i ---\n",

200 tableTypelabel[i], tableHandle[i]);

201 for (j = 0; j < nInfoltems; j++) {

202 EOS_BOOLEAN equal;

203 eos_GetTableInfo (&(tableHandle[i]), &one, &(infoItems([j]),

204 &(infoVals[j]l), &errorCode);

205 eos_ErrorCodesEqual ((EOS_INTEGER*)&EOS_INVALID_INFO_FLAG, &errorCode, &equal);

206 if (errorCode == EQ0S_0OK) {
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printf ("%2i. %-82s: %13.6f\n", j + 1, infoltemDescriptions[j],
infoVals[j]);
b
else if (! equal) {
/* Ignore EOS_INVALID_INFO_FLAG since not all infoltems are currently
applicable to a specific tableHandle. */
eos_GetErrorMessage (&errorCode, errorMessage);

printf ("eos_GetTableInfo ERROR %i: %s\n", errorCode, errorMessage);

/*
* Destroy all data objects
*/

eos_DestroyAll (&errorCode);
if (errorCode != EO0OS_OK) {
for (i = 0; i < nTables; i++) {
tableHandleErrorCode = EOS_OK;
eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode) ;
eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);
printf ("eos_DestroyAll ERROR %i: %s\n", tableHandleErrorCode,

errorMessage) ;

return O;

¥

2 C++ HOST CODE EXAMPLE

/*********************************************************************

* Example Program
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/

#
#

* Filetype: (SOURCE)

*

* Copyright -- see file named COPYRIGHTNOTICE
*

stk ok ok ok o ok ok ok ok ok ok sk ok ook ok ok o ok ok sk ok ok ok sk ok ok ok sk ok ok sk ok sk ok ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok /

1 \file
* \ingroup examples
* \brief This is a simple C++ example of how to use EOSPAC6 interface.

*/

include <iostream>

include <iomanip>

17 #include "eos_Interface.h"

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

using namespace std;

int main ()

{

const EOS_INTEGER nTableskE = 5;
const EOS_INTEGER nXYPairskE = 4;
const EOS_INTEGER nInfoltemskE = 12;

EOS_INTEGER i, j;

EOS_REAL X[nXYPairsE], Y[nXYPairsE], F[nXYPairsE], dFx[nXYPairsE],
dFy [nXYPairsE];

EOS_INTEGER tableType[nTablesE], numIndVars[nTablesE];

EOS_INTEGER matID[nTablesE];

EOS_INTEGER tableHandle[nTablesE];

EOS_INTEGER errorCode;

EOS_INTEGER tableHandleErrorCode;

EOS_INTEGER nTables;

EOS_INTEGER nXYPairs;

EOS_REAL infoVals[nInfoIltemsE];

EOS_INTEGER nInfoltems;

EOS_INTEGER infoltems[nInfoltemsE] = {
EOS_Cmnt_Len,
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};

EOS_Exchange_Coeff,
EOS_F_Convert_Factor,
EO0S_Log_Val,
EOS_Material_ID,
EOS_Mean_Atomic_Mass,
EOS_Mean_Atomic_Num,
EOS_Modulus,
EOS_Normal_Density,
EOS_Table_Type,
EOS_X_Convert_Factor,
EOS_Y_Convert_Factor

const EOS_CHAR *infoltemDescriptions[nInfoIltemsE] = {

};

const EOS_CHAR #*tableTypeLabel [nTablesk] = {

};

EOS_CHAR errorMessage [EOS_MaxErrMsgLen] ;

"The length in characters of the comments available for the specified data table",

"The exchange coefficient",

"The conversion factor corresponding to the dependent variable, F(x,y)",

"Non-zero if the data table is in a loglO format",

"The SESAME material identification number",

"The mean atomic mass",
"The mean atomic number",
"The solid bulk modulus",

"The normal density",

"The type of data table. Corresponds to the parameters in APPENDIX B and APPENDIX C",

"The conversion factor corresponding to the primary independent variable, x",

"The conversion factor corresponding to the

"EOS_Pt_DT",
"EOS_Dv_T",
"E0S_Ogb",
"EOS_Comment",
"EQOS_Info"

EOS_INTEGER one = 1;

nTables = nTablesE;

secondary independent variable, y"
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nXYPairs = nXYPairsE;

nInfoltems = nInfoltemsE;

/*
* EOS_Pt_DT, material 2140 works for Sesame table 301 (record type 1)
* EOS_Dv_T, material 2140 works for Sesame table 401 (record type 2)
* E0S_Ogb, material 12140 works for Sesame table 501 (record type 3)
* E0S_Comment, material 2140 works for Sesame tables 101-199 (record type 4)
* EOS_Info, material 2140 works for Sesame table 201 (record type 5)
*/

tableType[0] = EOS_Pt_DT;
tableTypel[1] = EOS_Dv_T;
tableType[2] = EO0S_Ogb;
tableType[3] = EOS_Comment;
tableType[4] = EOS_Info;
numIndVars[0] = 2;
numIndVars[1] = 1;
numIndVars([2] = 0;
numIndVars[3] = 0;
numIndVars([4] = O;
matID[0] = 2140;

matID[1] = 2140;

matID[2] = 12140;
matID[3] = 2140;

matID[4] = 2140;

errorCode = EOS_OK;
for (i = 0; i < nTables; i++) {

tableHandle[i] = O;

/*
* initialize table data objects

*/

eos_CreateTables (&nTables, tableType, matID, tableHandle, &errorCode);
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if (errorCode !'= E0S_OK) {
for (i = 0; i < nTables; i++) {
tableHandleErrorCode = EOS_OK;
eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode) ;
eos_GetErrorMessage (&tableHandleErrorCode, errorMessage) ;

cout << "eos_CreateTables ERROR " << tableHandleErrorCode

<< ": " << errorMessage << ’\n’;
b
X
/*
* set some options
*/

for (i = 0; i < nTables; i++) {
/* enable smoothing */
eos_SetOption (&tableHandle[i], &EOS_SMOOTH, EOS_NullPtr, &errorCode);
if (errorCode '= E0S_OK) {

eos_GetErrorMessage (&errorCode, errorMessage);

cout << "eos_SetOption ERROR " << errorCode << ": " << errorMessage << ’\n’;
b
b
/*
* load data into table data objects
*/

eos_LoadTables (&nTables, tableHandle, &errorCode);
if (errorCode != E0S_0K) {
eos_GetErrorMessage (&errorCode, errorMessage);
cout << "eos_LoadTables ERROR " << errorCode << ": " << errorMessage << ’\n’;
for (i = 0; i < nTables; i++) {
tableHandleErrorCode = EOS_OK;
eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);
eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);
cout << "eos_LoadTables ERROR " << tableHandleErrorCode << " (TH="

<< tableHandle[i] << "): " << errorMessage << ’\n’;
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b

/*
* interpolate -- errors codes are intentionally produced
*/

X[0] = 3000.;

X[1] = 6000.;

X[2] = 8200.;

X[3] = 8300.;

Y[0] = 20000.0;

Y[1] = 620000.0;

Y[2] = 4000000.0;

Y[3] = 200000000.0;

for (i = 0; i < nTables; i++) {

cout

<< "\n--- Interpolate using tableType "

<< tableTypelLabel[i] << " ---\n";

eos_Interpolate (&tableHandle[i], &nXYPairs, X, Y, F, dFx, dFy,

&errorCode) ;

cout << tableTypeLabel[i] << " Interpolation Results:\n";
if (errorCode != E0S_0K) {

eos_GetErrorMessage (&errorCode, errorMessage);

cout << "eos_Interpolate ERROR " << errorCode << "(TH="

<< tableHandle[i] << "): " << errorMessage << ’\n’;
}
else {
for (j = 0; j < nXYPairs; j++) {
if (numIndVars([i] == 1)
cout << "\ti=" << j
<< "\tX = " << scientific << X[j]
<< ", F =" << scientific << F[j]
<< ", dFx = " << scientific << dFx[j]
<< ", errorCode: " << errorCode << ’\n’;
if (numIndVars[i] == 2)
cout << "\ti=" << j
<< "\tX = " << scientific << X[j]
<< ", Y =" << scientific << Y[j]
<< ", F =" << scientific << F[j]
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194 << ", dFx " << scientific << dFx[j]
195 << ", dFy = " << scientific << dFy[j]

196 << ", errorCode: " << errorCode << ’\n’;

201 /*

202 * retrieve table info -- errors codes are intentionally produced
203 x/

204

205 for (i = 0; i < nTables; i++) {

206 cout << "\n--- Table information for tableType " << tableTypeLabell[i]
207 << " | tableHandle=" << tableHandle[il

208 << " ——-\n";

209 for (j = 0; j < nInfoIltems; j++) {

210 EOS_BOOLEAN equal;

211 eos_GetTableInfo (&(tableHandle[i]), &one, &(infoIltems[j]l),

212 &(infoVals[j]l), &errorCode);

213 eos_ErrorCodesEqual ((EOS_INTEGER*)&EQS_INVALID_INFO_FLAG, &errorCode, &equal);
214 if (errorCode == E0S_0K) {

215 cout.setf(ios::fixed,ios::floatfield);

216 cout << setprecision(2) << setiosflags(ios::fixed)

217 << setw(2) << right << j + 1 << " "

218 << setw(82) << left << infoltemDescriptions[j] << ": "

219 << setprecision(6) << setiosflags(ios::fixed)

220 << setw(13) << right << infoVals[j] << ’\n’;

221 }

222 else if (! equal) {

223 /* Ignore EOS_INVALID_INFO_FLAG since not all infoltems are currently
224 applicable to a specific tableHandle. */

225 eos_GetErrorMessage (&errorCode, errorMessage);

226 cout << "eos_GetTableInfo ERROR " << errorCode

227 << ": " << errorMessage << ’\n’;

228 }

229 }

230 T

231
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/*
* Destroy all data objects
*/

eos_DestroyAll (&errorCode);
if (errorCode != E0S_OK) {
for (i = 0; i < nTables; i++) {
tableHandleErrorCode = EOS_0OK;
eos_GetErrorCode (&tableHandle[i], &tableHandleErrorCode);
eos_GetErrorMessage (&tableHandleErrorCode, errorMessage);
cout << "eos_DestroyAll ERROR " << tableHandleErrorCode

<< ": " << errorMessage << ’\n’;

return O;

3 FORTRAN 77 HOST CODE EXAMPLE

C 3k 3k 3k >k >k 3k 3k 5k 5k >k >k 3k 3k 3k >k %k >k 5k 3k >k >k >k 3k 5k 5k >k >k 5k 3k 5k >k %k >k 5k 3k 5k >k %k 5k 5k >k >k %k >k 3k >k >k >k >k %k 3k >k >k %k >k >k >k >k >k >k %k >k > >k %k %k %k > *k

C

C

Example F77 Program

Filetype: (SOURCE)

Copyright -- see file named COPYRIGHTNOTICE

€3k 3k 3K >k >k 3k 3k 5k 5k >k >k 5k 3k 3k >k %k >k 5k 5k >k >k 5k 3k 5k 5k >k >k 3k 3k 5k >k %k >k 3k 3k 5k >k >k 5k 5k >k >k %k >k 3k >k >k >k >k %k 3k >k >k %k >k >k >k >k >k >k %k >k >k >k %k %k %k > *k

c> \file

¢> \ingroup examples

c¢> \brief This is a simple F77 example of how to use EOSPAC6 interface.

program TestF77
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&

5 S S S S > A > s A > i

implicit none

include ’eos_Interface.fi’

integer*4 nTables, nXYPairs, nInfoltems
parameter (nTables = 5)
parameter (nXYPairs = 4)

parameter (nInfoltems = 12)

integer*4 i, j

real*8 X(nXYPairs), Y(nXYPairs), F(nXYPairs), dFx(nXYPairs),
dFy (nXYPairs)

integer*4 tableType(nTables), numIndVars(nTables)

integer*4 matID(nTables)

integer*4 tableHandle(nTables)

integer*4 errorCode

integer*4 tableHandleErrorCode

real*8 infoVals(nInfolItems)

integer*4 infoItems(nInfoltems)

character*82 infoIltemDescriptions(nInfoltems)

character*20 tableTypeLabel(nTables)

character*(EOS_MaxErrMsglen) errorMessage

integer k

data infoltems /
EOS_Cmnt_Len,
EOS_Exchange_Coeff,
EOS_F_Convert_Factor,
EO0S_Log_Val,
EOS_Material_ID,
EOS_Mean_Atomic_Mass,
EOS_Mean_Atomic_Num,
EOS_Modulus,
EOS_Normal_Density,
EOS_Table_Type,
EOS_X_Convert_Factor,
EOS_Y_Convert_Factor
/
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data infoItemDescriptions /

&’The length in characters of the comments available for the specif

&ied data table’,

&’The exchange coefficient’,

&’The conversion factor corresponding to the dependent variable, F(

&x,y) 7,

&’Non-zero if the data table is in a loglO format’,

&’The SESAME material identification number’,

&’The mean atomic mass’,

&’The mean atomic number’,

&’The solid bulk modulus’,

&’The normal density’,

&’The type of data table. Corresponds to the parameters in APPENDIX

& B and APPENDIX C’,

&’The conversion factor corresponding to the primary independent va

&riable, x’,

&’The conversion factor corresponding to the secondary independent

&variable, y’

&/

data tableTypeLabel /

& ’EOS_Pt_DT’,

& ’EOS_Dv_T’,

& ’E0S_Ogb’,

& ’E0OS_Comment’,

& ’E0S_Info’

& /

logical equal

c EOS_Pt_DT, material 2140 works for Sesame table 301 (record type 1)
c EOS_Dv_T, material 2140 works for Sesame table 401 (record type 2)
c E0S_Ogb, material 12140 works for Sesame table 501 (record type 3)
C EOS_Comment, material 2140 works for Sesame tables 101-199 (record type 4)
C EOS_Info, material 2140 works for Sesame table 201 (record type 5)

tableType(1) = EOS_Pt_DT
tableType(2) = EO0S_Dv_T
tableType(3) = E0S_Ogb
tableType(4) = EOS_Comment
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C

10

15

&

tableType(5) = E0S_Info

numIndVars (1)
numIndVars(2)
numIndVars(3)
numIndVars(4)
numIndVars (5)

]
O O O ~» N

matID(1)
matID(2)
matID(3)
matID(4)
matID(5)

