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Conventional vs explainable machine learning ) tma,
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— The EML framework has the potential to address exceedingly complex interrelationships
among features that defy scientific intuition to extract structure-property relationships




Explainability background =

= Explainability and accuracy are frequently at odds in
classification and ranking problems

" Logistic regression is imminently explainable

= logit(C) = Bo + Xi=1 i X;

= However...for even trivially simple examples, like
MNIST (handwriting), LR scores about 93% accuracy vs
record accuracies around 99.8%




Ideal classifier @

1. Highly accurate

2. Explains each instance

3. Streaming, modifiable on the fly
4. Scalable

Use our new classifier:
AWE-ML: Averaged Weights for Explainable
Machine Learning



Directly Use Information from @
Training Data

Find a value Z given measured features
X1 =X1,%X2 = X', X3 = X3’

|e eStImate Zl X1 = xll, Xy = le, x3 — x3’

From training data, measure the following values:
<Z>=0.8
<Z|xy =x;=-0.001
<Z|lx,=x,>=0.9
<Z|lx3=x5>=0.7
<Z|x1 =x1,X; = X5 > =2

How do we combine these to get the best overall estimate?




“Averaged Weights for Explainable Machine Learning” (AWE-ML) algorithm

AWE-ML predicts a value Y (e.g. probability of a threat) given features x; as follows:

Probability of threat
l Individual features Combination of two features

,—‘—\ [ ; 1
Y = Ziwi X (Yl X; = xi’ )+ Zl]Wl] X (Yl Xi = Xl-,x]' = Xj’)'l'...

/ Average Probability of a threat \ ~

Linearly weighted (Y) given an individual feature Average probability of a threat (Y)

contributions from  * Measured from training data weight for given two features

individual features combinations of . Measured from training data
features




=

“Averaged Weights for Explainable Machine Learning” (AWE-ML) algorithm

« Algorithm was initially derived as a set of heuristic rules
*  Working towards mathematically formalizing the model.
- Empirically, heuristic rules have accuracies matching state of the art

Heuristic Model Bayesian Model Measure Theory Model

Write a series of heuristic
rules to gstimate yalue, Treat each feature or Use measure theory to
accounting for noise, » combination of features as » justify and improve heuristic
combinations of features, evidence that updates the model equations

and standard deviation of prediction

values measured from the
training data




Heuristic Model to Estimate Probability Y =P(z=1) &=,

One route to combine features is by averaging the probabilities

%i P(Z=1| xj=x;I)
P(Z=1|x1 =x1,x; =%/, x3 = x3") = = lel l
i

Need to account for many effects:
Use combinations of features: P(Z = 1| x; = x{,x; = x/)
As a P approaches 0 or 1, it should be given more weight
Measured probabilities with less supporting data should be given less weight

Measured probabilities that give new information should possibly be given
more weight

Account for class imbalance

P=Yw;XP(Z=1|x; =)+ X;;wij XP(Z=1|x = Xi) X; =xj’)+---

Use a Hierarchical Weighted Average




Bayesian Model @

= We want to estimate Y given measured features
!/ !/ !/
X1 = xl, Xy = XZ,XB — x3,
= Model possible values of Y as a normal distribution with mean p,
that we are trying to estimate.

= Treat individual feature values in a particular instance as data
points that we are using to update the estimate of Uy .
= Datapoint, = Y =Y|x; = x]
= Bayes Rule:

posterior likelihood prior

P(uy | n; Y =Y) o P(N; Y = Y;|uy) P(uy)

Limitations: Assumes normal distributions




Accuracy

=

Dataset AWE-ML Linear SVM SVM (RBF) Logistic Random Forests
Regression
Bank 90.1% %+ 0.3% 90.1% 4+ 0.4% 89.2% £+ 0.1% 90.1% + 0.3% 90.4% + 0.2%

