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Abstract

We present the mathematical derivation, software implementation
details, and computational results for a semi-smooth Newton method
applied to two inverse problems governed by partial differential equa-
tions with bound constraints. The two problems share mathematical
structural similarities to density-based topology optimization prob-
lems. The semi-smooth Newton method provides a mesh independent
solution computation for the two test problems. A key step is that
the complementarity part of the necessary optimality conditions are
reformulated with the use of a complementarity function φ such that
the complementarity conditions are satisfied if and only if a zero of a
nonsmooth function has been obtained. The modular finite element
package MFEM is utilized for the software implementation. In addition
we constructed a matrix-free Operator to enable the use of efficient
Krylov subspace IterativeSolver of MFEM for the solution of our two
target problems.
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1 Introduction

We consider the problem of inverting for a distributed parameter in a partial
differential equation (PDE) such that existing observational data for the state
of the PDE is well matched in a L2 norm sense. A complicating feature of
our formulation of the problem stems from the requirement that the inversion
parameter should satisfy hard bound constraints. The goal of this manuscript
is to describe a semi-smooth Newton (ssN) numerical method for the solution
of the inversion problem. The choice of ssN method is primarily motivated
by the need to apply Hessian-based optimization algorithms to reduce the
number of iterations and, thus, lessen the overall computation associated with
first-order, gradient-based methods. For problems in topology optimization,
a density field, constrained to be in [0, 1], and other additional potential
constraints that determine a PDE solution is to be estimated. The inverse
problems with bound constraints studied here share a sufficient amount of
mathematical structure with density-based topology optimization to afford
an assessment of the efficacy of ssN for topology optimization.

Mathematically, the inversion problem considered in this work can be
formulated as

min
(u,m)∈H1(Ω)×L2(Ω)

J(u,m) =
1

2
||u− ud||2L2(Ω) +

1

2
||m||2R (1)

such that

F (u,m) = 0 weakly on Ω, (2)

m` ≤ m ≤ mu a.e. in Ω. (3)

Here m is a field that parametrizes an elliptic PDE, with appropriate bound-
ary conditions, mathematically specified by F (u,m), and u is the ‘state’ or
solution of the PDE for a given m. Examples of such problems are presented
in Section 3. The (semi)norm || · ||R will be defined by means of a symmetric
bilinear function R, namely,

||m||2R =

∫
Ω

R(m,m)dV, (4)

and has the role of regularizing the problem. In this report, we use an L2

regularization for which one takes R(m1,m2) = γ m1m2. To regularize the
highly oscillatory modes of m, one could take R(m1,m2) = γ∇m1 ·∇m2,
which is known as H1 regularization. In either case, γ > 0 is a regularization
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parameter which controls the strength of the regularization. An alternative to
regularizing the objective functional would be to determine the PDE solution
u by m̃ obtained through the application of a smoothing filter to m [9].

We follow the optimize-then-discretize approach as a principle to derive
mesh independent ssN schemes. The MFEM finite element library [1] is used to
implement a ssN method for elliptic PDE-constrained optimization problems
with bound constraints. Using this computational setup we demonstrate the
mesh independence and superlinear rate of convergence of the semi-smooth
Newton method. Finally, we comment on the software needs from MFEM for
judicious implementation of ssN for infinite-dimensional problems and discuss
limitations of the ssN method for topology optimization problems.

2 The Semi-Smooth Newton method for In-

equality Constrained Optimization

Here we outline the ssN method in the context of Karush-Kuhn-Tucker
(KKT) point estimation for finite-dimensional problems, consider

min
x∈Rn

J (x) (5)

such that ci (x) ≥ 0, i = 1, 2, . . . , k. (6)

A necessary condition for a point x∗ to be optimal [10] consists of the exis-
tence of k Lagrange multipliers λ∗1, λ

∗
2, . . . , λ

∗
k ∈ R such that

∇xL (x∗,λ∗) = 0, (7)

λ∗i ≥ 0, ci (x
∗) ≥ 0, λ∗i ci (x

∗) = 0, i = 1, 2, . . . , k. (8)

The Lagrangian function L : Rn × Rm → R is defined as

L (x,λ) := J (x)−
m∑
i=1

λi ci (x) . (9)

Estimating a KKT point is numerically challenging, in part due to the
lack of differentiability of complementarity equations (8). The complemen-
tarity conditions can be equivalently reformulated as a system of nonsmooth
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equality conditions by utilizing a complementarity function, that is a func-
tion φ : R2 → R such that c ≥ 0, λ ≥ 0, c λ = 0 if and only if φ (c, λ) = 0.
For example, such functions are the min-complementarity function

φmin (c, λ) = min (c, λ) ,

and the Fischer-Burmeister complementarity function

φFB (c, λ) = c+ λ−
√
c2 + λ2.