2140
2140
12140
2140
2140

errorCode = EOS_OK
do 10 i=1, nTables
tableHandle(i) = 0

continue

initialize table data objects

call eos_CreateTables ( nTables, tableType, matID,
tableHandle, errorCode)
if (errorCode.NE.EOS_0K) then
do 15 i=1, nTables
tableHandleErrorCode = EO0S_QOK
call eos_GetErrorCode
( tableHandle(i), tableHandleErrorCode )
call eos_GetErrorMessage
( tableHandleErrorCode, errorMessage )
call strlength(errorMessage, EOS_MaxErrMsglen, k)
write(*,998) ’eos_CreateTables ERROR ’,tableHandleErrorCode,
’: ?,errorMessage(1:k)
continue

endif
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130 C set some options
131 C
132 do 20 i=1, nTables
133 C enable smoothing
134 call eos_SetOption ( tableHandle(i), EOS_SMOOTH,
135 EOS_NullVal, errorCode )
136 if (errorCode.NE.EQOS_0K) then
137 call eos_GetErrorMessage ( errorCode, errorMessage )
138 call strlength(errorMessage, EOS_MaxErrMsglen, k)
139 write(*,998) ’eos_SetOption ERROR ’, errorCode,
140 >: ?, errorMessage(1l:k)
141 endif
2 20 continue
143
144 C
145 C load data into table data objects
146 C
147 call eos_LoadTables ( nTables, tableHandle, errorCode)
148 if (errorCode.NE.EOS_OK) then
149 call eos_GetErrorMessage ( errorCode, errorMessage )
150 call strLength(errorMessage, EO0S_MaxErrMsglen, k)
151 write(*,998) ’eos_LoadTables ERROR ’, errorCode, ’: 7,
152 errorMessage (1:k)
153 do 25 i=1, nTables
154 tableHandleErrorCode = EOS_OK
155 call eos_GetErrorCode
156 ( tableHandle(i), tableHandleErrorCode )
157 call eos_GetErrorMessage
158 ( tableHandleErrorCode, errorMessage )
159 call strLength(errorMessage, E0S_MaxErrMsglen, k)
160 write(*,994) ’eos_LoadTables ERROR ’, tableHandleErrorCode,
161 > (TH=’, tableHandle(i), ’): 7,
162 errorMessage (1:k)
163 25 continue
164 endif
165
166 C
167 C interpolate —-- errors codes are intentionally produced
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168 C

169

170

171
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175
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185
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195

199

200

201

202

203

204 C

205 C

40

30

X(1)
X(2)
X(3)
X(4)

Y(1)
Y(2)
Y(3)
Y(4)

3000.d0
6000.d0
8200.d0
8300.d0

20000.0d0
620000.0d0
4000000.0d0
200000000.0d0

do 30 i=1, nTables

write(x,*x) 2>

write(*,997) ’--- Interpolate using tableType ’,

tableTypelLabel(i),’ ---’

call eos_Interpolate ( tableHandle(i), nXYPairs, X, Y, F,

dFx, dFy, errorCode)

write(*,997) tableTypelLabel(i), ’ Interpolation Results:’
if (errorCode.NE.EQS_OK) then

call eos_GetErrorMessage ( errorCode, errorMessage )
call strLength(errorMessage, EOS_MaxErrMsglen, k)
write(*,994) ’eos_Interpolate ERROR ’, errorCode,

> (TH=’, tableHandle(i), ’): 7,

errorMessage(1:k)

else

do 40 j=1, nXYPairs
if (numIndVars(i).EQ.1) then
write(*,996) j-1,X(j),F(j),dFx(j),errorCode
endif
if (numIndVars(i).EQ.2) then

write(*,999) j-1,X(3),Y(j),F(j),dFx(j),dFy(j),errorCode

endif

continue

endif

continue

Retrieve all miscellaneous table info
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206 C

207 do 45 i=1, nTables

208 write(*,*) 7

209 write(*,997) ’--- Table information for tableType ’,

210 & tableTypelabel(i), ’, tableHandle=’, tableHandle(i),

211 & ? -

212 do 50 j=1, nInfoltems

213 call eos_GetTableInfo (tableHandle(i), 1,

214 & infoItems(j), infoVals(j), errorCode)
215 call eos_ErrorCodesEqual (EOS_INVALID_INFO_FLAG, errorCode,
216 & equal)

217 if (errorCode.EQ.E0S_0K) then

218 write(*,995) j,’. ’,infoltemDescriptions(j), ’: 7,

219 & infoVals(j)

220 else if (.NOT.equal) then

221 C Ignore EOS_INVALID_INFO_FLAG since not all infoltems are currently
222 C applicable to a specific tableHandle.

223 call eos_GetErrorMessage ( errorCode, errorMessage )

224 call strLength(errorMessage, EO0S_MaxErrMsglen, k)

225 write(*,998) ’eos_LoadTables ERROR ’, errorCode,

226 & >: 7, errorMessage(1:k)

227 endif

228 50 continue

229 45 continue

231 C

232 C Destroy all data objects

233 C

234 call eos_DestroyAll (errorCode)

235 if (errorCode.NE.EOS_OK) then

236 do 35 i=1, nTables

237 tableHandleErrorCode = EOS_OK

238 call eos_GetErrorCode (

239 & tableHandle (i), tableHandleErrorCode )
240 call eos_GetErrorMessage (

241 & tableHandleErrorCode, errorMessage )
242 call strLength(errorMessage, E0S_MaxErrMsglen, k)

243 write(*,998) ’eos_DestroyAll ERROR ’, tableHandleErrorCode,
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35

994
995
996

997
998
999

& >: 7, errorMessage(1:k)
continue
endif

format (a,ib5,a,il,2a)

format (i2,a,a,a,f13.6)

format (’ i=?,12,” X =’,1pel3.6,

& >, F =",1pel3.6,’, dFx =’,1pel3.6,’, errorCode: ’,ib5)
format (a,:,a,:,2(a,:,1i2))

format (a,ib5,2a)

format (° i=’,i2,’ X =’,1pel3.6,’, Y =’,1pel3.6,

>, F =’,1pel3.6,’, dFx =’,1pel3.6,’, dFy =’,
& 1pel3.6,’, errorCode: ’,ib)

end

subroutine strLength(str, length, trimmedLength)
integer i, length, trimmedLength
character*(*) str
trimmedLength = 0
do 5 i=length, 1, -1
if (trimmedLength.EQ.O0 .AND. str(i:i).NE.’ ’ .AND.
& str(i:i) .NE.char(0)) then
trimmedLength = i
endif
continue

end

FORTRAN 90 HOST CODE EXAMPLE
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Example F90 program

Filetype: (HEADER)

Copyright -- see file named COPYRIGHTNOTICE
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15k sk ok ok sk ok sk sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok 3k ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok %k

1> @file

I'l @ingroup examples

Il @brief This is a simple F90 example of how to use EOSPAC6 interface.

program TestF90

use eos_Interface

implicit none

integer (EOS_INTEGER) ,parameter :: nTables = 5
integer (EOS_INTEGER) ,parameter :: nXYPairs = 4
integer (EOS_INTEGER) ,parameter :: nInfoltems = 12

integer (EOS_INTEGER)

i, j

real (EOS_REAL) :: X(nXYPairs), Y(nXYPairs), F(nXYPairs), dFx(nXYPairs), dFy(nXYPairs)

integer (EOS_INTEGER)
integer (EOS_INTEGER)
integer (EOS_INTEGER)
integer (EOS_INTEGER)
integer (EOS_INTEGER)

: tableType(nTables), numIndVars(nTables)
:: matID(nTables)
:: tableHandle(nTables)

errorCode

:: tableHandleErrorCode

real (EOS_REAL) :: infoVals(nInfoItems)

integer (EOS_INTEGER)
EOS_Cmnt_Len, &

EOS_Exchange_Coeff,

infoItems(nInfoltems) = (/ &

&

EOS_F_Convert_Factor, &

EOS_Log_Val, &
EOS_Material_ID, &

EOS_Mean_Atomic_Mass, &
EOS_Mean_Atomic_Num, &

EOS_Modulus, &

EOS_Normal_Density, &

EOS_Table_Type, &

EOS_X_Convert_Factor, &
EOS_Y_Convert_Factor &
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/)

character(82) :: infoltemDescriptions(nInfoltems) = (/ &

’The length in characters of the comments available for the specified data table 7,
’The exchange coefficient ’,
’The conversion factor corresponding to the dependent variable, F(x,y) ’,
’Non-zero if the data table is in a loglO format 7,
’The SESAME material identification number 7,
’The mean atomic mass g
’The mean atomic number 7,
’The solid bulk modulus g
’The normal density ’,
’The type of data table. Corresponds to the parameters in APPENDIX B and APPENDIX C’,
’The conversion factor corresponding to the primary independent variable, x ’,

’The conversion factor corresponding to the secondary independent variable, y ’

/)

character(11) :: tableTypelLabel(nTables) = (/ &

EOS_Pt_DT 7, &
EOS_Dv_T 2,
’EO0S_Ogb 7,
’EOS_Comment’ ,
’EO0S_Info ’
/)

L5 S = =

character (EOS_MaxErrMsglen) :: errorMessage

logical equal

EOS_Pt_DT, material 2140 works for Sesame table 301 (record type 1)
EOS_Dv_T, material 2140 works for Sesame table 401 (record type 2)
EOS_Ogb, material 12140 works for Sesame table 501 (record type 3)
EOS_Comment, material 2140 works for Sesame tables 101-199 (record type 4)
E0OS_Info, material 2140 works for Sesame table 201 (record type 5)

tableType(1) = EOS_Pt_DT
tableType(2) = EO0S_Dv_T
tableType(3) = E0S_Ogb
tableType(4) = EO0S_Comment
tableType(5) = EOS_Info

numIndVars(1l) = 2

5 S A S A = = = S A R R
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numIndVars(2) = 1
numIndVars(3) = 0
numIndVars(4) = 0
numIndVars(5) = 0
matID(1) = 2140
matID(2) = 2140
matID(3) = 12140
matID(4) = 2140
matID(5) = 2140

errorCode = EOS_OK

do i=1, nTables
tableHandle(i) = 0

enddo

]
! initialize table data objects
!
call eos_CreateTables ( nTables, tableType, matID, tableHandle, errorCode)
if (errorCode.NE.E0S_OK) then
do i=1, nTables
tableHandleErrorCode = EO0S_OK
call eos_GetErrorCode ( tableHandle(i), tableHandleErrorCode )
call eos_GetErrorMessage ( tableHandleErrorCode, errorMessage )
write(*,998) ’eos_CreateTables ERROR ’, tableHandleErrorCode, ’: ’, &
errorMessage(1: (len_trim(errorMessage)-1))
enddo

endif

1
! set some options
!
do i=1, nTables
! enable smoothing
call eos_SetOption ( tableHandle(i), E0OS_SMOOTH, E0S_NullVal, errorCode )
if (errorCode.NE.EOS_0K) then

call eos_GetErrorMessage ( errorCode, errorMessage )
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121 write(*,998) ’eos_SetOption ERROR ’, errorCode, ’: ’, &
122 errorMessage(1: (len_trim(errorMessage)-1))
123 endif

124 enddo

125

126 !

127! load data into table data objects

128 !

129 call eos_LoadTables ( nTables, tableHandle, errorCode)

130 if (errorCode.NE.EQOS_OK) then

131 call eos_GetErrorMessage ( errorCode, errorMessage )

132 write(*,998) ’eos_LoadTables ERROR ’, errorCode, ’: ’, &

133 errorMessage(1: (len_trim(errorMessage)-1))

134 do i=1, nTables

135 tableHandleErrorCode = EOS_OK

136 call eos_GetErrorCode ( tableHandle(i), tableHandleErrorCode )
137 call eos_GetErrorMessage ( tableHandleErrorCode, errorMessage )
138 write(*,994) ’eos_LoadTables ERROR ’, tableHandleErrorCode, ’> (TH=’, &
139 tableHandle(i), ’): 7, &

140 errorMessage(1: (len_trim(errorMessage)-1))

141 enddo

142 endif

143

144 |

145 ! interpolate -- errors codes are intentionally produced
146 !

147 X(1) = 3000._EOS_REAL

s X(2) = 6000._EOS_REAL

149 X(3) = 8200._EOS_REAL

150 X(4) = 8300._EOS_REAL

151

152 Y(1) = 20000.0_EOS_REAL

153 Y(2) = 620000.0_EOS_REAL

152 Y(3) = 4000000.0_EOS_REAL
155 Y(4) = 200000000.0_EOS_REAL

157 do i=1, nTables

158 write(*,*x) ? 2
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write(*,997) ’--- Interpolate using tableType ’, tableTypelLabel(i),’ ---’
call eos_Interpolate ( tableHandle(i), nXYPairs, X, Y, F, dFx, dFy, errorCode)
write(*,997) tableTypelLabel(i), ’ Interpolation Results:’
if (errorCode.NE.EOS_0K) then
call eos_GetErrorMessage ( errorCode, errorMessage )
write(*,994) ’eos_Interpolate ERROR ’, errorCode, ’ (TH=’, &
tableHandle(i), ’): ’, &
errorMessage(1: (len_trim(errorMessage)-1))
else
do j=1, nXYPairs
if (numIndVars(i).EQ.1) then
write(*,996) j-1,X(j),F(j),dFx(j),errorCode
endif
if (numIndVars(i).EQ.2) then
write(*,999) j-1,X(j),Y(j),F(j),dFx(j),dFy(j),errorCode
endif
enddo

endif

enddo

Retrieve all miscellaneous table info

do i=1, nTables

write(*,%x) ’
write(*,997) ’--- Table information for tableType ’, tableTypelLabel(i), &
> tableHandle=’, tableHandle(i), ’> ---’
do j=1, nInfoltems
call eos_GetTableInfo ( tableHandle(i), 1_EOS_INTEGER, infoItems(j), &
infoVals(j), errorCode )
call eos_ErrorCodesEqual (EOS_INVALID_INFO_FLAG, errorCode, equal)
if (errorCode.EQ.E0S_0K) then
write(*,995) j,’. ’,infoltemDescriptions(j), ’: ’, infoVals(j)
else if (.NOT.equal) then
! Ignore EOS_INVALID_INFO_FLAG since not all infoltems are currently
! applicable to a specific tableHandle.
call eos_GetErrorMessage ( errorCode, errorMessage )

write(*,998) ’eos_GetTableInfo ERROR ’, errorCode, ’: ’, &
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197

198

199

errorMessage(1l: (len_trim(errorMessage)-1))

endif

enddo

200 enddo

201
202 !
203 !

204 !

Destroy all data objects

205 call eos_DestroyAll (errorCode)
206 if (errorCode.NE.EOS_OK) then

207

208

209

210

211

212

213

do i=1, nTables
tableHandleErrorCode = E0S_0OK

call eos_GetErrorCode ( tableHandle(i), tableHandleErrorCode )
call eos_GetErrorMessage ( tableHandleErrorCode, errorMessage )

write(*,998) ’eos_DestroyAll ERROR ’, tableHandleErrorCode,

errorMessage(1: (len_trim(errorMessage)-1))

enddo

214 endif

215
216 994
217 995
218 996
219
220 997
221 998
222 999
223
224
225

226 end

format (a,i5,a,il,2a)

format (i2,a,a,a,f13.6)

format (° i=’,12,” X =7,1pel3.6, &

>, F =’,1pel3.6,’, dFx =’,1pel3.6,’, errorCode:

format (a,:,a,:,2(a,:,i2))

format (a,ib5,2a)

format (’ i=’,i2,” X =’,1pel3.6,’, Y =7,1pel3.6, &
>, F =’,1pel13.6,’, dFx =’,1pel3.6,’, dFy =’, &
1pel13.6,’, errorCode: ’,ib)

program TestF90

’,15)

).

