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Motivation

Sandia mission apps are being readied for current and emerging pre-exascale
architectures, as well as future exascale architectures

> DOE ASC ATDM program
> DOE Exascale Computing Project (ECP)

EMPIRE: Sandia plasma simulation code
> Relies heavily on capabilities in Sandia’s Trilinos project

° High-performance, portable shared memory primitives
o Sparse distributed linear algebra

° Distributed and shared memory solvers

° Load-balancing, time-stepping

> Requires specialized algebraic multigrid (AMG) for Maxwell’s equations

EMPIRE simulations have stringent solver performance requirements (10
solves/second)




41 EMPIRE — Sandia plasma simulation application

Plasma dynamics are described by Klimontovich equation
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for particles 7 with associated charge g, mass m, velocity v;, and distribution f..

Particle movement coupled to electric field £ and magnetic field B via Maxwell’s
equations.

Weight Particles
to Grid

EMPIRE uses operator-split time integration.

~ Solve for Electric
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on Grid
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and Velocity

of Particles

Update Particle
Positions

Bettencourt et al., ASC ATDM 1.evel 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in
EMPIRE, SAND2018-10100
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Maxwell’s Equations
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electric permittivity € and magnetic permeability p.




s I Discretization of Maxwell’s Equations

Discretized using nodal elements for H(Q), Nedelec edge elements for H(curl, 2),
and Nedelec face elements for H(d1v, £2).

Yields block system

where My and Mj are edge and face mass matrices, respectively

C is strong form of curl




7‘ Discretization of Maxwell’s Equations (continued)

Block system can be factored
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where the Schur complement Sy is given by
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Challenge: S has large near nullspace (space of gradients)




s I Linear Solver Algorithm (1)

Augmenting Sy with grad-div term to reduce nullspace:
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Solving (1) is equivalent to solving:
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Bochev et al., An algebraic multigrid approach based on a compatible gauge reformulation of Maxwell’s equations, 2008.
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Linear Solver Algorithm (2)

Equation (2) can be solved with CG and Maxwell-specific algebraic multigrid
preconditioner
> Block diagonal preconditioner
© Off-diagonal coupling is ignored
° (1,1) block is edge-based vector Laplacian, requires special prolongator
° (2,2) block is node-based Laplacian

Multigrid: scalable solution method for linear systems arising from elliptic PDEs

° Idea: capture error at multiple resolutions:
> Smoothing reduces oscillatory error (high energy)

> Coarse grid correction reduces smooth error (low energy)
° Algebraic multigrid (AMG)

> Preconditioner generates 4,’s, R’s, P/’s

Bochev et al., An algebraic multigrid approach based on a compatible gauge reformulation of Maxwell’s equations, 2008.



10 I Overall EMPIRE Solve

Recall that the Maxwell solve is part of overall EMPIRE solution process;

Weight Patrticles

AR

Solve for Electric
Potential and Field
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Update Particle
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AMG preconditioner is set up only once, and then applied at each time step.

Efficiency of linear preconditioner apply is paramount.




Software




12 I Trilinos Project

/ [ Linear Solver Interfaces (Stratimikos, Solver Factory) N

Multilevel Domain Decomposition Methods github.com/trilinos/Trilinos
]
Y

Sparse Direct (ShyLU)
Solver Interfaces Iterative substructuring | Overlapping Schwarz
(Amesos(2)) (ShyLU/BDDC) (ShyLU/FROSch)

[ LU factorization (KLU, ] [ Cholesky and LDL factorizations
& ShyLU/Basker) (ShyLU/Tacho)

4 \ ASC-IC/ATDM/ECP/DOE Applications
Kokkos v Trilinos
Tools

Kokkos Kernels

github.com/kokkos

Kokkos Core




13 1 MuelLu Multigrid Library

Unstructured algorithms
> classic smoothed aggregation (SA)
° non-symmetric AMG
> AMG for Maxwell’s equations

Structured Algorithms
° semi-coarsening AMG
° geometric MG
> structured-grid aggregation-based MG

Leverages many other Trilinos scientific libraries
o Shared memory parallelism from Kokkos = architecture portability
> Sparse distributed linear algebra: Tpetra
> Distributed smoothers: Ifpack2
> Shared memory smoothers, SpGEMM, distance-2 coloring: Kokkos-Kernels
° Load balancing: Zoltan2

o Direct Solvers: Amesos2




Numerical Results




15 I EMPIRE Particle-in-Cell Numerical Experiments

SNL Vortex cluster

° 54 compute nodes
° Dual socket IBM Power 9, four Nvidia Tesla V100 GPUs

° Interconnect: fat tree Infiniband
° gcc 7.3.1, Spectrum MPI 10.3.0, CUDA 10.1.243
° Application readiness testbed for Sierra supercomputer (@ LLNL

Source: SAND-2019-10835R

“BDot” mesh

° Small: 10.9m elements, 1.87m nodes
° Dynamic CFL range: 0.86 to 16.9

> Refined: 85m elements, 14.8m nodes
¢ Dynamic CFL range: 0.64 to 16.9

“Cavity” mesh
© 39.1m elements, 6.8m nodes
> Dynamic CFL range: 0.25 to 13.5

1 MPI rank/GPU




16 ‘ Linear Solver Details

Recall the system that we are solving:
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S solved with Conjugate Gradient + Maxwell AMG
Maxwell AMG preconditioner is set up only once, applied over many timesteps

Fine grid smoother: degree 4 Chebyshev polynomial

We will use 2x2 block diagonal (additive) variant
° (1,1) block: single level, degree 6 Chebyshev
° (2,2) block: single level, degree 6 Chebyshev




Efficiency

17 1 Bdot: AMG Strong Scaling on “Small” Mesh
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Efficiency

18 | Bdot: AMG Strong Scaling on “Small” Mesh
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Efficiency

19 1 Bdot: AMG Strong Scaling on “Small” Mesh

Efficiencies

o
(in]
T
1

o
©
T

o
~
T

............................................

o
o

| —©— Precond

| —% " Prolong
T ~Restrict

-3 -Residual

=¥ Fine smoother

o
o

o
B
I

#GPUs

50

10

Solver Times

16

#GPUs

-Prolnng
:IRestrict
[ Isubsotves
B Residual

B e smoother | ]

200 timesteps
AMG is 70-80% of total linear solve time
6 solves/sec (@ 32 GPUs

Subsolves migrated to small number of devices
o Effect of rebalancing, so no speedup expected

Chebyshev smoothet (matvec kernel) efficiency drops off at (@ 32 GPUs

32




Efficiency

20 I Bdot: AMG Weak Scaling
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21 I Cavity: AMG Strong Scaling
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2 I Cavity: AMG Strong Scaling
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23 I Cavity: AMG Strong Scaling
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24 I Future Work / Concluding Remarks

Assess solver performance on larger cavity meshes on Sierra platform

s-step Chebyshev smoother
> Single halo exchange but with larger message

> Followed by s local matrix-vector products

Related talks
> M. Bettencourt, “Towards Exascale Plasma Simulations using PIC Algorithms”, Wedn. pm, MS5
° L. Berger-Vergiat, “MuelLu’s Algorithmic Performance on GPUs”, Thursday p.m. MS34
o C. Siefert, “State of the Tpetra Linear Solver Stack”, Friday a.m., MS41