In the present work we use the complementarity function

φ (c, λ) = λ−min (0, λ− σ c) , (10)

following [7]. Above the constant σ > 0 parametrizes φ. Using the above
function, a KKT point (x∗,λ∗) must necessarily satisfy

∇xL (x∗,λ∗) = 0, (11a)

Φ (x∗,λ∗) = 0, (11b)

where Φ : Rn × Rm → Rm is defined by (Φ (x,λ))i := φ (ci (x) , λi), i =
{1, 2, . . . ,m}.

We note that Φ is not everywhere continuously differentiable on Rn×Rm,
however it does improve upon the mathematical properties of the original
complementarity equations (8); namely Φ is Lipschitz, directionally differen-
tiable, and slantly differentiable [7]. Slant differentiability of Φ guarantees
the existence of a slanting function G and of a generalized Jacobian of Φ
that enable semi-smooth Newton algorithm to converges to a KKT point at
a superlinear rate.

3 Motivation: Example Problems

Here we outline two inverse problems with bound inequality and elliptic
partial differential equality constraints. For both examples the first and
second order adjoints are derived. For the first problem we will outline how
the ssN method can be set up and will discuss nontrivial issues arising in the
discretization of the systems of equations used in the ssN algorithm.
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3.1 Example 1: Determination of a source term in
Poisson’s equation

In this problem we seek to determine the source term m, of Poisson’s equa-
tion, within the lower and upper bounds m`, mu, such that the solution of
Poisson’s equation u, matches a given data set ud, namely,

min
(u,m)∈H1(Ω)×L2(Ω)

J(u,m) :=
1

2
||u− ud||2L2(Ω) +

γ

2
||m||2L2(Ω) (12)

such that

−∆u = m weakly in Ω, (13)

u = u0 on ∂Ω, (14)

m` ≤ m ≤ mu a.e. in Ω. (15)

The reader is refered to [12] for a detailed discussion of the above problem.

3.1.1 Forming the Lagrangian

We first introduce the following subsets of H1 (Ω):

Vu0 = V (u0) and

V0 = V (0) ,

where V (q) = {v ∈ H1 (Ω) such that v = q, x ∈ ∂Ω}. Following standard
optimization theory, the Lagrangian functional L : Vu0×V0×L2 (Ω)×L2 (Ω)×
L2 (Ω)→ R is

L (u, p,m, z`, zu) :=J(u,m)−
∫

Ω

(∇u ·∇p−mp) dV

−
∫

Ω

(z` (m−m`) + zu (mu −m)) dV.

Above we introduced z` and zu from L2 (Ω) to be the Lagrange multiplier
functions associated to the lower and upper bound inequality constraints,
respectively. The Lagrange multiplier associated with the partial differential
equality constraint is denoted by p and hereafter referred to as the adjoint
variable.
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3.1.2 Optimality system

Having formed the Lagrangian functional, we then introduce the characteri-
zation of KKT point (u, p,m, z`, zu) in the form of

Lpp̃ = 0, ∀p̃ ∈ V0, (16a)

Luũ = 0, ∀ũ ∈ V0, (16b)

Lmm̃ = 0, ∀m̃ ∈ L2 (Ω) , (16c)

z` ≥ 0, m ≥ m`, z` (m−m`) = 0 a.e. in Ω, (16d)

zu ≥ 0, mu ≥ m, zu (mu −m) = 0 a.e. in Ω, (16e)

where Lpp̃, denotes the first variation [4] of L with respect to the adjoint
variable p in direction p̃. Moreover Luũ and Lmm̃ are similarly defined in
the form of

Lpp̃ = −
∫

Ω

(∇u ·∇p̃−m p̃) dV,

Luũ = Ju, ũ−
∫

Ω

∇ũ ·∇p dV,

Lmm̃ = Jmm̃+

∫
Ω

m̃ p dV −
∫

Ω

m̃ (z` − zu) dV,

Juũ =

∫
Ω

ũ (u− ud) dV,

Jmm̃ =

∫
Ω

R (m, m̃) dV.