)

b

&




114 CHAPTER 10. USAGE EXAMPLES




TECHNICAL SUPPORT
INFORMATION

We've stepped in a pile of should.
— Anonymous
Online documentation and references related to EOSPAC are provided at the following URL on
both the open and secure networks:

https://xweb.lanl.gov /projects/data/eos/

If you find that you are in need of technical support, bug reports and feature requests for EOSPAC
version 6 can be obtained or submitted by contacting the Data Team via the EOSPAC version 6

mailing list, which is available on both the open and secure networks:

eospac-help@lanl.gov

The developer(s) responsible for the EOSPAC code base are listed as follows:

David A. Pimentel Ginger A. Young
Los Alamos National Laboratory Los Alamos National Laboratory
MS F663 MS B295

WRS-SNA, TA-03-1400, Rm. 4116 | HPC-ENV, TA-03-1400, Rm. 4210
Los Alamos, New Mexico 87545 Los Alamos, New Mexico 87545
davidp@lanl.gov gingery@lanl.gov

(505) 665-1255 (505) 667-5133
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A TABLE TYPES: MNEMONIC CONVENTIONS

Below is an alphabetized list of mnemonics used to create the EOSPAC table type identifier names
that are defined in both APPENDICES B and C. These mnemonics are combined as follows to

create the aforementioned identifier names:

E0S_#_@$

where # is the mnemonic of the dependent function, F(x,y)

Mnemonic Description

ALPHAt Total Thermal Expansion Alpha

Ac Specific-Helmholtz-Free-Energy Cold Curve

Ae Electron Specific-Helmholtz-Free-Energy

Af Freeze Specific-Helmholtz-Free-Energy

Aic Ion Specific-Helmholtz-Free-Energy plus Cold Curve Specific-Helmholtz-Free-Energy
Aiz Ion Specific-Helmholtz-Free-Energy Including Zero Point
Als Liquid or Solid Specific-Helmholtz-Free-Energy
Am Melt Specific-Helmholtz-Free-Energy

At Total Specific-Helmholtz-Free-Energy

Av Vapor Specific-Helmholtz-Free-Energy

B Thermoelectric Coefficient

BSt Total Isentropic (adiabatic) Bulk Modulus
BTt Total Isothermal Bulk Modulus

Comment Descriptive Comments

CPt Total Specific heat (constant pressure)

CVt Total Specific heat (constant volume)

D Density

Dls Liquid or Solid Density on coexistence line

Dv Vapor Density on coexistence line

GAMMA¢t Total Gruneisen Coefficient

Ge Specific-Gibbs-Free-Energy Cold Curve

@ is the mnemonic of the primary independent variable, x

$ is the mnemonic of the secondary independent variable, y.

Continued on next page
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Mnemonic Description

Ge Electron Specific-Gibbs-Free-Energy

Gic Ion Specific-Gibbs-Free-Energy plus Cold Curve Specific-Gibbs-Free-Energy

Giz Ion Specific-Gibbs-Free-Energy Including Zero Point

Gs Shear Modulus

Gt Total Specific-Gibbs-Free-Energy

Hc Specific-Enthalpy Cold Curve

He Electron Specific-Enthalpy

Hic Ion Specific-Enthalpy plus Cold Curve Specific-Enthalpy

Hiz Ion Specific-Enthalpy Including Zero Point

Ht Total Specific-Enthalpy

Info Atomic Number, Atomic Mass, Normal Density, Solid Bulk Modulus, Exchange Co-
efficient

Kce Electron Conductive Opacity (Conductivity Model)

Kec Electrical Conductivity

Keo Electron Conductive Opacity (Opacity Model)

Kp Planck Mean Opacity

Kr Rosseland Mean Opacity

Ktc Thermal Conductivity

M Mass fraction

NullTable null table

Ogb Calculated versus Interpolated Opacity Grid Boundary

Pc Pressure Cold Curve

Pe Electron Pressure

Pf Freeze Pressure

Pic Ion Pressure plus Cold Curve Pressure

Piz Ion Pressure Including Zero Point

Pm Melt Pressure

Pt Total Pressure

Pv Vapor Pressure

Se Electron Specific-Entropy

Sic Ion Specific-Entropy plus Cold Curve Specific-Entropy

Siz Ion Specific-Entropy Including Zero Specific-Entropy

St Total Specific-Entropy

Continued on next page




A. TABLE TYPES: MNEMONIC CONVENTIONS

125

Mnemonic

T
Tt

Uic
Uiz
Uls

Zfc
Zfo

Description

Temperature

Freeze Temperature

Melt Temperature

Specific-Internal-Energy Cold Curve

Electron Specific-Internal-Energy

Freeze Specific-Internal-Energy

Ion Specific-Internal-Energy plus Cold Curve Specific-Internal-Energy
Ion Specific-Internal-Energy Including Zero Point
Liquid or Solid Specific-Internal-Energy

Melt Specific-Internal-Energy

Total Specific-Internal-Energy

Vapor Specific-Internal-Energy

Specific Volume

Mean Ton Charge (Conductivity Model)

Mean Ion Charge (Opacity Model)
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B TABLE TYPES: GROUPED BY CATEGORY, SORTED
BY NAMEFE

Below is a list of defined constants corresponding to the 180 data table types available within
EOSPAC. These defined constants have been grouped into several data categories, alphabetized
according to the defined constant names, and cross-referenced to the applicable EOSPAC 5[8],[9]
defined constants. The constant names have been created using the mnemonics defined in AP-

PENDIX A. The data categories are listed below and referenced to pages within this appendix.

It is important to note that the actual values of these constants may change without notice; there-
fore, use the constant names — do not hardwire the values into the host code. The EOSPAC 6

Constants are color coded as follows:

e [ indicates the table is inverted with respect to the first independent variable.
° indicates the table is inverted with respect to the second independent variable.
° indicates the table is a combination of two other tables.

° indicates the table may be offloaded to an available GPU and used for interpolation
within the appropriate GPU kernel(s). There are currently 177 data table types that are
compatible with the GPU interpolation kernel(s). The EOS_INVERT_AT _SETUP option
must be enabled for the inverted data table types if they are to be interpolated on the GPU.
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B.1 Category 1: Unrelated to SESAME data

EOSPAC 6 Description SESAME
Constant Table(s)
EOS_NullTable null table n/a

Category 1: Unrelated to SESAME data
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B.2 Category 2: General information found in SESAME’s 100- and
200-series tables

EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Comment Descriptive Comments 101-199
EOS_Info Atomic Number, Atomic Mass, Normal Density, Solid 201

Bulk Modulus, Exchange Coefficient

Category 2: General information found in SESAME’s 100- and 200-series tables
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B.3 Category 3: Total EOS in SESAME’s 301 tables

EOSPAC 6 Description SESAME
Constant Table(s)
EOS_ALPHAt DT  Total Thermal Expansion Alpha (1/K) 301
cPul (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_ALPHAt DUt Total Thermal Expansion Alpha (1/K) 301

(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)
EOS_At DGt Total Specific-Helmholtz-Free-Energy (M J/kg) 301
(Density (Mg/m?)- and Total Specific-Gibbs-Free-Energy
(M J/kg)-dependent)
EOS_At_DHt Total Specific-Helmholtz-Free-Energy (M J/kg) 301
(Density (Mg/m?)- and Total Specific-Enthalpy
(M J/kg)-dependent)
EOS_At_DPt Total Specific-Free-Energy (M J/kg) 301
(Density (Mg/m?)- and Total Pressure
(G Pa)-dependent)
EOS_At_DSt Total Specific-Free-Energy (M J/kg) 301
(Density (Mg/m?)- and Total Specific-Entropy
(M J/kg/K)-dependent)

EOS_At_DT Total Specific-Free-Energy (M J/kg) 301
cPul (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_At_DUt Total Specific-Free-Energy (M J/kg) 301

(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)

EOS_BSt_.DT Total Isentropic (adiabatic) Bulk Modulus (G Pa) 301
cPu] (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_BSt_ DUt Total Isentropic (adiabatic) Bulk Modulus (G Pa) 301

(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)
EOS_BTt.DT Total Isothermal Bulk Modulus (GPa) 301
cPul (Density (Mg/m?)- and Temperature (K)-dependent)

Continued on next page
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_ BTt DUt Total Isothermal Bulk Modulus (G Pa) 301

(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)
EOS_CPt_DT Total Specific heat (constant pressure) (MJ/kg/K) 301
cPul (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_CPt_-DUt Total Specific heat (constant pressure) (MJ/kg/K) 301
(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)
EOS_CVt.DT Total Specific heat (constant volume) (M.J/kg/K) 301
cPu] (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_CVt_DUt Total Specific heat (constant volume) (M.J/kg/K) 301
(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)
EOS_D_PtT Density (Mg/m?) 301
(Total Pressure (G Pa)- and Temperature (K')-dependent)
EOS_.GAMMA¢t_DT Total Gruneisen Coefficient (dimensionless) 301
cPul (Density (Mg/m?)- and Temperature (K )-dependent)
EOS_GAMMA¢t_DUt Total Gruneisen Coefficient (dimensionless) 301
(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)
EOS_Gt_DAt Total Specific-Gibbs-Free-Energy (M .J/kg) 301
(Density (Mg/m?)- and Total
Specific-Helmholtz-Free-Energy (M J/kg)-dependent)
EOS_Gt_DPt Total Specific-Gibbs-Free-Energy (M .J/kg) 301
(Density (Mg/m?)- and Total Pressure
(G Pa)-dependent)
EOS_Gt_DSt Total Specific-Gibbs-Free-Energy (M .J/kg) 301
(Density (Mg/m?)- and Total Specific-Entropy
(MJ/kg/K)-dependent)
EOS_Gt_ DT Total Specific-Gibbs-Free-Energy (M.J/kg) 301
U]l (Density (Mg/m?)- and Temperature (K )-dependent)

Continued on next page
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Gt_DUt Total Specific-Gibbs-Free-Energy (M .J/kg) 301

(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)
EOS_Ht_DAt Total Specific-Enthalpy (M J/kg) 301
(Density (Mg/m?)- and Total
Specific-Helmholtz-Free-Energy (M J/kg)-dependent)
EOS_Ht_DPt Total Specific-Enthalpy (M J/kg) 301
(Density (Mg/m?)- and Total Pressure
(G Pa)-dependent)
EOS_Ht_DSt Total Specific-Enthalpy (M J/kg) 301
(Density (Mg/m?)- and Total Specific-Entropy
(MJ/kg/K)-dependent)

EOS_Ht DT Total Specific-Enthalpy (M J/kg) 301
cPul (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_Ht_DUt Total Specific-Enthalpy (M J/kg) 301

(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)
EOS_Pt_DAt Total Pressure (GPa) 301
(Density (Mg/m?)- and Total Specific-Free-Energy
(M J/kg)-dependent)
EOS_Pt_DGt Total Pressure (G Pa) 301
(Density (Mg/m?)- and Total Specific-Gibbs-Free-Energy
(M J/kg)-dependent)
EOS_Pt_DHt Total Pressure (GPa) 301
(Density (Mg/m?)- and Total Specific-Enthalpy
(M J/kg)-dependent)
EOS_Pt_DSt Total Pressure (GPa) 301
(Density (Mg/m?)- and Total Specific-Entropy
(MJ/kg/K)-dependent)
EOS_Pt DT Total Pressure (GPa) 301
cPul (Density (Mg/m?)- and Temperature (K )-dependent)

Continued on next page
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EOSPAC 6
Constant
EOS_Pt_DUt

EOS_St_ DAt

EO0S_St_DGt

EOS_St_DHt

EOS_St_DPt

EOS_St.DT
GPU
EOS_St_DUt

EOS_T_DAt

EOS_T DGt

EOS_T_DHt

EOS_T_DPt

Description SESAME
Table(s)
Total Pressure (GPa) 301

(Density (Mg/m?)- and Total Specific-Internal-Energy

(M J/kg)-dependent)

Total Specific-Entropy (M J/kg/K) 301
(Density (Mg/m?)- and Total Specific-Free-Energy

(M J/kg)-dependent)

Total Specific-Entropy (M J/kg/K) 301
(Density (Mg/m?3)- and Total Specific-Gibbs-Free-Energy

(M J/kg)-dependent)

Total Specific-Entropy (M J/kg/K) 301
(Density (Mg/m?)- and Total Specific-Enthalpy

(M J/kg)-dependent)

Total Specific-Entropy (M J/kg/K) 301
(Density (Mg/m?)- and Total Pressure

(G Pa)-dependent)

Total Specific-Entropy (M J/kg/K) 301
(Density (Mg/m?)- and Temperature (K)-dependent)
Total Specific-Entropy (M J/kg/K) 301

(Density (Mg/m?)- and Total Specific-Internal-Energy

(M J/kg)-dependent)

Temperature (K) 301
(Density (Mg/m?)- and Total Specific-Free-Energy

(M J/kg)-dependent)

Temperature (K) 301
(Density (Mg/m?)- and Total Specific-Gibbs-Free-Energy

(M J/kg)-dependent)

Temperature (K) 301
(Density (Mg/m?)- and Total Specific-Enthalpy

(M J/kg)-dependent)

Temperature (K) 301
(Density (Mg/m?)- and Total Pressure

(G Pa)-dependent)

Continued on next page
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EOSPAC 6
Constant
EOS_T_DSt

EOS.T DUt

EOS_Ut_DAt

EOS_Ut DGt

EOS_Ut_DHt

EOS_Ut_DPt

EOS_Ut_DSt

EOS_Ut_DT

GPU
EOS_Ut_PtT
EOS_V_PtT

Description

Temperature (K)

(Density (Mg/m?)- and Total Specific-Entropy
(MJ/kg/K)-dependent)

Temperature (K)

(Density (Mg/m?)- and Total Specific-Internal-Energy
(M J/kg)-dependent)

Total Specific-Internal-Energy (M J/kg)

(Density (Mg/m?)- and Total Specific-Free-Energy

(M J/kg)-dependent)

Total Specific-Internal-Energy (M.J/kg)

(Density (Mg/m?)- and Total Specific-Gibbs-Free-Energy
(M J/kg)-dependent)

Total Specific-Internal-Energy (M .J/kg)

(Density (Mg/m?)- and Total Specific-Enthalpy

(M J/kg)-dependent)

Total Specific-Internal-Energy (M J/kg)

(Density (Mg/m?)- and Total Pressure

(G Pa)-dependent)

Total Specific-Internal-Energy (M.J/kg)

(Density (Mg/m?)- and Total Specific-Entropy

(M J/kg/K)-dependent)

Total Specific-Internal-Energy (M J/kg)

(Density (Mg/m?)- and Temperature (K)-dependent)
Total Specific-Internal-Energy (M J/kg)

(Total Pressure (G Pa)- and Temperature (K')-dependent)
Specific-Volume (m?/Mg)

(Total Pressure (GPa)- and Temperature (K )-dependent)

