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(Juantum optimal control

Aim is to design a time-dependent field f(z, {6,} ), t € [0,T], to steer a quantum system towards a desired control target.

T'his 15 posed as the search for min J[T, {6,}].
{0;}

Simulations have two components:

1. Evaluation of control objective functional J[T, {6} ]
Involves simulating the dynamics

2. Update of control parameters {6.} of a quantum system under the
influence of an applied field

Iteratively update {(91,} until - Computationally dema.nding
J[T, {0.}] converges - Computer memory/time costs scale
— =! exponentially in # quantum degrees of

freedom
...not on a quantum computer

C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010).
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Problem
definition

JIT, 16} ]

Qubit encoding
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A single degree of
freedom represented using
d dimensions
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Mapping to qubit operators:

H=) a,, ||+~ Z%CI'
v,V q,q’
Projectors expressed as products of:
D= —% o) =2
2 2
— log,(d) qubits
oy1] =22y = 22
2 2
— M log,(d) qubits
N. P. D. Sawaya, et al, (2019), arXiv:1909.12847 [quant-ph].
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Problem Qubit encoding Hyb I‘ld qu antum /

definition

JIT, {61 classical algorithm

Qubit readout

_L_;;

'Time evolution of mitial state |y(0)) to terminal state Errors can be reduced with higher order product formulas,
|lw(T)) simulated as VR
W(T)) = U(T.0) | y(0)) Uprap(t+ 0,0 = (85,5
Approximate U(T,0) as ime-ordered product, defined recursively as
2 2
U(T.0) = U(T, T — At)--UQAt, At) U(ALO) Syt 1) = (Szp_z(t, ypz)> Sy, o (8, (1 = 47 )2) (Szp_z(ypz)>

Time evolution over each At then approximated using L 1 i
— H()A2 H ()2 —
product formulas, S,(t, A) = (H el ) (H el ) Yo = T AU
Ut + At, 1) = Upp(t + At, 1) = =L

Alicia M — ( e—iHl(t)At/ne—in(t)At/n,.
1C14 a

€

—iHL(t)At/n) n
M. Suzuki, J. Math. Phys 32, 400 (1991).



SAND#######

Problem
definition

Qubt encoding Hybrid quantum/
(6, . .
classical algorithm

i | o] et
— = | — |  —
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JIT, 16} ]

€
ey l l RDH
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Numerical illustrations
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) Controlled bond stretching in HF

Goal: drive HF to target stretch y = 1.5r7, at terminal time T x 107

T, {631 = (D) | rly(D)) — ) :

=1 DO
= \
Z 0
The field-induced vibrational dynamics of HF are simulated by modeling it as an o W “ /
~ -1+ (a) “ %
0 510

anharmonic Morse oscillator -1

, V(r) = D(1 — ¢~ 2=))2 — D | | |
_ —Br# 100 150 200 250
P V)~ D f(e.(0)) PO = pere™

m A. Guldberg and G. D. Billing, Chem. Phys. Lett 186, 229 (1991). t (fS)
Parameters {6.} taken to be amplitudes {a;}, phases {¢.}, and detunings {A.} of a

10° _\
mix of frequency components, and are updated using a genetic algorithm (b)

k E — ——PF1 —— PF2 ——PF4]

5
16, pr gy es Gy Ay ooy A by oos ) = Sinl/p<ﬂ7><2aicos((a)i+Ai)—gbl-)> < | :
i=1 l

. . L . . e(T,0) = [|U(T,0) = Upp(T.0
T'he system 1s represented 1n the harmonic oscillator eigenbasis and encoded 1010 e(1:0) = NUT0) = Uprgy (1O

using N = 4 qubits with initialization |[y(0)) =]0)[0)|0)|0) O 10 . 15 20

H(t) =
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Controlled orientation of 2

" dipole-dipole coupled OCS

rotors

£ “le00

Z 0
Goal: control the rotational dynamics ot two planar dipole-dipole coupled OGS o J\M
rotors 2 b v i

o1 (a)
0 | .
Ht)= ) ~+ Vi — u(cos @y + cos ) (1, {6,}) 0 0.5 1
. 21 Jo: |
j=1 J H. Yu, T--S. Ho, and H. Rabitz, Phys. Chem. Chem. Phys. 20, 13008 (2018). t (IlS)
such that they are oriented in the +x direction at time T 10”

JIT,{6;}]1 = — (w(T)|(cos @, + cos ) |y(T))

' ' : : : : ~ 105 | _‘
System modeled 1n free rotor eigenbasis and encoded using N = 6 qubits with = | - Pl PF2 ——PF4

initialization |y(0)) = [0)]0)---|0)

Parameters {6;} taken to be amplitudes, phases, and detuning of a mix of
frequency components; Updated using a genetic algorithm

Alicia Magann 2020 APS March Meeting March 3, 2020



SAND#######

Controlled excitonic state 3%
. . . i::?;%) >
preparation in hght 4
harvesting complex ¢

Goal: prepare an excitation on the second chromophore when the vibrational mode 1s = 4
C e - 1 =~
initially in a thermal state Z c,|v)(v| at 300K, where ¢, = e P >
v=0 trie/t | S
<
N =5 qubits are used for the encoding, and the control objective functional 1s given by
vmax
JIT (01 = ) ¢ J[T.{6}] 10°
v=0 =
where [T, {6;}1=1— (D) | (Ig1e){g1e2| )L, 1w (T)),  [w(0)) =]0)|0)|v) <
and the Hazmiltonian 1s given by; , 1010
H() = ) Ebib;+J(bib, + bib) +va'a+ g(biby)(a+a") + ) (ulb;+ b)), {6,})
j:l j:l Model: S. Hoyer, et al, New J. Phys 16, 045007 (2014).
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Model for portion of FMO complex of
green sulfur bacteria consisting of two
coupled chomophores, with chromophore

s
e )
- A o
{ ¥ -
TP
) r -/
73 J
») -/
S,
“\J

2 additionally coupled to a vibrational

mode.

Parameters {6;} define field profile
<108 and updated with genetic algorithm
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Controlled excitonic state
preparation in hight
harvesting complex ¢

Resource analysis
for simulating the
dynamics of C
coupled
chromophores,
each coupled to M
vibrational modes,
on a quantum
computer
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Model for portion of FMO complex of
green sulfur bacteria consisting of two
coupled chomophores, with chromophore
J)))gJ 2 additionally coupled to a vibrational
39 mode.
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D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Commun. Math. Phys 270, 359 (2007).
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