Breast Cancer
Credit

96.7% £+ 1.9%
82.2% £+ 0.3%

96.5% + 1.4%
79.7% + 0.6%

96.9% + 2.5%
82.0% =+ 0.6%

96.7% + 2.3%
81.1% + 0.3%

95.1% + 1.9%
81.6% =+ 0.4%
92.2% + 2.5%

Customer 92.0% + 2.3% 91.1% + 2.3% 92.5% + 3.9% 90.2% + 4.9%

Iris 98.0% &+ 3.0% 96.0% + 6.1% 96.0% + 4.4% 95.3% + 5.2% 96.0% &+ 4.4%
Lymphography 85.5% &+ 11.9% 85.1% + 12.9% 83.7% + 10.5% 83.7% + 7.8%  84.4% =+ 3.9%
Promoter 94.3% + 6.4% 93.3% + 6.0% 92.4% 4+ 5. 7% 92.4% + 7.0% 91.5% 4+ 10.8%
Spect 83.0% &+ 6.0% 82.0% 4+ 4.9% 79.4% + 1.3% 79.4% + 1.3% 81.2% + 5.7%
Splice 96.4% &+ 0.9% 95.0% + 1.2% 86.4% + 1.1% 95.9% + 0.9% 94.6% + 1.1%
Transfusion 78.0% + 2.7% T7.1% + 2.0% 76.0% + 0.3% 76.7% + 2.4% 73.1% = 2.7%

Voting Records

96.7% £ 1.8%

94.4% + 3.5%

95.1% + 2.1%

95.4% £+ 3.0%

95.1% £ 2.1%

Average 90.3% 89.1% 88.1% 88.8% 88.65%
Dataset AWE-ML Random Forests
Biofuels - Cetane 89.4% *3.5% 89.8%t 2.9%
Biofuels — Octane Sensitivity 84.0% £ 6.4% 80.2+5.2%
Hyper parameters for all classifiers optimized using 4 fold cross validation
10



Use Model to Analyze a Misclassified Result (@)=,

1984 Congressional Voting Records Dataset

The classifier predicted with 70% probability that this Member of
Congress would be a Republican when they are a Democrat.

Counts Counts Probability Cumulative
Rep. Dem. Rep. Weight

Immigration-Y, South Africa Export Act-N 100% 19.4% 19.4%
Doc Fee-Y, Mx Missile-N, Immigration-Y, Duty Free-N 47 0 100% 4.8% 24.2%
Doc Fee-Y, Contras aid-N, Immigration-Y, Duty Free-N 47 0 100% 4.7% 28.9%
Adopt Budget-Y, Synfuels cutback-Y, Education-N 0 58 0% 4.0% 32.9%
Water-Y, Adopt Budget-Y, Synfuels cutback-Y, 0 38 0% 3.1% 36.0%
Republican Republican
Immigration-Y 95% 17% | Mx missile-N ~  [EIEES 4%
Doc fee freeze-Y 94% 16% Nicaraguan contra aid — N 83% 4%
South Africa Export Admin Act-N LV 14% Anti-satellite test ban-N 29% 3%
Adopt Budget-Y 14% 8% Handicapped infants-N 78% 3%
Synfuels corporation cutback-Y [PXPA 8% 55% 2%
Education spending-N 21% 6% El Salvador aid-Y 69% 2%
Duty free exports-N 89% 5% Superfund right to sue-Y 52% 2%
Water project cost sharing-Y 53% 4% Religious groups in schools-Y K% 2%

T

Probability given all feature combinations
containing the specified feature

Republican features have higher
certainty and therefore higher weight



Analyze a Correctly Classified Result @&

1984 Congressional Voting Records Dataset

The classifier correctly predicted this member of congress is a
republican

Counts | Count | Probability Cumulative
Rep s Dem. | Rep. Weight

Budget -N, Doc Fee-Y, Immigration-Y 0 100% 18.3% 18.3%
Doc Fee-Y, Immigration-Y, Education -Y 57 0 100% 16.1% 34.4%
Immigration-Y, Education-Y, SA Export-N 16 0 100% 5.0% 39.4%
Water-N, Doc Fee-Y, Inmigration-Y 31 0 100% 3.0% 42.4%
Water-N, Immigration-Y, SA Export-N 6 0 100% 0.9% 43.3%
Handicap-N, Budget-N, Doc Fee-Y, MxMissile-N, Superfund-Y 76 1 98.7% 0.5% 43.8%




; ‘Predicting Biofuels with High Octane Sensitivity

What molecular structures in biofuels result in high octane
sensitivity and high Research Octane Number (RON)?