SESAME
Table(s)
301

301

301

301

301

301

301

301

301

301

Category 3: Total EOS in SESAME’s 301 tables
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B.4 Category 4: Ion+Cold EOS in SESAME’s 303 tables
EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Aic_DGic Ion Specific-Helmholtz-Free-Energy plus Cold Curve 303
Specific-Helmholtz-Free-Energy (M J/kg)
(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy
plus Cold Curve Specific-Gibbs-Free-Energy
(M J/kg)-dependent)
EOS_Aic_DHic Ion Specific-Helmholtz-Free-Energy plus Cold Curve 303
Specific-Helmholtz-Free-Energy (M J/kg)
(Density (Mg/m?)- and Ton Specific-Enthalpy plus Cold
Curve Specific-Enthalpy (M J/kg)-dependent)
EOS_Aic_DPic Ion Specific-Free-Energy plus Cold Curve 303
Specific-Free-Energy (M J/kg)
(Density (Mg/m?)- and Ton Pressure plus Cold Curve
Pressure (G Pa)-dependent)
EOS_Aic_DSic Ion Specific-Free-Energy plus Cold Curve 303
Specific-Free-Energy (M J/kg)
(Density (Mg/m?)- and Ton Pressure plus Cold Curve
Specific-Entropy (M J/kg/ K )-dependent)
EOS_Aic.DT Ion Specific-Free-Energy plus Cold Curve 303
¢pUl Specific-Free-Energy (M .J/kg)
(Density (Mg/m?)- and Temperature (K)-dependent)
EOS_Aic_DUic Ion Specific-Free-Energy plus Cold Curve 303
Specific-Free-Energy (M .J/kg)
(Density (Mg/m?)- and Ton Specific-Internal-Energy plus
Cold Curve Specific-Internal-Energy
(M J/kg)-dependent)
EOS_Gic_DAic Ion Specific-Gibbs-Free-Energy plus Cold Curve 303

Specific-Gibbs-Free-Energy (M J/kg)

(Density (Mg/m?)- and Ton
Specific-Helmholtz-Free-Energy plus Cold Curve
Specific-Helmholtz-Free-Energy (M .J/kg)-dependent)

Continued on next page
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Gic_DPic Ion Specific-Gibbs-Free-Energy plus Cold Curve 303

EOS_Gic_DSic

EOS_Gic.DT

GPU

EOS_Gic_DUic

EOS_Hic_DAic

EOS_Hic_DPic

EOS_Hic_DSic

EOS_Hic.DT

GPU

Specific-Gibbs-Free-Energy (M .J/kg)

(Density (Mg/m?)- and Ton Pressure plus Cold Curve

Pressure (G Pa)-dependent)

Ion Specific-Gibbs-Free-Energy plus Cold Curve 303
Specific-Gibbs-Free-Energy (M J/kg)

(Density (Mg/m?)- and Ton Specific-Entropy plus Cold

Curve Specific-Entropy (M .J/kg/K)-dependent)

Ion Specific-Gibbs-Free-Energy plus Cold Curve 303
Specific-Gibbs-Free-Energy (M J/kg)

(Density (Mg/m?)- and Temperature (K)-dependent)

Ion Specific-Gibbs-Free-Energy plus Cold Curve 303
Specific-Gibbs-Free-Energy (M J/kg)

(Density (Mg/m?)- and Ton Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(M J/kg)-dependent)

Ion Specific-Enthalpy plus Cold Curve Specific-Enthalpy 303
(M J/kg)

(Density (Mg/m?)- and Ton

Specific-Helmholtz-Free-Energy plus Cold Curve
Specific-Helmholtz-Free-Energy (M .J/kg)-dependent)

Ion Specific-Enthalpy plus Cold Curve Specific-Enthalpy 303
(M J/kg)

(Density (Mg/m?)- and Ton Pressure plus Cold Curve

Pressure (G Pa)-dependent)

Ion Specific-Enthalpy plus Cold Curve Specific-Enthalpy 303
(M J/kg)

(Density (Mg/m?)- and Ion Specific-Entropy plus Cold

Curve Specific-Entropy (M J/kg/K)-dependent)

Ion Specific-Enthalpy plus Cold Curve Specific-Enthalpy 303
(M.J/kg)

(Density (Mg/m?)- and Temperature (K)-dependent)

Continued on next page

Category 4: Ion+Cold EOS in SESAME’s 303 tables



B. TABLE TYPES: GROUPED BY CATEGORY, SORTED BY NAME 137

EOSPAC 6
Constant
EOS_Hic_DUic

EOS_Pic_DAic

EOS_Pic_DGic

EOS_Pic_DHic

EOS_Pic_DSic

EOS_Pic DT
GPU
EOS_Pic_DUic

EOS_Sic_DAic

EOS_Sic_DGic

Description SESAME
Table(s)

Ion Specific-Enthalpy plus Cold Curve Specific-Enthalpy 303

(M J/kg)

(Density (Mg/m?)- and Ton Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(M J/kg)-dependent)

Ion Pressure plus Cold Curve Pressure (GPa) 303
(Density (Mg/m?)- and Ton Specific-Free-Energy plus

Cold Curve Specific-Free-Energy (M J/kg)-dependent)

Ion Pressure plus Cold Curve Pressure (G Pa) 303
(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy

plus Cold Curve Specific-Gibbs-Free-Energy

(M J/kg)-dependent)

Ion Pressure plus Cold Curve Pressure (GPa) 303
(Density (Mg/m?)- and Ton Specific-Enthalpy plus Cold

Curve Specific-Enthalpy (M J/kg)-dependent)

Ion Pressure plus Cold Curve Pressure (G Pa) 303
(Density (Mg/m?)- and Ton Pressure plus Cold Curve
Specific-Entropy (M J/kg/K)-dependent)

Ion Pressure plus Cold Curve Pressure (GPa) 303
(Density (Mg/m?)- and Temperature (K)-dependent)
Ion Pressure plus Cold Curve Pressure (GPa) 303

(Density (Mg/m?)- and Ton Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(M J/kg)-dependent)

Ion Specific-Entropy plus Cold Curve Specific-Entropy 303
(MJ/kg/K)

(Density (Mg/m?)- and Ton Specific-Free-Energy plus

Cold Curve Specific-Free-Energy (M J/kg)-dependent)

Ion Specific-Entropy (M J/kg/K) 303
(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy

(M J/kg)-dependent)
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Sic_DHic Ion Specific-Entropy (M J/kg/K) 303

EOS_Sic_DPic

EOS_Sic. DT

GPU

EOS_Sic_DUic

EOS_T_DAic

EOS_T_DGic

EOS_T_DHic

EOS.T_DPic

EOS_T_DSic

(Density (Mg/m?)- and Ton Specific-Enthalpy

(M J/kg)-dependent)

Ion Specific-Entropy plus Cold Curve Specific-Entropy 303
(MJ/kg/K)

(Density (Mg/m?)- and Ton Pressure plus Cold Curve

Pressure (G Pa)-dependent)

Ion Specific-Entropy plus Cold Curve Specific-Entropy 303
(MJ/kg/K)

(Density (Mg/m?)- and Temperature (K)-dependent)

Ion Specific-Entropy plus Cold Curve Specific-Entropy 303
(M J/kg/K)

(Density (Mg/m?)- and Ton Specific-Internal-Energy plus

Cold Curve Specific-Internal-Energy

(M J/kg)-dependent)

Temperature (K) 303
(Density (Mg/m?)- and Ton Specific-Free-Energy plus

Cold Curve Specific-Free-Energy (M .J/kg)-dependent)
Temperature (K) 303
(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy

plus Cold Curve Specific-Gibbs-Free-Energy

(M J/kg)-dependent)

Temperature (K) 303
(Density (Mg/m?)- and Ion Specific-Enthalpy plus Cold

Curve Specific-Enthalpy (M J/kg)-dependent)

Temperature (K) 303
(Density (Mg/m?)- and Ton Pressure plus Cold Curve

Pressure (G Pa)-dependent)

Temperature (K) 303
(Density (Mg/m?)- and Ion Pressure plus Cold Curve
Specific-Entropy (M J/kg/K)-dependent)
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_T_DUic Temperature (K) 303

(Density (Mg/m?)- and Ton Specific-Internal-Energy plus
Cold Curve Specific-Internal-Energy
(M J/kg)-dependent)
EOS_Uic_DAic Ion Specific-Internal-Energy plus Cold Curve 303
Specific-Internal-Energy (M J/kg)
(Density (Mg/m?)- and Ton Specific-Free-Energy plus
Cold Curve Specific-Free-Energy (M J/kg)-dependent)
EOS_Uic_DGic Ion Specific-Internal-Energy plus Cold Curve 303
Specific-Internal-Energy (M J/kg)
(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy
plus Cold Curve Specific-Gibbs-Free-Energy
(M J/kg)-dependent)
EOS_Uic_DHic Ion Specific-Internal-Energy plus Cold Curve 303
Specific-Internal-Energy (M .J/kg)
(Density (Mg/m?)- and Ton Specific-Enthalpy plus Cold
Curve Specific-Enthalpy (M J/kg)-dependent)
EOS_Uic_DPic Ion Specific-Internal-Energy plus Cold Curve 303
Specific-Internal-Energy (M J/kg)
(Density (Mg/m?)- and Ion Pressure plus Cold Curve
Pressure (G Pa)-dependent)
EOS_Uic_DSic Ion Specific-Internal-Energy plus Cold Curve 303
Specific-Internal-Energy (M J/kg)
(Density (Mg/m?)- and Ton Pressure plus Cold Curve
Specific-Entropy (M J/kg/K)-dependent)
EOS_Uic DT Ion Specific-Internal-Energy plus Cold Curve 303
¢pUl Specific-Internal-Energy (M.J/kg)
(Density (Mg/m?)- and Temperature (K)-dependent)
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B.5 Category 5: Electron EOS in SESAME’s 304 tables

EOSPAC 6
Constant
EOS_Ae DGe

EOS_Ae_DHe

EOS_Ae DPe

EOS_Ae_DSe

EOS_Ae DT
GPU
EOS_Ae DUe

EOS_Ge_DAe

EOS_Ge_DPe

EOS_Ge_DSe

EOS_Ge DT
GPU
EOS_Ge_DUe

Description

Electron Specific-Helmholtz-Free-Energy (M.J/kg)
(Density (Mg/m?)- and Electron
Specific-Gibbs-Free-Energy (M .J/kg)-dependent)
Electron Specific-Helmholtz-Free-Energy (M .J/kg)
(Density (Mg/m?)- and Electron Specific-Enthalpy
(M J/kg)-dependent)

Electron Specific-Free-Energy (M J/kg)

(Density (Mg/m?)- and Electron Pressure
(GPa)-dependent)

Electron Specific-Free-Energy (M J/kg)

(Density (Mg/m?)- and Electron Specific-Entropy
(M J/kg/K)-dependent)

Electron Specific-Free-Energy (M J/kg)

(Density (Mg/m?)- and Temperature (K)-dependent)
Electron Specific-Free-Energy (M .J/kg)

(Density (Mg/m?)- and Electron
Specific-Internal-Energy (M .J/kg)-dependent)
Electron Specific-Gibbs-Free-Energy (M J/kg)
(Density (Mg/m?)- and Electron
Specific-Helmholtz-Free-Energy (M .J/kg)-dependent)
Electron Specific-Gibbs-Free-Energy (M J/kg)
(Density (Mg/m?)- and Electron Pressure

(G Pa)-dependent)

Electron Specific-Gibbs-Free-Energy (M .J/kg)
(Density (Mg/m?)- and Electron Specific-Entropy
(MJ/kg/K)-dependent)

Electron Specific-Gibbs-Free-Energy (M .J/kg)
(Density (Mg/m?)- and Temperature (K)-dependent)
Electron Specific-Gibbs-Free-Energy (M .J/kg)
(Density (Mg/m?)- and Electron
Specific-Internal-Energy (M .J/kg)-dependent)

SESAME
Table(s)
304

304

304

304

304

304

304

304

304

304

304
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_He_DAe Electron Specific-Enthalpy (M J/kg) 304

(Density (Mg/m?)- and Electron
Specific-Helmholtz-Free-Energy (M .J/kg)-dependent)
EOS_He_DPe Electron Specific-Enthalpy (M .J/kg) 304
(Density (Mg/m?)- and Electron Pressure
(GPa)-dependent)
EOS_He_DSe Electron Specific-Enthalpy (M J/kg) 304
(Density (Mg/m?)- and Electron Specific-Entropy
(M J/kg/K)-dependent)
EOS_He DT Electron Specific-Enthalpy (M J/kg) 304
cPu] (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_He_DUe Electron Specific-Enthalpy (M J/kg) 304
(Density (Mg/m?)- and Electron
Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Pe_DAe Electron Pressure (GPa) 304
(Density (Mg/m?)- and Electron Specific-Free-Energy
(M J/kg)-dependent)
EOS_Pe_DGe Electron Pressure (G Pa) 304
(Density (Mg/m?)- and Electron
Specific-Gibbs-Free-Energy (M .J/kg)-dependent)
EOS_Pe_DHe Electron Pressure (GPa) 304
(Density (Mg/m?)- and Electron Specific-Enthalpy
(M J/kg)-dependent)
EOS_Pe_DSe Electron Pressure (GPa) 304
(Density (Mg/m?)- and Electron Specific-Entropy
(M J/kg/K)-dependent)
EOS_Pe DT Electron Pressure (G Pa) 304
cPu] (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_Pe_ DUe Electron Pressure (GPa) 304
(Density (Mg/m?)- and Electron

Continued on next page
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EOSPAC 6
Constant
EOS_Se_DAe

EOS_Se_DGe

EOS_Se_DHe

EOS_Se_DPe

EOS_Se DT
GPU
EOS_Se_DUe

EOS_T_DAc

EOS.T DGe

EOS_T_DHe

EOS_T_DPe

EOS_T_DSe

Description

Electron Specific-Entropy (M J/kg/K)

(Density (Mg/m?)- and Electron Specific-Free-Energy
(M J/kg)-dependent)

Electron Specific-Entropy (M J/kg/K)

(Density (Mg/m?)- and Electron
Specific-Gibbs-Free-Energy (M .J/kg)-dependent)
Electron Specific-Entropy (MJ/kg/K)

(Density (Mg/m?)- and Electron Specific-Enthalpy
(M J/kg)-dependent)

Electron Specific-Entropy (M J/kg/K)

(Density (Mg/m?)- and Electron Pressure
(GPa)-dependent)

Electron Specific-Entropy (M J/kg/K)

(Density (Mg/m?)- and Temperature (K)-dependent)
Electron Specific-Entropy (MJ/kg/K)

(Density (Mg/m?)- and Electron
Specific-Internal-Energy (M .J/kg)-dependent)
Temperature (K)

(Density (Mg/m?)- and Electron Specific-Free-Energy
(M J/kg)-dependent)

Temperature (K)

(Density (Mg/m?)- and Electron
Specific-Gibbs-Free-Energy (M J/kg)-dependent)
Temperature (K)

(Density (Mg/m?)- and Electron Specific-Enthalpy
(M J/kg)-dependent)

Temperature (K)

(Density (Mg/m?)- and Electron Pressure
(GPa)-dependent)

Temperature (K)

(Density (Mg/m?)- and Electron Specific-Entropy
(M J/kg/K)-dependent)

SESAME
Table(s)
304

304

304

304

304

304

304

304

304

304

304
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_T_DUe Temperature (K) 304