3.1.3 The semismooth reformulation of the optimality system

The mathematical character of equations (16d), (16e) is significantly different
from (16a), (16b), (16c) because one is a pointwise constraint and the other
is an orthogonality relation between elements of a Hilbert space. Assuming
that all the fields are continuous we can recast (16d), (16e) as

Φ(`)z̃` = 0, ∀z̃` ∈ L2 (Ω) ,

Φ(u)z̃u = 0, ∀z̃u ∈ L2 (Ω) ,

where Φ(`), Φ(u) are defined by
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Φ(`) (m, z`) z̃` :=

∫
Ω

z̃`φ (m−m`, z`) dV, (17a)

Φ(u) (m, zu) z̃u :=

∫
Ω

z̃uφ (mu −m, zu) dV, (17b)

and φ is the complementarity function defined in (10). Equation (17) allows
us to obtain the following equivalent optimality system

Lpp̃ = 0, ∀p̃ ∈ V0, (18a)

Luũ = 0, ∀ũ ∈ V0, (18b)

Lmm̃ = 0, ∀m̃ ∈ L2 (Ω) , (18c)

Φ(`)z̃` = 0, ∀z̃` ∈ L2 (Ω) , (18d)

Φ(u)z̃u = 0, ∀z̃u ∈ L2 (Ω) , (18e)

which should be interpreted as a generalization of the finite dimensional ssN
system (11).

3.1.4 The ssN system

In order to determine the solution of (18), we apply a semi-smooth Newton
method whose updates are found by linearizing (18) and solving the linearized
system, that is, we seek to find updates (p̂, û, m̂, ẑ`, ẑu) that satisfy

Lp,u (p̃, û) + Lp,m (p̃, m̂) = −Lpp̃, ∀p̃ ∈ V0, (19a)

Lu,p (ũ, p̂) + Lu,u (ũ, û) = −Luũ, ∀ũ ∈ V0, (19b)

Lm,p (m̃, p̂) + Lm,m (m̃, m̂) +

Lm,z` (m̃, ẑ`) + Lm,zu (m̃, ẑu) = −Lmm̃, ∀m̃ ∈ L2 (Ω) , (19c)

Φ(`)
m (z̃`, m̂) + Φ(`)

z`
(z̃`, ẑ`) = −Φ(`)z̃`, ∀z̃` ∈ L2 (Ω) , (19d)

Φ(u)
m (z̃u, m̂) + Φ(u)

zu (z̃u, ẑu) = −Φ(u)z̃u, ∀z̃u ∈ L2 (Ω) , (19e)
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Lp,u (p̃, û) = −
∫

Ω

∇û ·∇p̃ dV,

Lp,m (p̃, m̂) =

∫
Ω

p̃ m̂ dV,

Lu,u (ũ, û) =

∫
Ω

ũ û dV,

Lm,m (m̃, m̂) =

∫
Ω

R (m̃, m̂) dV,

Lm,z` (m̃, ẑ`) = −
∫

Ω

m̃ ẑ` dV,

Lm,zu (m̃, ẑu) =

∫
Ω

m̃ ẑu dV.

To facilitate the determination of variations of the functionals Φ(`),Φ(u),
that are defined in terms of the piecewise complementarity function φ, we
describe the following sets

ΩI(`) := {x ∈ Ω such that z` − σ (m−m`) < 0}, (20a)

ΩI(u) := {x ∈ Ω such that zu − σ (mu −m) < 0}, (20b)

ΩA(`) := Ω \ ΩI(`) , (20c)

ΩA(u) := Ω \ ΩI(u) , (20d)

ΩA := ΩA(`) ∪ ΩA(u) , (20e)

ΩI := ΩI(`) ∩ ΩI(u) . (20f)

Given (20) and how the complementarity function φ is defined in (10), it
quickly follows that

x ∈ ΩI(`) =⇒ φ (m−m`, z`) = z`,

x ∈ ΩA(`) =⇒ φ (m−m`, z`) = σ (m−m`) .

The above implications allow for the functional Φ(`) to be expressed as

Φ(`)z̃` =

∫
ΩI(`)

z̃` z` dV + σ

∫
ΩA(`)

z̃` (m−m`) dV.
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Furthermore, we obtain the variations Φ
(`)
z` and Φ

(`)
m of Φ(`) given by the above

equation in the following form:

Φ(`)
z`

(z̃`, ẑ`) =

∫
ΩI(`)

z̃` ẑ` dV,

Φ(`)
m (z̃`, m̂) = σ

∫
ΩA(`)

z̃` m̂ dV.

Similar expressions for Φ(`) and its variations can be derived in the form of

Φ(u)z̃u =

∫
ΩI(u)

z̃u zu dV + σ

∫
ΩA(u)

z̃u (mu −m) dV,

Φ(u)
zu (z̃u, ẑu) =

∫
ΩI(u)

z̃u ẑu dV,

Φ(u)
m (z̃u, m̂) = −σ

∫
ΩA(u)

z̃u m̂ dV.

We now show how the semi-smooth Newton method can be regarded as
an active set method for this problem. We first observe that

Φ(`)
m (z̃`, m̂) + Φ(`)

z`
(z̃`, ẑ`) = −Φ(`)z̃`,

holds provided the following two identities are true

σ

∫
ΩA(`)

z̃` m̂ dV = −σ
∫

ΩA(`)

z̃` (m−m`) dV, (21)∫
ΩI(`)

z̃` ẑ` dV = −
∫

ΩI(`)

z̃` z dV. (22)

That is, the ssN method parameter update m+ m̂, will satisfy

m+ m̂ = m`, x ∈ ΩA(`) ,

z` + ẑ` = 0, x ∈ ΩI(`) .