Feature 1 Feature 2 Feature 3 Feature 4 V'\\Ineeiggt L:w HiZh
[#6](-:[#6])(-:[#6])(=:[#6]) [#6]-:[#6]-:[#6]-:[#6]-:[#6] [#1][CH2][CH2][#1]  [#1][CH2][CH3] 62% 0 5
[#6]>5 4% 0 7
[#6][#6]1[#6]([#6])[#6][#6][#6]1  [H1][CHI(1DICH]([1#1])[1#1] 44% 0 4
[#6][#6]1[#6]([#6])[#6][#6][#6]1  [#1][CH2][CH](['#1])[CH3] 44% 0 4
[1#1]C(=0)[CH3] 41% 9 0
[#6]-:[#6]-:[#6]-:[#6]-:[#6]-:[#6](- 40% 18 0
:[#6])-1[#6] [#1]c1 [cH][cH][cH]c(['#1])c1[#1]  [#1][CH2][CH2][1#1]

DCEET 8 ] [CD2H](=*)-* 36% 15 0
[#6]-:[#6]-:[#6]-:[#6]-:[#6]-:[#6](- 34% 17 0
:[#6])-:[#6] [#1]c1[cH][cH][cH]c(["#1])c1[#1]  CCCCCC

Red = not present
Green = present

['#1][CH2][CH3]

[#6](-:[#6])(-:[#6])(=:[#6]) [#6]-:[#6]-:[#6]-[#6]-:[#6] (arlicH2ICH2] 1)

2 H3
A S = x> =<
& & H




‘Analyze a particular molecule: Ethyl butyrate C.H,,0,

Correctly predicted to have high sensitivity W

Count Low Count High

Sensitivity  Sensitivity Weight

[[#1][CH2]C(=0)O
[OD1HO]=* [#6]-:[#6]-:[#6]-:[#6]-:[#6] [CH2][CH3] 0 2 54%
[[#1][CH2]C(=0O)O[CH2][CH3] EECE 0 2 18%
[#8]-:[#6]-:[#6]-:[#6]-:[#6]-:[#6] [[#1][CH2]C(=0)O[CH2][CH3] 0 - 2%

HZ

Weighted Original

Probability Probability L

Feature

[1#1][CH2]C(=O)O[CH2][CH3]  100% 67% 2% | @ o o

= 7
[#6]-:[#6]-:[#6]-:[#6]-:[#6] 100% 58% 20% | m— o @

:,~H
! — [OD1HO]=* 100% 19% 19%
ok cceee 100% 51% 9% 4—.\./‘\./.

[1#1][CH2][CH2][CH3] 100% 10% 3%

H, 7 / \

Probability given oth
FOLALITY given oTier Probalbility given this

features present in the foqt v (ind g
2 molecule (i.e. context eature only (independent
of the context)

dependent)
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Summary i

= Matches state of the art machine learning accuracy

= |dentical on open datasets
Y=X;w; X(Y]|x;=x;")+

= Fully explainable , ,
Zij Wij X (Yl X = Xi,Xj = x] )+

= Coded in Cython for speed
= Compatible with Sci-kit Learn
= Todo:
= Finish developing mathematically rigorous model
= Parallelize code

= Adapt to new data without retraining




Backup @




Machine Learning 101

e Statistical Model

Pr(X,Y)
e Goal

Find f: X > Y
* How?

mfinE g(Y, f(X))

loss function



Ex: L, LOSS
* Loss Function

L(Y,f(X)) =Y = fF(XO)?
* Minimize expected loss!

minE[Y — f(X)]°
=>‘f(x) _ Ey|X(Y|X _ x) “Regression

Function”




Curse of Dimensionality

277

() = Eyx(Y1X = 2) = AveCy g néar )

Samples Input

I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning”, The MIT Press (2016).