(Density (Mg/m?)- and Electron
Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Ue_DAe Electron Specific-Internal-Energy (M J/kg) 304
(Density (Mg/m?)- and Electron Specific-Free-Energy
(M J/kg)-dependent)
EOS_Ue_DGe Electron Specific-Internal-Energy (M.J/kg) 304
(Density (Mg/m?)- and Electron
Specific-Gibbs-Free-Energy (M .J/kg)-dependent)
EOS_Ue_DHe Electron Specific-Internal-Energy (M J/kg) 304
(Density (Mg/m?)- and Electron Specific-Enthalpy
(M J/kg)-dependent)
EOS_Ue_DPe Electron Specific-Internal-Energy (M.J/kg) 304
(Density (Mg/m3)- and Electron Pressure
(G Pa)-dependent)
EOS_Ue_DSe Electron Specific-Internal-Energy (M J/kg) 304
(Density (Mg/m?)- and Electron Specific-Entropy
(MJ/kg/K)-dependent)
EOS_Ue DT Electron Specific-Internal-Energy (M J/kg) 304
cPul (Density (Mg/m?)- and Temperature (K)-dependent)
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B.6 Category 6: Ton EOS in SESAME’s 305 tables

EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Aiz_DGiz Ion Specific-Helmholtz-Free-Energy Including Zero Point 305

(M J/kg)
(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy
Including Zero Point (M .J/kg)-dependent)
EOS_Aiz_DHiz Ion Specific-Helmholtz-Free-Energy Including Zero Point 305
(M.J/kg)
(Density (Mg/m?)- and Ton Specific-Enthalpy Including
Zero Point (M J/kg)-dependent)
EOS_Aiz DPiz Ton Specific-Free-Energy Including Zero Point (M J/kg) 305
(Density (Mg/m?)- and Ton Pressure Including Zero
Point (G'Pa)-dependent)
EOS_Aiz_DSiz Ion Specific-Free-Energy Including Zero Point (M J/kg) 305
(Density (Mg/m?)- and Ton Pressure Including Zero
Specific-Entropy (M J/kg/K)-dependent)

EOS_Aiz DT Ion Specific-Free-Energy Including Zero Point (M J/kg) 305
cPul (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_Aiz_DUiz Ton Specific-Free-Energy Including Zero Point (M J/kg) 305

(Density (Mg/m?)- and Ion Specific-Internal-Energy
Including Zero Point (M J/kg)-dependent)
EOS_Giz_DAiz Ion Specific-Gibbs-Free-Energy Including Zero Point 305
(M.J/kg)
(Density (Mg/m?)- and Ton
Specific-Helmholtz-Free-Energy Including Zero Point
(M J/kg)-dependent)
EOS_Giz_DPiz Ion Specific-Gibbs-Free-Energy Including Zero Point 305
(M J/kg)
(Density (Mg/m?)- and Ton Pressure Including Zero
Point (G Pa)-dependent)
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Including Zero Point (M J/kg)-dependent)
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Giz_DSiz Ion Specific-Gibbs-Free-Energy Including Zero Point 305

(M.J/kg)
(Density (Mg/m?)- and Ton Specific-Entropy Including
Zero Point (M J/kg/K)-dependent)
EOS_Giz DT Ion Specific-Gibbs-Free-Energy Including Zero Point 305
cpul (MJ/kg)
(Density (Mg/m?3)- and Temperature (K)-dependent)
EOS_Giz_DUiz Ion Specific-Gibbs-Free-Energy Including Zero Point 305
(M.J/kg)
(Density (Mg/m?)- and Ton Specific-Internal-Energy
Including Zero Point (M J/kg)-dependent)
EOS_Hiz_DAiz Ion Specific-Enthalpy Including Zero Point (M J/kg) 305
(Density (Mg/m?)- and Ton
Specific-Helmholtz-Free-Energy Including Zero Point
(M J/kg)-dependent)
EOS_Hiz_DPiz Ion Specific-Enthalpy Including Zero Point (M J/kg) 305
(Density (Mg/m?)- and Ton Pressure Including Zero
Point (G Pa)-dependent)
EOS_Hiz_DSiz Ion Specific-Enthalpy Including Zero Point (M J/kg) 305
(Density (Mg/m?)- and Ton Specific-Entropy Including
Zero Point (M J/kg/K)-dependent)

EOS_Hiz DT Ion Specific-Enthalpy Including Zero Point (M J/kg) 305
Pyl (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_Hiz_DUiz Ion Specific-Enthalpy Including Zero Point (M .J/kg) 305

(Density (Mg/m?)- and Ton Specific-Internal-Energy
Including Zero Point (M J/kg)-dependent)
EOS_Piz_DAiz Ion Pressure Including Zero Point (G'Pa) 305
(Density (Mg/m?)- and Ion Specific-Free-Energy
Including Zero Point (M J/kg)-dependent)
EOS_Piz_DGiz Ion Pressure Including Zero Point (G Pa) 305
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Piz_DHiz Ion Pressure Including Zero Point (G Pa) 305

(Density (Mg/m?)- and Ton Specific-Enthalpy Including
Zero Point (M J/kg)-dependent)
EOS_Piz_DSiz Ion Pressure Including Zero Point (G'Pa) 305
(Density (Mg/m?)- and Ton Pressure Including Zero
Specific-Entropy (M J/kg/K)-dependent)

EOS_Piz DT Ion Pressure Including Zero Point (G Pa) 305
cPu]l (Density (Mg/m?)- and Temperature (K)-dependent)
EOS_Piz_DUiz Ion Pressure Including Zero Point (GPa) 305

(Density (Mg/m?)- and Ton Specific-Internal-Energy
Including Zero Point (M J/kg)-dependent)
EOS_Siz_DAiz Ion Specific-Entropy Including Zero Specific-Entropy 305
(M J/kg/K)
(Density (Mg/m?)- and Ion Specific-Free-Energy
Including Zero Point (M J/kg)-dependent)
EOS_Siz_DGiz Ion Specific-Entropy (M J/kg/K) 305
(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy
(M J/kg)-dependent)
EOS_Siz_DHiz Ion Specific-Entropy (M J/kg/K) 305
(Density (Mg/m?)- and Ton Specific-Enthalpy
(M J/kg)-dependent)
EOS_Siz_DPiz Ion Specific-Entropy Including Zero Specific-Entropy 305
(MJ/kg/K)
(Density (Mg/m?)- and Ton Pressure Including Zero
Point (G Pa)-dependent)
EOS_Siz_ DT Ion Specific-Entropy Including Zero Specific-Entropy 305
crul (MJ/kg/K)
(Density (Mg/m?)- and Temperature (K)-dependent)
EOS_Siz_DUiz Ion Specific-Entropy Including Zero Specific-Entropy 305
(M J/kg/K)
(Density (Mg/m?)- and Ton Specific-Internal-Energy
Including Zero Point (M J/kg)-dependent)
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EOSPAC 6
Constant
EOS_T_DAiz

EOS_T_DCiz

EOS_T_DHiz

EOS_T_DPiz

EOS_T_DSiz

EOS_T_DUiz,

EOS_Uiz_DAiz

EOS_Uiz_DGiz

EOS_Uiz_DHiz

Description SESAME
Table(s)
Temperature (K) 305

(Density (Mg/m?)- and Ton Specific-Free-Energy

Including Zero Point (M J/kg)-dependent)

Temperature (K) 305
(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy

Including Zero Point (M .J/kg)-dependent)

Temperature (K) 305
(Density (Mg/m?)- and Ton Specific-Enthalpy Including

Zero Point (M J/kg)-dependent)

Temperature (K) 305
(Density (Mg/m?)- and Ion Pressure Including Zero

Point (G Pa)-dependent)

Temperature (K) 305
(Density (Mg/m?)- and Ton Pressure Including Zero
Specific-Entropy (M J/kg/K)-dependent)

Temperature (K) 305
(Density (Mg/m?)- and Ton Specific-Internal-Energy

Including Zero Point (M J/kg)-dependent)

Ion Specific-Internal-Energy Including Zero Point 305
(MJ/kg)

(Density (Mg/m?)- and Ion Specific-Free-Energy

Including Zero Point (M J/kg)-dependent)

Ion Specific-Internal-Energy Including Zero Point 305
(M J/kg)

(Density (Mg/m?)- and Ton Specific-Gibbs-Free-Energy

Including Zero Point (M J/kg)-dependent)

Ion Specific-Internal-Energy Including Zero Point 305
(M.J/kg)

(Density (Mg/m?)- and Ton Specific-Enthalpy Including

Zero Point (M J/kg)-dependent)
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Uiz_DPiz Ion Specific-Internal-Energy Including Zero Point 305

(M.J/kg)
(Density (Mg/m?)- and Ton Pressure Including Zero
Point (G Pa)-dependent)
EOS_Uiz_DSiz Ion Specific-Internal-Energy Including Zero Point 305
(M.J/kg)
(Density (Mg/m?)- and Ton Pressure Including Zero
Specific-Entropy (M J/kg/K)-dependent)
EOS_Uiz DT Ion Specific-Internal-Energy Including Zero Point 305
cprul (MJ/kg)
(Density (Mg/m?)- and Temperature (K)-dependent)
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B.7 Category 7: Cold curve EOS in SESAME’s 306 tables

EOSPAC 6

Constant

EOS_AcD

EOS_Ge D

EOS_He D

EOS_Pc D

EOS_Uc_D

i
<

P

i
g

P

i
=

P

i
Sl

P

GPU

Description SESAME
Table(s)

Specific-Free-Energy Cold Curve (M J/kg) 306
(Density (Mg/m?)-dependent)

Specific-Gibbs-Free-Energy Cold Curve (M J/kg) 306
(Density (M g/m?)-dependent)

Specific-Enthalpy Cold Curve (M.J/kg) 306
(Density (Mg/m?)-dependent)

Pressure Cold Curve (GPa) 306
(Density (Mg/m?3)-dependent)

Specific-Internal-Energy Cold Curve (M.J/kg) 306

(Density (M g/m?)-dependent)

Category 7: Cold curve EOS in SESAME’s 306 tables



150 CHAPTER 14. APPENDIX

B.8 Category 8: Mass fraction EOS in SESAME’s 321 tables

EOSPAC 6 Description SESAME
Constant Table(s)
EOS.M_DT Mass Fraction (Density — andTemperature — dependent) 321

Category 8: Mass fraction EOS in SESAME’s 321 tables



(Liquid or Solid Specific-Internal-Energy
(M J/kg)-dependent)
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B.9 Category 9: Vaporization data in SESAME’s 401 tables
EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Als_Av Liquid or Solid Specific-Free-Energy (M J/kg) 401
(Vapor Specific-Free-Energy (M .J/kg)-dependent)
EOS_Als_Dls Liquid or Solid Specific-Free-Energy (M J/kg) 401
(Liquid or Solid Density on coexistence line
(M g/m?)-dependent)
EOS_Als_Dv Liquid or Solid Specific-Free-Energy (M J/kg) 401
(Vapor Density on coexistence line (Mg/m?)-dependent)
EOS_Als_Pv Liquid or Solid Specific-Free-Energy (M J/kg) 401
(Vapor Pressure (G'Pa)-dependent)
EOS_Als T Liquid or Solid Specific-Free-Energy (M J/kg) 401
(Temperature (K)-dependent)
EOS_Als_Uls Liquid or Solid Specific-Free-Energy (M J/kg) 401
(Liquid or Solid Specific-Internal-Energy
(M J/kg)-dependent)
EOS_Als_Uv Liquid or Solid Specific-Free-Energy (M J/kg) 401
(Vapor Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Av_Als Vapor Specific-Free-Energy (M .J/kg) 401
(Liquid or Solid Specific-Free-Energy
(M J/kg)-dependent)
EOS_Av_Dls Vapor Specific-Free-Energy (M J/kg) 401
(Liquid or Solid Density on coexistence line
(M g/m3)-dependent)
EOS_Av_Dv Vapor Specific-Free-Energy (M J/kg) 401
(Vapor Density on coexistence line (Mg/m?)-dependent)
EOS_Av_Pv Vapor Specific-Free-Energy (M J/kg) 401
(Vapor Pressure (G'Pa)-dependent)
EOS_Av.T Vapor Specific-Free-Energy (M J/kg) 401
(Temperature (K')-dependent)
EOS_Av_Uls Vapor Specific-Free-Energy (M J/kg) 401
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Av_Uv Vapor Specific-Free-Energy (M J/kg) 401

(Vapor Specific-Internal-Energy (M .J/kg)-dependent)
EOS_DIs_Als Liquid or Solid Density on coexistence line (Mg/m?) 401
(Liquid or Solid Specific-Free-Energy
(M J/kg)-dependent)
EOS_Dls_Av Liquid or Solid Density on coexistence line (M g/m?) 401
(Vapor Specific-Free-Energy (M J/kg)-dependent)
EOS_Dls_Dv Liquid or Solid Density on coexistence line (M g/m?) 401
(Vapor Density on coexistence line (M g/m?)-dependent)
EOS_Dls_Pv Liquid or Solid Density on coexistence line (M g/m?) 401
(Vapor Pressure (G Pa)-dependent)
EOS_DIs_T Liquid or Solid Density on coexistence line (Mg/m?) 401
(Temperature (K)-dependent)
EOS_DIs_Uls Liquid or Solid Density on coexistence line (Mg/m?) 401
(Liquid or Solid Specific-Internal-Energy
(M J/kg)-dependent)
EOS_DIs_Uv Liquid or Solid Density on coexistence line (Mg/m?) 401
(Vapor Specific-Internal-Energy (M J/kg)-dependent)
EOS_Dv_Als Vapor Density on coexistence line (Mg/m?) 401
(Liquid or Solid Specific-Free-Energy
(M J/kg)-dependent)
EOS_Dv_Av Vapor Density on coexistence line (Mg/m?) 401
(Vapor Specific-Free-Energy (M J/kg)-dependent)
EOS_Dv_Dls Vapor Density on coexistence line (Mg/m?) 401
(Liquid or Solid Density on coexistence line
(Mg/m?)-dependent)
EOS_Dv_Pv Vapor Density on coexistence line (Mg/m?) 401
(Vapor Pressure (G'Pa)-dependent)
EOS_Dv_.T Vapor Density on coexistence line (Mg/m?) 401
(Temperature (K)-dependent)
EOS_Dv_Uls Vapor Density on coexistence line (Mg/m?) 401
(Liquid or Solid Specific-Internal-Energy
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Dv_Uv Vapor Density on coexistence line (Mg/m?) 401

