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Quantum optimal control
Aim is to design a time-dependent field At, {Oi}), t E [0,77], to steer a quantum system towards a desired control target.
This is posed as the search for min AT, {69].

m

Simulations have two components:

1. Evaluation of control objective functional J[T, {OM

2. Update of control parameters {69

Iteratively update {Oi} until
J[T, 169] converges

C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010).

How well is desired control target
reached?

Involves simulating the dynamics
of a quantum system under the
influence of an applied field

- Computationally demanding
- Computer memory/time costs scale
exponentially in # quantum degrees of
freedom
...not on a quantum computer
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Problem
definition

Qubit encoding

Binary mapping to qubit states:
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N. P. D. Sawaya, et al, (2019), arXiv:1909.12847 [quant-ph].
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Problem
definition

J[T, {OM

Alicia Ma

Qubit encoding
J

Input st-.:tie
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Quantum circuit
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Hybrid quantum/
classical algorithm

1 Qubit readout

Time evolution of initial state l Ivo) to terminal state
yi(T)) simulated as

1 yi(T)) = U(T,O) 1 vim

Approximate U(T,O) as time-ordered product,

U(T,O) = U(T, T At)• • • U(2At, At) U(At,O)

Time evolution over each At then approximated using
product formulas,

U(t + At, t) rez,d Uppl(t + At, t)

I —iH (t)AtIne- iH2(t)AtIn —i (t)Atln)ne • • • e H L

Errors can be reduced with higher order product formulas,

pF(2p)(t + At, t) — (S2p(t,

defined recursively as

2

S 2p(t , 2) (S1 2 p _2(t , rp2)) S2p_2(t, (1

1

S2(t , 2) = (11 H (0,112) ( n H(0A,2)e 1 e 1
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M. Suzuki, J. Math. Phys 32 , 400 (1991).
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Ciontrollecl 1Doncl stretching in HF

Goal: drive HF to target stretch y= 1.5r0 at terminal time T

J[T, IOW ((yi(T) I r I v(T)) y) 2

The field-induced vibrational dynamics of HF are simulated by modeling it as an
anharmonic Morse oscillator

V(r) = D(1 — ei—a(r—ro))2 D
2

y(r) = 'Jere— fir4 0 50
11(t) = 271 m V(r) p(r) , )

A. Guldberg and G. D. Billing, Chem. Phys. Lett 186,229 (1991).

x1o9

(a)

Parameters {Oi} taken to be amplitudes { ai}, phases {Oi}, and detunings {Ai} of a
mix of frequency components, and are updated using a genetic algorithm

O

E; 10-5
p , al, • • • , ak, Al, • • • , Ak, 1, • • • , Ok) — sinl/P (LI ai cos ((coi + Ai) — 0i) )

i=1

The system is represented in the harmonic oscillator eigenbasis and encoded
using N - qubits with initialization l vr(0)) — 0) l 0) l 0) l 0)

10-10

(b)

100 150 200 250

t (fs)

PF1 PF2 PF4

e(T,O) = 111U(T ,O) — U pfvo(T

5 10
n,

15 20
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Controlled orientation of 2
dipole-dipole coupled OCS
rotors

Goal: control the rotational dynamics of two planar dipole-dipole coupled OCS
rotors

H(t)
2

1
i=1

h2 a2
21 ocoi2

+ V12 ii(COS c01 + COS c02)At, {Oi})
H. Yu, T.-S. Ho, and H. Rabitz, Phys. Chem. Chem. Phys. 20, 13008 (2018).

such that they are oriented in the +.i direction at time T 100

AT , f Oill <VAT) 1 (cos coi + cos c°2)1 1ff(T))

System modeled in free rotor eigenbasis and encoded using N
initialization l v(0)) = l 0) l 0) • • • l 0)

Parameters {69 taken to be amplitudes, phases, and detuning of a mix of
frequency components; Updated using a genetic algorithm

6 qubits with

10-1°

X 106
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i 1 41
1

'Ilmfrive%—

1

PF1 PF2 PF4

10

11

15 20

Alicia Magann 2020 APS March Meeting March 3, 2020



SAN D#######

Controlled excitonic state
preparation in light
harvesting complex

Goal: prepare an excitation on the second chromophore when the vibrational mode is
Vinax

initially in a thermal state 1 c, l v)(v l at 300K, where cv
v=o

1

tr{e-fillv}

N= 5 qubits are used for the encoding, and the control objective functional is given by

v

J[T, {OW n2x crIv[T, {OW

v=0

where Jill', It9ill 1 (10)1 (I gle2)(g1e21)1v1v(T)), 1 110)) — 10) 10) Iv)

and the Hamiltonian is given by,
2 2

H(t) — 1 Ejblbj + J(b;rb2 + b;b1) + vat a + g(bs;b2)(a + al.) + 1 (pVbsj + bp)f(t, {69)
j=i

10°

10-10

j= 1 Model: S. Hoyer, et al, New J. Phys 16, 045007 (2014).

Model for portion of FMO complex of
green sulfur bacteria consisting of two

coupled chomophores, with chromophore
2 additionally coupled to a vibrational

mode.

Parameters {Oi} define field profile
x108 and updated with genetic algorithm

1

(a)
1

100 200 300

t (fs)

400 500

i 1 1

(b)

1

5
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1 1

10 15 20

n
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Controlled excitonic state
preparation in light
harvesting complex

Resource analysis
for simulating the
dynamics of C

coupled
chromophores,

each coupled to M
vibrational modes,
on a quantum
computer
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Model for portion of FMO complex of
green sulfur bacteria consisting of two

coupled chomophores, with chromophore
2 additionally coupled to a vibrational

mode.
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D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Commun. Math. Phys 270, 359 (2007).
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