Averaged Weights for Explainable
Machine Learning (AWE-ML)

e Assume that we can write

EY|X(Y|X = Xo) = z Wj Ave(YL‘xl] — xO])

j individual features

z W]k Ave(%‘xl] x()]'xlk ka)

pairs of features

+ ...




Functional Analysis

A E(Y1X1, X2)

Projection E(- [X;) . Projection E(: |X3)

CTE(Y]X,)

Closed Subspace L, (a(X1)) Closed Subspace L, (0 (X3))



Functional Analysis

B—— \\
E(Y X, X, )/ B 1%, ) \‘mel,xg)

L, (O'(Xl, Xz)) Lz (U(XZx Xg)) L, (U(Xlr X3))

% // E(Y|X2) \

LZ(U(X1)) Lz(U(Xz)) LZ(G(XB))



Averaged Weights for Explainable
Machine Learning (AWE-ML)

e Assume that we can write

EY|X(Y|X = Xo) = z Wj Ave(YL‘xl] — xO])

j individual features

z W]k Ave(%‘xl] x()]'xlk ka)

pairs of features

+ ...




Use Bayesian Updating to Create Weighted .
Averages for Regression

= We want to estimate Z given measured features
!/ !/ !/
X1 = X1, X2 = Xp,X3 = X3, ..

= Model possible values of Z as a normal distribution with
mean |, that we are trying to estimate

= Treat individual feature values in a particular instance as data
points that we are using to update the estimate of p,.
= Data point, = Z; = Z|x; = x;
= Bayes Rule:

posterior likelihood prior

P(u, | Ny Z=12;) <« P(N; Z =Zi|p,) P(uy)




Using Categorical / Binned Features @&
= AWE-ML requires data to be binned into categorical variables

= Binned data allows classifications to be directly tied to specific
bins in the training data

= Random forests directly use continuous data averaged over
different cuts of the data, preventing identification of the
specific subset of the training data that is relevant to
classification.

= Binning may result in a small loss in accuracy, but a gives a
large improvement in explainability and adaptability.



Likelihood =

P(N; Z =Z;lu,) = 1_[ e %

—_— _ /
Ly =<Z|x; = x;>

Training data with feature i =1

Q
o
@ @ I’ = feature value in a particular
g g example being classified
Z; =mean of data
0 1 :

Z of = variance of data

Evidence is mean value of Z, not the individual data points




Prior

Feature i=Bin i,

Z} =mean
of training

data with
X=1

o —+-000
- 4—Q00000

N

Feature i=Bin i,

of training

data with

@
o
@
Q
|
I
0 X=2

@ Zi=mean
|
I
1

Z

Feature j=Bin j,

Zj1 =mean

of training
data with

o —+-000
-~ —4—0Q000

xj=1
Z

Feature j=Bin j,

Z]-2 —mean

| of training

data with
xj=2

o 1+-000

1 ez =z0)?
e 212

P(u,) =

27T

7% = average Z over all
training data

T = weighted standard
deviation of all possible Z; in
training data, with each
feature equally weighted




Derive a Weighted Average from Bayes Rule ) i

posterior likelihood prior
" P(uy |0y Z=2;) < P(N; Z =Zi|py) X P(uy)
Assume features are independent

n P(‘le | nl‘ / = Zl) 0.4 HLP(Z — leuz) X P(‘le) Assume normal

distributions

N\
Likelihood Prior
_(Zi_.’iz)2
1_[ 1 207 1 —(uz —29)?
e l 5
e 2T
i |2mo? 2T T2

0 _ . .
Z;=<Z|x; = x| > Z" = average Z over all training data

o; =standard deviation (SD) of data that led to z,

7 = SD of all possible Z; in training data




Use Bayes Rule to Find Posterior Mean as a @
Weighted Average

posterior likelihood prior

P(u, | Ny Z=12;) < P(N; Z =Zi|p,) P(uy)

1 ><<1M+1Z+1Z + +1Z)
Uy = oMz T 41 T 54 e T TS 4n
i+i2_|__2_|_..._|_i2 T 01 0y On




Compensate for Noise/Low Data

counts

Feature i=/’