(Vapor Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Pv_Als Vapor Pressure (GPa) 401
(Liquid or Solid Specific-Free-Energy
(M J/kg)-dependent)
EOS_Pv_Av Vapor Pressure (G Pa) 401
(Vapor Specific-Free-Energy (M J/kg)-dependent)
EOS_Pv_Dls Vapor Pressure (GPa) 401
(Liquid or Solid Density on coexistence line
(M g/m?)-dependent)
EOS_Pv_Dv Vapor Pressure (G Pa) 401
(Vapor Density on coexistence line (Mg/m?)-dependent)
EOS_Pv_T Vapor Pressure (GPa) 401
(Temperature (K)-dependent)
EOS_Pv_Uls Vapor Pressure (GPa) 401
(Liquid or Solid Specific-Internal-Energy
(M J/kg)-dependent)
EOS_Pv_Uv Vapor Pressure (GPa) 401
(Vapor Specific-Internal-Energy (M .J/kg)-dependent)
EOS_T_Als Temperature (K) 401
(Liquid or Solid Specific-Free-Energy
(M J/kg)-dependent)
EOS_T_Av Temperature (K) 401
(Vapor Specific-Free-Energy (M J/kg)-dependent)
EOS_T_Dls Temperature (K) 401
(Liquid or Solid Density on coexistence line
(Mg/m?)-dependent)
EOS_T Dv Temperature (K) 401
(Vapor Density on coexistence line (M g/m?)-dependent)
EOS_T_Pv Temperature (K) 401
(Vapor Pressure (G Pa)-dependent)

Continued on next page

Category 9: Vaporization data in SESAME’s 401 tables
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_T_Uls Temperature (K) 401

(Liquid or Solid Specific-Internal-Energy
(M J/kg)-dependent)
EOS_T_Uv Temperature (K) 401
(Vapor Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Uls_Als Liquid or Solid Specific-Internal-Energy (M.J/kg) 401
(Liquid or Solid Specific-Free-Energy
(M J/kg)-dependent)
EOS_Uls_Av Liquid or Solid Specific-Internal-Energy (M .J/kg) 401
(Vapor Specific-Free-Energy (M .J/kg)-dependent)
EOS_Uls_Dls Liquid or Solid Specific-Internal-Energy (M J/kg) 401
(Liquid or Solid Density on coexistence line
(M g/m3)-dependent)
EOS_Uls_Dv Liquid or Solid Specific-Internal-Energy (M.J/kg) 401
(Vapor Density on coexistence line (M g/m?)-dependent)
EOS_Uls_Pv Liquid or Solid Specific-Internal-Energy (M.J/kg) 401
(Vapor Pressure (G Pa)-dependent)
EOS_Uls_T Liquid or Solid Specific-Internal-Energy (M.J/kg) 401
(Temperature (K')-dependent)
EOS_Uls_Uv Liquid or Solid Specific-Internal-Energy (M .J/kg) 401
(Vapor Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Uv_Als Vapor Specific-Internal-Energy (M J/kg) 401
(Liquid or Solid Specific-Free-Energy
(M J/kg)-dependent)
EOS_Uv_Av Vapor Specific-Internal-Energy (M J/kg) 401
(Vapor Specific-Free-Energy (M .J/kg)-dependent)
EOS_Uv_Dls Vapor Specific-Internal-Energy (M J/kg) 401
(Liquid or Solid Density on coexistence line
(M g/m?)-dependent)
EOS_Uv_Dv Vapor Specific-Internal-Energy (M J/kg) 401
(Vapor Density on coexistence line (Mg/m?3)-dependent)
EOS_Uv_Pv Vapor Specific-Internal-Energy (M .J/kg) 401
(Vapor Pressure (G'Pa)-dependent)

Continued on next page
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_Uv_T Vapor Specific-Internal-Energy (M J/kg) 401
(Temperature (K')-dependent)
EOS_Uv_Uls Vapor Specific-Internal-Energy (M J/kg) 401

(Liquid or Solid Specific-Internal-Energy
(M J/kg)-dependent)

Category 9: Vaporization data in SESAME’s 401 tables
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B.10 Category 10: Melt data in SESAME’s 411 and 412 tables

EOSPAC 6
Constant
EOS_Af_D
EOS_Af _Pf
EOS_Af_Tf
EOS_Af_Uf
EOS_Am_D
EOS_Am_Pm
EOS_Am_Tm
EOS_Am_Um
EOS_D_Af
EOS_-D_Am
EOS_D_Pf
EOS_D_Pm
EOS_D_Tf
EOS_D_Tm
EOS_D_Uf

Description

Freeze Specific-Free-Energy (M .J/kg)

(Density (Mg/m?)-dependent)

Freeze Specific-Free-Energy (M J/kg)

(Freeze Pressure (G Pa)-dependent)

Freeze Specific-Free-Energy (M J/kg)

(Freeze Temperature (K )-dependent)

Freeze Specific-Free-Energy (M J/kg)

(Freeze Specific-Internal-Energy (M .J/kg)-dependent)
Melt Specific-Free-Energy (M J/kg)

(Density (M g/m?)-dependent)

Melt Specific-Free-Energy (M J/kg)

(Melt Pressure (G Pa)-dependent)

Melt Specific-Free-Energy (M .J/kg)

(Melt Temperature (K )-dependent)

Melt Specific-Free-Energy (M .J/kg)

(Melt Specific-Internal-Energy (M J/kg)-dependent)
Density (Mg/m?)

(Freeze Specific-Free-Energy (M .J/kg)-dependent)
Density (Mg/m?)

(Melt Specific-Free-Energy (M.J/kg)-dependent)
Density (Mg/m?)

(Freeze Pressure (G Pa)-dependent)

Density (Mg/m?)

(Melt Pressure (GPa)-dependent)

Density (Mg/m?)

(Freeze Temperature (K )-dependent)

Density (Mg/m?)

(Melt Temperature (K )-dependent)

Density (Mg/m?)

(Freeze Specific-Internal-Energy (M J/kg)-dependent)

SESAME
Table(s)
412
412
412
412
411
411
411
411
412
411
412
411
412

411

412

Continued on next page

Category 10: Melt data in SESAME’s 411 and 412 tables
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EOSPAC 6 Description SESAME
Constant Table(s)
EOS_D_Um Density (Mg/m?) 411

(Melt Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Pf_Af Freeze Pressure (GPa) 412
(Freeze Specific-Free-Energy (M .J/kg)-dependent)
EOS_Pf.D Freeze Pressure (GPa) 412
(Density (Mg/m?)-dependent)
EOS_Pf.Tf Freeze Pressure (GPa) 412
(Freeze Temperature (K )-dependent)
EOS_Pf.Uf Freeze Pressure (GPa) 412
(Freeze Specific-Internal-Energy (M J/kg)-dependent)
EOS_Pm_Am Melt Pressure (G Pa) 411
(Melt Specific-Free-Energy (M J/kg)-dependent)
EOS_Pm_D Melt Pressure (G Pa) 411
(Density (Mg/m?3)-dependent)
EOS_Pm_Tm Melt Pressure (G Pa) 411
(Melt Temperature (K )-dependent)
EOS_Pm_Um Melt Pressure (GPa) 411
(Melt Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Tf_Af Freeze Temperature (K) 412
(Freeze Specific-Free-Energy (M .J/kg)-dependent)
EOS_Tf.D Freeze Temperature (K) 412
(Density (Mg/m?)-dependent)
EOS_Tf_Pf Freeze Temperature (K) 412
(Freeze Pressure (G Pa)-dependent)
EOS_Tf Uf Freeze Temperature (K) 412
(Freeze Specific-Internal-Energy (M .J/kg)-dependent)
EOS_Tm_Am Melt Temperature (K) 411
(Melt Specific-Free-Energy (M J/kg)-dependent)
EOS_-Tm_D Melt Temperature (K) 411
(Density (Mg/m?)-dependent)
EOS_Tm_Pm Melt Temperature (K) 411
(Melt Pressure (G Pa)-dependent)

Continued on next page

Category 10: Melt data in SESAME’s 411 and 412 tables
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EOSPAC 6
Constant
EOS_Tm_Um
EOS_Uf_Af
EOS_Uf_D
EOS_Uf_Pf
EOS_Uf.Tf
EOS_Um_Am
EOS_Um_D
EOS_Um_Pm
EOS_Um_Tm

Description

Melt Temperature (K)

SESAME
Table(s)
411

(Melt Specific-Internal-Energy (M .J/kg)-dependent)

Freeze Specific-Internal-Energy (M J/kg)

412

(Freeze Specific-Free-Energy (M .J/kg)-dependent)

Freeze Specific-Internal-Energy (M J/kg)
(Density (Mg/m?)-dependent)

Freeze Specific-Internal-Energy (M J/kg)
(Freeze Pressure (G Pa)-dependent)
Freeze Specific-Internal-Energy (M J/kg)
(Freeze Temperature (K )-dependent)
Melt Specific-Internal-Energy (M J/kg)

412

412

412

411

(Melt Specific-Free-Energy (M .J/kg)-dependent)

Melt Specific-Internal-Energy (M J/kg)
(Density (Mg/m?3)-dependent)

Melt Specific-Internal-Energy (M J/kg)
(Melt Pressure (G Pa)-dependent)
Melt Specific-Internal-Energy (M J/kg)
(Melt Temperature (K )-dependent)

411

411

411

Category 10: Melt data in SESAME’s 411 and 412 tables
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B.11 Category 11: Shear Modulus data in SESAME’s 431 tables

EOSPAC 6 Description SESAME

Constant Table(s)

EOS_ D _Gs Density (Mg/m?) 431
(Shear Modulus (Gpa)-dependent)

EOS_Gs.D Shear Modulus (Gpa) 431

cPu]l (Density (Mg/m?)-dependent)

Category 11: Shear Modulus data in SESAME’s 431 tables
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B.12 Category 12: Opacity data in SESAME’s 500-series tables

EOSPAC 6
Constant
EOS_Keo DT

GPU
EOS_Kp DT

GPU
EOS_ Kr DT

GPU
EOS_Ogb

EOS_Zfo DT

GPU

Description

Electron Conductive Opacity (Opacity Model) (em?/g)
(Density (Mg/m?)- and Temperature (eV)-dependent)
Planck Mean Opacity (cm?/g)

(Density (Mg/m?)- and Temperature (eV')-dependent)
Rosseland Mean Opacity (cm?/g)

(Density (Mg/m?)- and Temperature (eV')-dependent)
Calculated versus Interpolated Opacity Grid Boundary

Mean Ion Charge (OpacityModel)
(free electrons per atom) (Density (Mg/m?)- and
Temperature (eV')-dependent)

SESAME
Table(s)
503
505
502

201

504

Category 12: Opacity data in SESAME’s 500-series tables
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B.13 Category 13: Conductivity data in SESAME’s 600-series tables

EOSPAC 6
Constant
EOS_B.DT

GPU
EOS_ Kc DT

GPU

EOS_Kec_DT

GPU
EOS_Ktc DT

GPU
EOS_Zfc DT

GPU

Description

Thermoelectric Coefficient (1/cm?/s)

(Density (Mg/m?)- and Temperature (eV)-dependent)
Electron Conductive Opacity (Conductivity Model)
(em?/g)

(Density (Mg/m?)- and Temperature (eV')-dependent)
Electrical Conductivity (1/s)

(Density (Mg/m?)- and Temperature (eV')-dependent)
Thermal Conductivity (1/cm/s)

(Density (Mg/m?)- and Temperature (eV')-dependent)
Mean Ion Charge (Conductivity M odel)

(free electrons per atom) (Density (Mg/m3)- and
Temperature (eV')-dependent)

SESAME
Table(s)
604

605

602

603

601

Category 13: Conductivity data in SESAME’s 600-series tables



162 CHAPTER 14. APPENDIX

Category 13: Conductivity data in SESAME’s 600-series tables
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C TABLE TYPES: EOSPAC VERSION 5 CROSS REF-
ERENCE

Below are tables of defined constants corresponding to all of the data table types available within

EOSPAC version 5.

It is important to note that the actual values of these constants may change without notice; there-
fore, use the constant names — do not hardwire the values into the host code. The EOSPAC 6

Constants are color coded as follows:

e [ indicates the table is inverted with respect to the first independent variable.
° indicates the table is inverted with respect to the second independent variable.
e [ indicates the table is a combination of two other tables.

° indicates the table is compatible with the eos_Mix routine.

EOSPAC 6 EOSPAC 5 Description SESAME
Constant Constant Table(s)
EOS_B.DT ES4 THERME Thermoelectric Coefficient (1/cm?/s) 604
MIX (Density (Mg/m?)- and Temperature
(eV')-dependent)
EOS_D_PtT ES4 DPTTOT Density (Mg/m?) 301
(Total Pressure (GPa)- and
Temperature (K)-dependent)
EOS_Gs_D ES4_ SHEARM Shear Modulus (Gpa) 431
(Density (Mg/m?3)-dependent)
EOS Ke DT ES4_OPACC3 Electron Conductive Opacity 605
MIX (Conductivity Model) (cm?/g)

(Density (Mg/m?)- and Temperature
(eV')-dependent)
EOS_Kec. DT ES4 ECONDE Electrical Conductivity (1/s) 602
MIX (Density (Mg/m?)- and Temperature
(eV)-dependent)

Continued on next page
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EOSPAC 6 EOSPAC 5 Description SESAME
Constant Constant Table(s)
EOS_ Keo DT ES4_OPACC2 Electron Conductive Opacity 503

MIX (Opacity Model) (em?/g)
(Density (Mg/m?)- and Temperature
(eV')-dependent)
EOS_Kp DT ES4_ OPACP Planck Mean Opacity (cm?/g) 505
MIX (Density (Mg/m?)- and Temperature
(eV')-dependent)
EOS Kr DT ES4 OPACR Rosseland Mean Opacity (cm?/g) 502
MIX (Density (Mg/m?)- and Temperature
(eV')-dependent)
EOS_ Ktc DT ES4. TCONDE Thermal Conductivity (1/cm/s) 603
MIX (Density (Mg/m?)- and Temperature
(eV')-dependent)
EOS_NullTable ES4 NULLPTR null table n/a
EOS_Pc.D ES4_ PRCLD Pressure Cold Curve (GPa) 306
MIX (Density (M g/m?3)-dependent)
EOS_Pe DT ES4 PRELC Electron Pressure (G Pa) 304
MIX (Density (Mg/m?)- and Temperature
(K)-dependent)
EOS_Pe_DUe ES4 PNELC Electron Pressure (GPa) 304
MIX (Density (Mg/m?)- and Electron
Specific-Internal-Energy
(M J/kg)-dependent)
EOS_Pf.-D ES4 PFREEZ Freeze Pressure (GPa) 412
(Density (M g/m?*)-dependent)
EOS_Pic DT ES4 PRION Ion Pressure plus Cold Curve 303
MIX Pressure (GPa)

(Density (Mg/m?)- and Temperature
(K)-dependent)

Continued on next page
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EOSPAC 6
Constant
EOS_Pic_DUic

MIX

EOS_Pm_D

EOS_Pt.DT

EOS_Pt_DUt

EOS_T_DPe

MIX

EOS_T_DPic

MIX

EOS_T_DPt

MIX

EOS_T_DUe

MIX

EOSPAC 5
Constant
ES4_PNION

ES4 PMELT

ES4 PRTOT

ES4 PNTOT

ES4 TPELC

ES4_TPION

ES4. TPTOT

ES4_ TNELC

Description SESAME
Table(s)
Ion Pressure plus Cold Curve 303

Pressure (GPa)

(Density (Mg/m?)- and Ton
Specific-Internal-Energy plus Cold
Curve Specific-Internal-Energy

(M J/kg)-dependent)

Melt Pressure (GPa) 411
(Density (Mg/m?)-dependent)
Total Pressure (G Pa) 301

(Density (Mg/m?)- and Temperature
(K)-dependent)

