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3D Image-to-Simulation Workflow', 2
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Deep Neural Networks for Segmentation and Geometric Uncertainty3
Slice from CT image of

graphite electrode

Bayesian convolutional

neural networks

(BCNNs) provide

interpretable geometric

uncertainty for physics

propagation.

Deep neural networks
segment images to

high accuracy, higher

than human labels in

some cases.

Human label (orange) overlaid

on CT scan

Original image

Deep learning label (orange)

overlaid on CT scan

BCNN segmentation

Discrete Element Methods for Predicting Particle/Binder Mesostructure4

I. Large-Scale Electrode Processing Simulations

Effective Properties for Macroscale Battery Modeling5
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Effective transport

properties simulated
using image-based

and DEN

mesostructures to

improve P2D

models.
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(b) Creff = ŒCBD(ECBD)1 5 (Bruggeman)

ce" = acBD(ECBD)1'654 (Best Fit)

90wt% NMC

92wt% NMC

94wt% NMC

96wt% NMC

AAAAA

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Porosity (E)

While lithium-ion battery electrodes are manufactured in large-scale, high-speed, roll-to-roll manufacturing processes, it is the

morphology of the particle and conductive binder structures greatly affect macroscale properties and can vary significantly as a function

of manufacturing conditions. To explore the process-structure-property relationship, we employ mesoscale finite element simulations

of the three-phase particle-conductive binder-electrolyte composite of a NMC battery cathode. Particle and conductive binder domain

mesostructures are derived from both x-ray computed tomography imaging and simulated using discrete element methods. The

Conformal Decomposition Finite Element Method is applied to create conformal three-phase finite element meshes of these

mesostructures.

In this poster, we explore the how simulated mesostructures can be used to approximate as-manufactured geometries, while providing
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particle-to-particle interactions affect electrochemical discharge performance. Additionally, the mechanical impacts of calendaring and

lithiation-induced swelling are explored in the context of external mechanical loads.

4.4

4.2

g 4.0
ro

o

> 3.8

(1)

(2)

(3)
/ A \

3.6

NMC Electrochemical-Mechanical Discharge at the Mesoscale6
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Simulating multi-physics discharge at 5C
highlights the complex interplay between

transport, mechanics, and chemistry.

Mesoscale simulations agree well

with experimental measurement and
outperform P2D models.
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Reactions are promoted at particle surfaces under

porous binder because of its high electrical

conductivity, especially near discharge.
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