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3D Image-to-Simulation Workflow'2 NMC Electrochemical-Mechanical Discharge at the Mesoscale®
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Deep Neural Networks for Segmentation and Geometric Uncertainty?
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l. Large-Scale Electrode Processing Simulations
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While lithium-ion battery electrodes are manufactured in large-scale, high-speed, roll-to-roll manufacturing processes, it is the < 0 2|0 4]0 610 8I0 100
morphology of the particle and conductive binder structures greatly affect macroscale properties and can vary significantly as a function
of manufacturing conditions. To explore the process-structure-property relationship, we employ mesoscale finite element simulations R (pm) R (um) Percent Discharge
of the three-phase particle-conductive binder-electrolyte composite of a NMC battery cathode. Particle and conductive binder domain P bI o .
mesostructures are derived from both x-ray computed tomography imaging and simulated using discrete element methods. The ublications
Conformal Decomposition Finite Element Method is applied to create conformal three-phase finite element meshes of these (1) S. A. Roberts et al., “A verified conformal decomposition finite element ...,” J. Comp. Phys. (2018) doi: 10.1016/j.jcp.2018.08.022
mesostructures. (2) B. L. Trembacki et al., “Mesoscale Analysis of Conductive Binder ...,” J. Electrochem. Soc. (2018) doi:10.1149/2.0981813jes

In this poster, we explore the how simulated mesostructures can be used to approximate as-manufactured geometries, while providing| (3) C. Norris et al., “Structural Uncertainty Analysis on Graphite Electrodes Using Convolutional Neural Networks,” in preparation
additional insights into how electrode slurry chemistry and processing conditions affect the mesostructure. We focus on examining how | (4) 1. Strivastava et al., “Controlling Binder Adhesion to Impact Electrode Mesostructure ...,” under review doi: 10.1149/0sf.io/ehdq6
particle-to-particle interactions affect electrochemical discharge performance. Additionally, the mechanical impacts of calendaring and | (5) B. L. Trembacki et al., “Mesoscale Effects of Composition ...,” J. Electrochem. En. Conv. Stor. (2020) doi: 10.1115/1.4045973

lithiation-induced swelling are explored in the context of external mechanical loads. (6) M. E. Ferraro et al., “Electrode Mesoscale as a Collection of ...,” ]. Electrochem. Soc. (2020) doi: 10.1149/1945-7111/ab632b
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