Total Pressure (GPa) 301
(Density (Mg/m?)- and Total
Specific-Internal-Energy

(M J/kg)-dependent)

Temperature (K) 304
(Density (Mg/m?)- and Electron

Pressure (G Pa)-dependent)

Temperature (K) 303
(Density (Mg/m?)- and Ton Pressure

plus Cold Curve Pressure

(G Pa)-dependent)

Temperature (K) 301
(Density (Mg/m?)- and Total

Pressure (G Pa)-dependent)

Temperature (K) 304
(Density (Mg/m?)- and Electron
Specific-Internal-Energy

(M J/kg)-dependent)

Continued on next page
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EOSPAC 6 EOSPAC 5 Description SESAME

Constant Constant Table(s)

EOS_T_DUic ES4_TNION Temperature (K) 303
(Density (Mg/m?)- and Ion

Specific-Internal-Energy plus Cold
Curve Specific-Internal-Energy
(M J/kg)-dependent)
EOS_T_DUt ES4. TNTOT Temperature (K) 301
MIX (Density (Mg/m?)- and Total
Specific-Internal-Energy
(M J/kg)-dependent)

EOS_Tf.D ES4_ TFREEZ Freeze Temperature (eV) 412
(Density (Mg/m?)-dependent)
EOS_-Tm_D ES4. TMELT Melt Temperature (K) 411
(Density (Mg/m?3)-dependent)
EOS_Uc_D ES4_ ENCLD Specific-Internal-Energy Cold Curve 306
MIX (MJ/kg)
(Density (Mg/m?)-dependent)
EOS_Ue_DPe ES4 EPELC Electron Specific-Internal-Energy 304
(M.J/kg)

(Density (Mg/m?)- and Electron
Pressure (G Pa)-dependent)
EOS_Ue DT ES4_ENELC Electron Specific-Internal-Energy 304
MIX (MJ/kg)
(Density (Mg/m?)- and Temperature
(K)-dependent)

EOS_Uf D ES4 EFREEZ Freeze Specific-Internal-Energy 412
(MJ/kg)
(Density (M g/m?3)-dependent)
EOS_Uic_DPic ES4_EPION Ion Specific-Internal-Energy plus 303
Cold Curve Specific-Internal-Energy
(MJ/kg)

(Density (Mg/m?)- and Ion Pressure
plus Cold Curve Pressure
(G Pa)-dependent)

Continued on next page
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EOSPAC 6

Constant

EOS_Uic DT

EOS_Um_D

EOS_Ut_DPt

MIX

EOS_Ut_.DT

EOS_Zfe DT

EOS_Zfo DT

EOSPAC 5
Constant
ES4_ENION

ES4_ EMELT

ES4 EPTOT

ES4_ ENTOT

ES4_ ZFREE3

ES4 ZFREE2

Description

Ion Specific-Internal-Energy plus
Cold Curve Specific-Internal-Energy
(MJ/kg)

(Density (Mg/m?)- and Temperature
(K')-dependent)

Melt Specific-Internal-Energy
(MJ/kg)

(Density (Mg/m?)-dependent)

Total Specific-Internal-Energy
(MJ/kg)

(Density (Mg/m?)- and Total
Pressure (G Pa)-dependent)

Total Specific-Internal-Energy
(M.J/kg)

(Density (Mg/m?)- and Temperature
(K)-dependent)

Mean Ion Charge (Conductivity
Model) (free electrons per atom)
(Density (Mg/m?)- and Temperature
(eV')-dependent)

Mean Ion Charge (Opacity Model)
(free electrons per atom)

(Density (Mg/m?)- and Temperature
(eV')-dependent)

SESAME
Table(s)
303

411

301

301

601

504
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D OPTIONS: SETUP PHASE

Below is a list of defined constants corresponding to the user specified setup phase options available
within EOSPAC. This list has been alphabetized according to the defined constant names, which
are cross-referenced to the applicable EOSPAC 5[8],[9] defined constants. Unlike EOSPAC 5, these
EOSPAC option flags are to be applied to a given table handle using one of two public routines:
eos_ResetOption and eos_SetOption (see chapter 7 sections 1.7 and 1.11 respectively). For each
table handle, the eos_SetOption routine may be used to enable or disable an optional feature.
Alternatively, the eos_ResetOption routine may be used to reassert the default option settings if, in
fact, such default values are defined in the table below. Take note that some of the options require

an associated value passed into the eos_SetOption routine parameter named tableOptionVal.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names — do not hardwire the values into the host code.

EOSPAC 6 Constant Default Option Description
State
(tableOptionVal)

EOS_ADJUST_VAP_PRES Disabled This provides a mechanism for the
(0) host code to pass into EOSPAC 6

adjusted pressure values
(corresponding to SAGE’s!
matdef(2,mat) input variable) for the
vapor dome to ensure ambient
conditions are reasonable for a
specified material. This option is only
valid when also using the option
named EOS_PT_SMOOTHING. It is
important to note that the units of the
tableOptionVal must be compatible
with Sesame pressure data (GPa). See
chapter 9 section 1 for more details.

Continued on next page

ISAGE is a one-, two-, and three-dimensional, multi-material Eulerian hydrodynamics code (LA-UR-04-2959).
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EOSPAC 6 Constant

EOS_APPEND _DATA

EOS_CALC_FREE_ENERGY

EOS_CHECK_ARGS

EOS_CREATE_TZERO

EOS_-DUMP_DATA

Default Option
State
(tableOptionVal)
Disabled

(N/A)

Disabled
(N/A)

Disabled
(N/A)
Disabled
(N/A)

Disabled
(N/A)

Description

Append the loaded data table and
descriptive information to an ASCII
file named “TablesLoaded.dat” within
the current working directory. The
corresponding EOSPAC 5[8],[9] setup
option used to enable this feature is
Iprnt = TRUE passed to ESITABS.
Instead of using the corresponding
Sesame data, the Helmholtz Free
Energy data is calculated using the
equations equations (3.1) to (3.3).

If no internal energy data exists for
T = 0, then the free energy data will
not be calculated.

Allow extensive argument checking.

Using linear extrapolation along each
isochore , create a T' = 0 isotherm if
it’s unavailable when loading
300-series Sesame data.

Write the loaded data table and
descriptive information to an ASCII
file named “TablesLoaded.dat” within
the current working directory. The
corresponding EOSPAC 5[8],[9] setup
option used to enable this feature is

Iprnt = TRUE passed to ESITABS.

Continued on next page
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EOSPAC 6 Constant Default Option
State
(tableOptionVal)
EOS_INSERT_DATA Disabled
(0)
EOS_INVERT_AT SETUP Disabled
(N/A)

Description

Insert grid points between each
original grid point with respect to all
independent variables (i.e., increase
grid resolution). The value of the
eos_SetOption parameter,
tableOptionVal, is to contain the
user-defined number of data points to
insert between existing data points.
The corresponding EOSPAC 5[8],[9]
setup option used to enable this
feature is iopt = 10000N, given

(0 < N <9) passed to ESITABS.
See chapter 9 section 7.2 about this
and EOS_INVERT _AT SETUP.
Create an inverted table during the
Setup Phase (chapter 5) and store it
in memory rather than the waiting
until the Interpolation Phase
(chapter 6) to invert tabulated data.
This option is implemented in
response to user requests for improved
interpolation performance of problems
that are heavily-dependent upon
inverted data tables.

This option is ignored and the
EOS_INVALID_OPTION_FLAG error
code is returned if the host code
attempts to set this option for a
non-inverted data table type.

See chapter 9 section 7 for a
discussion about this option.

Continued on next page
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EOSPAC 6 Constant Default Option Description
State
(tableOptionVal)

EOS_MONOTONIC_IN_X Disabled Enable forced monotonicity with
(N/A) respect to x of F(x,y).

The corresponding EOSPAC 5[8],[9]
setup option used to enable this

feature is iopt = 100 passed to

ES1TABS.
EOS_MONOTONIC_IN_Y Disabled Enable forced monotonicity with
(N/A) respect to y of F(x,y).

The corresponding EOSPAC 5[8],[9]
setup option used to enable this

feature is iopt = 300 passed to

ES1TABS.
EOS_PT_SMOOTHING Disabled This performs all the necessary data
(N/A) smoothing taken from SAGE.? See the

related setup option named
EOS_ADJUST_VAP_PRES and the
related interpolation option named
EOS_USE_CUSTOM_INTERP. See
chapter 9 section 1 for more details.
EOS_SMOOTH Disabled Enable data table smoothing that
(N/A) imposes a linear floor on temperature
dependence, forces linear temperature
dependence for low temperature, and
forces linear density dependence for
low and high density.
The corresponding EOSPAC 5[8],[9]
setup option used to enable this
feature is 1opt = 10 passed to

ES1TABS.

Continued on next page

2SAGE is a one-, two-, and three-dimensional, multi-material Eulerian hydrodynamics code (LA-UR-04-2959).
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EOSPAC 6 Constant

EOS_SPLIT_COWAN

EOS_SPLIT_FORCED

EOS_SPLIT_IDEAL_GAS

EOS_SPLIT_NUM_PROP

EOS_USE_MAXWELL TABLE

Default Option
State
(tableOptionVal)
Disabled

(N/A)

Disabled
(N/A)
Disabled
(N/A)

Disabled

(N/A)

Disabled
(N/A)

Description

Allows splitting for ion data table not
found in the database using the cold
curve plus Cowan-nuclear model for
ions.

Forces specified splitting option for
data table.

Allows splitting for ion data table not
found in the database using the cold
curve plus ideal gas model for ions.
Allows splitting for ion data table not
found in the database using the cold
curve plus number-proportional model
for ions.

Use the Maxwell data in table 311
instead of the corresponding table
301.
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E DATA INFORMATION PARAMETERS

Information about a table can be requested via the eos_GetTableInfo routine using the parameters
defined in this section. The eos_GetTablelnfo routine is designed to be general in functionality, so

these parameters are grouped according to their prerequisites.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names — do not hardwire the values into the host code.

Table E-1 lists parameters that require the comment tables (i.e., EOS_Comment) for a material to

be loaded and associated with a table handle.

Table E-1: Information parameter(s) related to SESAME’s 100-series tables

Parameter Description
EOS_Cmnt_Len Retrieve the length in characters of the comments available
for the specified data table

Table E-2 lists parameters that require the general material data table (i.e., EOS_Info) to be loaded

and associated with a table handle.

Table E-2: Information parameter(s) related to SESAME’s 201 tables

Parameter Description

EOS _Exchange_Coeff Retrieve the exchange coefficient
EOS_Mean_Atomic_Mass Retrieve the mean atomic mass
EOS_Mean_Atomic_Num Retrieve the mean atomic number
EOS_Modulus Retrieve the solid bulk modulus
EOS_Normal_Density Retrieve the normal density

Table E-3 lists parameters that require data to be loaded and associated with a table handle;
however, they don’t apply to SESAME’s 100-series and 201 tables.
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Table E-3: Information parameter(s) generally related to SESAME’s tables except
for SESAME’s 100-series and 201 tables

Parameter
EOS_F_Convert_Factor

EOS _Log_Val

EOS_X_Convert_Factor

EOS_Y _Convert_Factor

EOS_NX

EOS_NY

EOS_X_BOUND_GRID

EOS_X_LOWER_BOUND

Description

Retrieve the conversion factor corresponding to the
dependent variable, F'(x,y). This is an alias for
EOS_F_CONVERT.

Retrieve the InfoVal that is non-zero if the data table is in
a logl0 format.

Retrieve the conversion factor corresponding to the primary
independent variable, x. This is an alias for
EOS_X_CONVERT.

Retrieve the conversion factor corresponding to the
secondary independent variable, y. This is an alias for
EOS_Y_CONVERT.

Retrieve the extent of the xVals extrapolation lower/upper
bound(s) arrays. This value is dependent upon the table
type associated with the table handle, and it can be either
1 or NT. For example, for tables inverted with respect to
density this will be the number of temperatures (NT) — for
all others this will be 1.

Retrieve the extent of the yVals extrapolation lower/upper
bound(s) arrays. This value is dependent upon the table
type associated with the table handle, and it can be either
1 or NR. For example, for tables inverted with respect to
temperature this will be the number of densities (NR) — for
all others this will be 1.

Retrieve the extrapolation bound(s) grid array® for the
xVals. If the value returned by EOS_NX is 1, then this will
return an arbitrary scalar value of 0.

Retrieve the extrapolation lower bound(s) array® for the
f(@min, y), which corresponds to xVals in chapter 6.

Continued on next page

3The extent of this array is dependent upon the table type associated with the table handle, and it will correspond

to the value returned by EOS_NX.
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Table E-3: Information parameter(s) generally related to SESAME’s tables except

for SESAME’s 100-series and 201 tables

Parameter Description

EOS_X_UPPER_BOUND Retrieve the extrapolation upper bound(s) array® for the
f(Zmaz,y), which corresponds to xVals in chapter 6.
EOS_Y_BOUND_GRID Retrieve the extrapolation bound(s) grid array® for the

yVals. If the value returned by EOS_NY is 1, then this will

return an arbitrary scalar value of 0.
EOS_-Y_LOWER_BOUND Retrieve the extrapolation lower bound(s) array® for the
f(z, Ymin), which corresponds to yVals in chapter 6.
EOS_Y_UPPER_BOUND Retrieve the extrapolation upper bound(s) array? for the
f(x, Ymaz ), which corresponds to yVals in chapter 6.

For an arbitrary tabulated surface, S=f(x,y), as
shown in the cartoon to the right, the various
boundaries, which are defined by the
EOS_X_LOWER_BOUND, EOS_X_UPPER_BOUND,
EOS_Y_LOWER_BOUND and EO0S_Y_UPPER_BOUND
options, are shown as f(Zmin, V), f(Tmaz,Y),

f (@, Ymin) and f(x, Ymaz) respectively. For
SESAME data that is not inverted, all four
boundary curves are scalar (i.e., minimum and
maximum densities and temperatures). For
inverted forms, one of the bounding pairs (either
f (@, Ymin) and f(2, Ymaz) OF f(Tmin,y) and
f(Zmaz,y)) are scalars and the other are defined

as tabulated 1-D curves.

Table E-4 lists parameters that require data to be loaded and associated with a table handle. In

other words, all table handles that are associated with data may be queried for the information

indicated by these parameters.

4The extent of this array is dependent upon the table type associated with the table handle, and it will correspond

to the value returned by EOS_NY.
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Table E-4: Information parameter(s) generally related to SESAME’s tables

Parameter
EOS_Material 1D
EOS_Table_Type

Description

Retrieve the SESAME material identification number
Retrieve the type of data table. Corresponds to the
parameters in APPENDICES B and C

Table E-5 lists parameters that require data to be loaded and associated with a table handle;

however, they are only valid for non-inverted data tables specifically related to SESAME’s 301 and

401 tables.

Table E-5: Information parameter(s) associated with non-inverted data tables

Parameter

EOS_R_Array

EOS_T_Array

EOS_F_Array

EOS_NR

Description

Retrieve the density array

Note that InfoVals must be allocated to hold NR
EOS_REAL values, so querying for the EOS_NR value is
first necessary.