O-l'2=0, 1/0-,:2: |nf|n|ty”

M@ ) = fx™le P
E[r =3
Var[l'] = %

Estimate 1/a7 using bayes rule

posterior likelihood

l

| | P|—l|data| «P|data|—= |xXP|—
0 1 O-i O o

I I

=

prior

l

I

Gamma

Gaussian Gamma
distribution distribution distribution
Prior Posterior
— E = i I
E[F]—ﬁ — of entire = a4 n
training dataset 2
Var[I'] = fitting parameter ) YX; — U
Bt = B+ =




Correct for Dependent Features — @&

= Same training data is used to compute each Z; and so they
may be dependent

= |f features are dependent, prior will be underweighted

= Compensate by weighting prior as if features are fully

dependent
n 1
i=1;2
= Multiply prior welght, ~ by: 1l
max(;)

l




Hierarchically Average the Probability @&

IV AV EVAY = Uz

Hz D i+i /\
‘o2 T° prior

Zy Z; I3y Zy

, XjeiZij/of; + Zi/t}
Zi = 1 1 ﬂ / /\

Z' ] + !
]ilﬂiz- Tiz | LipZys Lpz Zi3Z34 ZLyg Loy L3y
2 2
, XkzjziZije/ O + Zij/Ti; /\
Zij = 1 1 Zina Z
N i + 123 4134
kK#j#l 52 T2 . .
ijk ij Adding 'to Z; means its an
70 — <7 > ,Zl-'=estimate of Z estimate of Z; given lower levels in

the tree

Z; =<Z|x; =x; >
and t have corrections for noise
Zij =<Z|x; = x{,x; = xj > o

and dependent features respectively

_ _ !/ _ !/
Zijk =< Z|x; = x;,x; = Xx;

X = X >

o IS also hierarchically updated




Can Express as a Simple Weighted m
Average

P=YwX<Z|x;=x; >+
2ijWij X< Z|x; = x;,x; = xj >+

_ !/ — !/ _ !/
Qijk Wijie X< Z| x; = xi,X; = Xj, X = X3 >+

Can dynamically update model by updating probabilities.
Weights are entirely derived from the probabilities




Fitting the model means optimizing T
5 hyperparameters

= nbins: Number of bins for continuous valued data

= TreeDepth, FullyConnectedDepth and FeaturesPerNode

" Tree creation metaparameters

" O Variance of prior on sigma




Current Implementation is Slightly Different @

(Same concepts, derived heuristically)
New Model Old Model

Sandia
National
Laboratories

+ Weight probabilities by — Weight probabilities by —

 Low data counts: Low data counts:

* Use prior to specify probability « limit how large the weight (%) can get

when there are low data counts _ i
. Use variance of prior as fitting * Add a weight based on data count

parameter to specify amount of * Arbitrarily define two fitting parameters
AiEE in dataseat that define noise

- Estimate 7 based on a prior s “.h.euristic prior” to specify
defined from the entire dataset probability when there are low data

and likelihood based on training counts

data with feature i=i’ Class imbalance

 Arbitrarily adjust maximum weight to
allow rare classes to have larger
weights to compensate for lower counts

 (Class imbalance
« Adjust variance of prior based on
class imbalance to allow rare

classes to have larger weights to * Usefulness / surprise
compensate for lower counts » Estimate usefulness by how much each

feature changes the probability around

the decision function.



Currently Used for Classification .

posterior likelihood prior

P(u, | N; Z=12;) P(ni Z = Zil.uz) P(u,)
Let the value Z be a probability: Z; = P(Y =Y'|x; = x;)

@
@
@ Z; =mean of data
e °
o @ o/ = variance of data
I I =variance of Bernoulli distribution
0 1 withP=P(Y = Y'|x; = x])
Y Y=y’ =PY =Y'|x;=x)x(1=P{ =Y'|x; = x{))

Using same equations (i.e. gaussian distributions) works extremely well!
* Not rigorous, need posterior and likelihood that are both bounded from 0-1
 Want direchlet as likelihood, not prior
« Cannot use multinomial likelihood
» Evidence needs to be mean of data, not individual data points