The conversion factor supplied via the EOS_X_CONVERT
option will affect these data.

Retrieve the temperature array

Note that InfoVals must be allocated to hold NT
EOS_REAL values, so querying for the EOS_NT value is
first necessary.

The conversion factor supplied via the EOS_Y_CONVERT
option will affect these data.

Retrieve the F array

This two-dimensional array will be assigned to the
one-dimensional array, InfoVals, in a column-major oder.
Note that InfoVals must be allocated to hold NR*NT
EOS_REAL values, so querying for the EOS_NR and
EOS_NT values is first necessary.

The conversion factor supplied via the EOS_F_ CONVERT
option will affect these data.

Retrieve the number of densities

Continued on next page
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Table E-5: Information parameter(s) associated with non-inverted data tables

Parameter Description
EOS_NT Retrieve the number of temperatures
EOS_Rmin Retrieve the minimum density.

The conversion factor supplied via the EOS_X_CONVERT
option will affect these data.

EOS_Rmax Retrieve the maximum density.
The conversion factor supplied via the EOS_X_CONVERT
option will affect these data.

EOS_Tmin Retrieve the minimum temperature.
The conversion factor supplied via the EOS_Y_CONVERT
option will affect these data.

EOS_Tmax Retrieve the maximum temperature.
The conversion factor supplied via the EOS_.Y_CONVERT
option will affect these data.

EOS_Fmin Retrieve the minimum F value.
The conversion factor supplied via the EOS_F_CONVERT
option will affect these data.

EOS_Fmax Retrieve the maximum F value.
The conversion factor supplied via the EOS_F_CONVERT
option will affect these data.

EOS_NUM_PHASES Retrieve the number of material phases that are tabulated.
This is only valid in conjunction with the EOS_M_DT data

type.
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F META-DATA INFORMATION PARAMETERS

Information about a table can be requested via the eos_GetMetaData and eos_GetTableMetaData
routines using the parameters defined in this section. The eos_GetMetaData and eos_GetTableMetaData
routines are designed to be general in functionality, so these parameters are grouped according to

their usage.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names — do not hardwire the values into the host code.

Table F-1: Information parameter(s) used for the first argument (infoltem) of the

cos_GetMetaData routine

Parameter Description
All table type constants defined in Specify the table type of interest
APPENDICES B and C

Table F-2: Information parameter(s) used for the second argument (infoltemCat-

egory) of the eos_GetMetaData routine

Parameter Description

EOS_Table_Type Retrieve the specified table type’s string
representation. Corresponds to the parameters in
APPENDICES B and C

EOS_Table_Name Retrieve the specified table type’s descriptive name.
Corresponds to the parameters’s descriptions in
APPENDICES B and C

EOS _Dependent_Var Retrieve the short string representation of the
specified table type’s dependent variable as listed in
APPENDIX A

EOS Independent_Varl Retrieve the short string representation of the

specified table type’s first independent variable as
listed in APPENDIX A

Continued on next page
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Table F-2: Information parameter(s) used for the second argument (infoltemCat-

egory) of the eos GetMetaData routine

Parameter Description

EOS_Independent_Var2 Retrieve the short string representation of the
specified table type’s second independent variable as
listed in APPENDIX A

EOS_Sesame_Table_List Retrieve the specified table type’s associated
SESAME table number(s)
EOS _Pressure_Balance_Table_Type Retrieve the specified table type’s associated pressure

balance table type as used by the eos_Mix algorithms
10

EOS _Temperature_Balance_Table_Type Retrieve the specified table type’s associated
temperature balance table type as used by the

eos_Mix algorithms [10]

Table F-3: Information parameter(s) used for the second argument (infoltem) of

the eos_GetTableMetaData routine

Parameter Description

EOS_File_Name Retrieve the SESAME file name that is associated
with the specified table handle

EOS_Material_Name Retrieve the material name that is associated with
the specified table handle

EOS_Material Source Retrieve the material source (e.g. author)® that is

associated with the specified table handle
EOS _Material Date Retrieve the material creation datel2 that is
associated with the specified table handle
EOS_Material_Ref Retrieve the material documentation reference(s)12
that is associated with the specified table handle
EOS_Material Composition Retrieve the material composition12 that is
associated with the specified table handle
EOS_Material_Codes Retrieve the data generation software name(s)12 that
is associated with the specified table handle

Continued on next page
5This information is found the SESAME 101 table, which is loaded using the EOS_Comments table type
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Table F-3: Information parameter(s) used for the second argument (infoltem) of
the eos_GetTableMetaData routine

Parameter Description

EOS_Material_Phases Retrieve the material phase name(s)12 that is
associated with the specified table handle

EOS_Material Classification Retrieve the material classification description12 that
is associated with the specified table handle.
Examples include, but are not limited to, Unknown,

Unclassified, Export-Controlled, etc.
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G OPTIONS: INTERPOLATION PHASE

Below is a list of defined constants corresponding to the user specified interpolation options available
within EOSPAC. This list has been alphabetized according to the defined constant names, which
are cross-referenced to the applicable EOSPAC 5[8],[9] defined constants. Unlike EOSPAC 5, these
EOSPAC option flags are to be applied to a given table handle using one of two public routines:
eos_ResetOption and eos_SetOption (see chapter 7 sections 1.7 and 1.11 respectively). For each
table handle, the eos_SetOption routine may be used to enable or disable an optional feature.
Alternatively, the eos_ResetOption routine may be used to reassert the default option settings if, in
fact, such default values are defined in the table below. Take note that some of the options require

an associated value passed into the eos_SetOption routine parameter named tableOptionVal.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names — do not hardwire the values into the host code.

EOSPAC 6 Constant Default Option Description

State

(tableOptionVal)
EOS_DISCONTINUOUS_DERIVATIVES  Disabled Enable the original

(N/A) linear /bilinear logic, which

calculates discontinuous
derivatives at the tabulated
grid. This option requires the
interpolation option,
EOS_LINEAR, to be enabled
for the specified table handle.
See section 8.6 for a brief
discussion of the rationale for
this option.

Continued on next page
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EOSPAC 6 Constant

EOS_F_CONVERT®

EOS_LINEAR

EOS_RATIONAL

EOS_SKIP_EXTRAP_CHECK

Default Option
State
(tableOptionVal)
Disabled

(1.0)

Disabled
(N/A)

Enabled
(N/A)

Disabled
(N/A)

Description

Set the conversion factor used
on the fVals dependent variable
value(s). The value of the
eos_SetOption parameter,
tableOptionVal, is to contain
the conversion factor value.”
Bilinear interpolation.

The corresponding EOSPAC
5[8],[9] interpolation option
used to enable this feature is
idrvs=ES4_BILINE passed to
ES1VALS.

Birational interpolation.

The corresponding EOSPAC
5[8],[9] interpolation option
used to enable this feature is
idrvs=ES4_BIRATF passed to
ES1VALS.

All extrapolation checks are
skipped unless host calls
eos_CheckExtrap.

Continued on next page

6The eos_SetOption parameter, tableOptionVal (see chapter 7 section 1.11), must be defined to an appropriate

number for this option.

"The conversion factor value is defined so that it converts values from the SESAME units[1] to the host code

units; therefore, it is internally-used as a multiplier to convert the output values to the appropriate host code units.
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EOSPAC 6 Constant Default Option Description
State
(tableOptionVal)
EOS_USE_CUSTOM_INTERP Disabled Use a custom
(N/A) inverse-interpolation algorithm

that requires the setup option,
EOS_PT_SMOQOTHING, to be
enabled for the specified table
handle. This option is only
valid for table types
EOS_Ut_PtT and EOS_V_PtT.
See section 8.1 for more details.
Note that the partial
derivatives, dFx and dFy, are

not calculated when this option

is set.
EOS_USE_HOST_XY Disabled Do not create an internal copy
(N/A) of the xVals and yVals inputs

for eos_Interpolate, eos_Mix
and eos_CheckExtrap. Modify
the xVals and yVals inputs in
situ — use host code’s arrays
directly. Overrides
previously-set
EOS_XY_PASSTHRU option.
EOS_X_CONVERT® Disabled Set the conversion factor used
(1.0) on the xVals independent
variable value(s). The value of
the eos_SetOption parameter,
tableOptionVal, is to contain
the conversion factor value.®

Continued on next page

8The conversion factor value is defined so that it converts values from the host code units to the SESAME units[1];

therefore, it is internally-used as a divisor to convert the input values to the appropriate SESAME units.
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EOSPAC 6 Constant

EOS_Y_CONVERT®

EOS_XY_MODIFY

EOS_XY_PASSTHRU

Default Option
State
(tableOptionVal)
Disabled

(1.0)

Disabled
(N/A)

Disabled
(N/A)

Description

Set the conversion factor used
on the yVals independent
variable value(s). The value of
eos_SetOption parameter,
tableOptionVal, is to contain
the conversion factor value.®
Do not create an internal copy
of the xVals and yVals inputs
for eos_Interpolate, eos_Mix
and eos_CheckExtrap. Modify
the xVals and yVals inputs in
situ — use host code’s arrays
directly. Overrides
previously-set

EOS_XY _PASSTHRU option.
Neither create an internal copy
nor modify the xVals and yVals
inputs for eos_Interpolate,
eos_Mix and eos_CheckExtrap.
Use host code’s arrays directly
— unmodified. Overrides

previously-set
EOS_XY_MODIFY option.
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H ERROR CODES

Below is a list of defined constants corresponding to all of the possible error codes returned by
EOSPAC. This list has been alphabetized according to the defined constant names, which are
cross-referenced to the applicable EOSPAC 5[8],[9] defined constants.

It is important to note that the actual values of these constants may change without notice; there-

fore, use the constant names — do not hardwire the values into the host code.

NOTE: As of wversion 6.3, comparison of two error codes now requires the usage of the

eos_ErrorCodesEqual routine described in chapter 7 section 1.1

EOSPAC 6 Constant
(EOSPAC 5 Constant)
EOS_.BAD_DATA_TYPE

(ES5_ BADTABLETYPE)
EOS_.BAD_DERIVATIVE_FLAG
(ES5_ BADDERIVTYPE)
EOS_.BAD_INTERPOLATION _FLAG
(ES5_BADINTRPTYPE)
EOS_.BAD _MATERIAL_ID
(ES5_MATIDZERO)
EOS_CANT_INVERT_DATA

EOS_.CANT_MAKE_MONOTONIC
EOS_.CONVERGENCE_FAILED
(ES5_CONVERGEFAILED)
EOS_DATA_TYPE_NOT_FOUND
(ES5.TYPENOTFOUND)
EOS_DATA_TYPE_NO_MATCH
EOS_FAILED
EOS_GEN401_AND_NOT_FOUND
EOS_INDEX_FILE_ERROR

EOS_INTEGRATION_FAILED

Description

Data table type is not recognized

Derivative is not recognized

Interpolation is not recognized

Material ID is zero

Can’t invert with respect to the required
independent variable

Can’t make data monotonic in X

Iterative algorithm did not converge during
inverse interpolation

Data table type is not in library

Data types do not match as required for mixing
Operation failed

401 data was generated and not found

The sesameFilesDir.txt file parser found a syntax
error

Numerical integration failed or not possible

Continued on next page
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EOSPAC 6 Constant
(EOSPAC 5 Constant)
EOS_INTERP_EXTRAPOLATED

EOS_INTERP_EXTRAP_PBAL

EOS_INTERP_EXTRAP_TBAL

EOS_INVALID_CONC_SUM

EOS_INVALID _DATA_TYPE
EOS_INVALID_INFO_FLAG

EOS_INVALID_INFO_CATEGORY_FLAG

EOS_INVALID _NXYPAIRS
EOS_INVALID_OPTION_FLAG

EOS_INVALID_SPLIT_FLAG
EOS_INVALID_SUBTABLE_INDEX
EOS_INVALID_TABLE_HANDLE
EOS_MATERIAL_ NOT_FOUND
(ES5_.MATNOTFOUND)
EOS_MEM_ALLOCATION_FAILED
(ES5_EXPANDFAILED)
EOS_MIN_ERROR_CODE_VALUE
EOS_NOT_ALLOCATED
EOS_NOT_INITIALIZED
(ES5_NOTINIT)
EOS_NO_COMMENTS
EOS_NO_DATA_TABLE
(ES5_.NOTABLE)
EOS_NO_SESAME FILES
(ES5_NOFILESFOUND)

Description

Interpolation caused extrapolation beyond data
table boundaries

Pressure balance function extrapolated beyond
data table boundaries

Temperature balance function extrapolated
beyond data table boundaries

The sum of the supplied material concentrations
does not equal 1.0

Operation is not defined on this data type

The info flag passed into either eos_GetTableInfo
or eos_GetTableMetaData is invalid

The info category flag passed into
eos_GetMetaData is invalid

Invalid nXYPairs value

The option flag passed into eos_SetOption is
invalid

The data splitting option is invalid

Subtable index out of the range

Invalid table handle

Material ID is not in library

EOS table area cannot be expanded
Minimum error code value
Memory not allocated for data

EOS table area is not initialized

No comments available for this data table
Data table is not in EOS table area

No data library files exist

Continued on next page
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EOSPAC 6 Constant

(EOSPAC 5 Constant)

EOS_OK

(ES5.0K)
EOS_.OPEN_OUTPUT_FILE_FAILED

EOS_OPEN_SESAME FILE_FAILED
(ES5_OPENFAILED)
EOS_READ_DATA_FAILED
(ES5_.LDTABLEFAILED)

EOS_READ _FILE_VERSION_FAILED
(ES5_GETVERSNFAILED)
EOS_READ_MASTER_DIR_FAILED
(ES5_.LDMASTERFAILED)
EOS_READ_MATERIAL_DIR_FAILED
(ES5_.LDMATDIRFAILED)
EOS_READ_TOTAL_MATERIALS_FAILED
(ES5_GETNMATSFAILED)
EOS_SPLIT_FAILED

EOS_UNDEFINED

EOS_WARNING

EOS xHi_yHi
EOS xHi_yLo

EOS xHi_yOk
EOS xLo_yHi

EOS xLo_yLo

Description
No errors detected

Could not open TablesLoaded.dat or related
data file

Could not open data file

Could not load data table

Could not load version from data file
Could not load master directory
Could not load material directory
Could not read number of materials

The data splitting algorithm failed

The result is undefined

Operation has generated a warning and an
associated custom message

Both the x and y arguments were high

The x argument was high, the y argument was
low”

The x argument was high, the y argument was
OK10

The x argument was low, the y argument was
OK

Both the x and y arguments were low” ¥

Continued on next page

9If the y argument corresponds to a temperature value, then a zero temperature was used for interpolation rather

than the value supplied by the host code.

10Tf the x argument corresponds to a density value, then a zero density was used for interpolation rather than the

value supplied by the host code.
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EOSPAC 6 Constant Description

(EOSPAC 5 Constant)

EOS xLo_yOk The x argument was low, the y argument was
OK10

EOS _xOk_yHi The x argument is OK and the y argument is
high

EOS xOk_yLo The x argument is OK and the y argument is

low?
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