Similarly, Φ
(u)
m (z̃u, m̂) + Φ

(u)
zu (z̃u, ẑu) = −Φ(u)z̃u, whenever

m+ m̂ = mu, x ∈ ΩA(u) , (23)

zu + ẑu = 0, x ∈ ΩI(u) . (24)

Finally we observe that in order that the ssN parameter update m̂ to be
well defined, it is necessary that ΩA(`) ∩ ΩA(u) = ∅, which coincides with the
update of an active-set method.
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3.1.5 Method of numerical solution

Given m (x) , z` (x) , zu (x), we seek to compute the associated ssN update
m̂ (x) , ẑ` (x) , ẑu (x). We proceed by presenting this infinite-dimensional con-
sistent algorithm by means of a discretization conducted by finite elements.
For that purpose, let us define

� Vh ⊂ H1 (Ω), subspace with basis elements {ϕj (x)}nj=1.

� Mh ⊂ L2 (Ω), subspace with basis elements {ψj (x)}mj=1.

� A ∈ Rn×n – Vh discretization of the bilinear form
∫

Ω
∇u ·∇p dV .

� M ∈ Rm×m – Mh discretization of the bilinear form
∫

Ω
m1m2 dV .

� MV ∈ Rn×n – Vh discretization of the bilinear form
∫

Ω
u p dV .

� C ∈ Rm×n – Vh,Mh mixed discretization of the bilinear form
∫

Ω
pm dV .

� R ∈ Rm×m – Mh discretization of the bilinear form
∫

Ω
R (m1,m2) dV .

Vectors of finite element expansion coefficients m,u are used to represent
functions m,u, contained in the finite dimensional spaces Vh,Mh, respec-
tively.

In order to reduce the amount of notation, in the remainder of this section
the Dirichlet conditions that are used to obtain a discretized operator are not
explicitly stated and should be inferred from the context. For instance, the
state and adjoint variables are both solutions of a Poisson equation with
distinct Dirichlet conditions; also we use the same symbol for the discretized
Laplacian operators for the two Poisson equations.

For given discretized parameter and bound constraint Lagrange multipli-
ers m, z`, zu, one can determine the state and adjoint variables by solving
the following linear systems in sequence

Au = C>m, (25)

Ap = MV (u− ud) , (26)

by, for instance, the preconditioned conjugate gradient method. The state
and adjoint variables allow for the adjoint-based evaluation of the gradient

g = Rm+Cp−M (z` − zu) . (27)
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The gradient g, is with respect to the Euclidean inner product on Rm and
is consistent with the infinite dimensional inverse problem, that is, for each
m̃ ∈ L2 (Ω), the discrepancy |m̃>g −Lmm̃|, vanishes as the mesh is refined.

We now discuss solving the ssN system, whose solution determines up-
dates of the parameter and bound constraint Lagrange multipliers. We follow
a similar approach to that of [11] that employs the Newton’s method to solve
PDE inverse problems with log barrier terms for problems that contain point-
wise inequality bound constraints. The ssN system in the absence of terms
that determine the active and inactive sets is

−Aû+C>m̂ = 0, (28)

−Ap̂+MVû = 0, (29)

Cp̂+Rm̂+M (ẑu − ẑ`) = −g. (30)

By eliminating the second-order state and the adjoint variables û, p̂, the
following reduced Newton system is formed:

Hm̂+M (ẑu − ẑ`) = −g, (31)

H = CA−1MVA
−1C> +R. (32)

The following computational strategy is employed to compute the ac-
tive and inactive sets for the discretized problem and the subsequent ac-
tive set constraint impostion on the Newton system. We assume a finite
element discretization such that the components of the vector represen-
tation corresponds to the evaluation of the finite element function at a
set of points {xi}i ⊂ Ω. Finite-dimensional representations of the sets
ΩI(`) ,ΩA(`) ,ΩI(u) ,ΩA(u) are given by the index sets

I(`) = {i s.t. (z` − σ (m−m`))i ≤ 0}, (33a)

A(`) = {i s.t. (z` − σ (m−m`))i > 0}, (33b)

I(u) = {i s.t. (zu − σ (mu −m))i ≤ 0}, (33c)

A(u) = {i s.t. (zu − σ (mu −m))i > 0}. (33d)

The discretized parameter components A = A(`) ∪A(u) are considered
active, that is, the components of m̂ are not determined by (31) but rather
that (m+ m̂)i = (m`)i, for each i ∈ A(`) and (m+ m̂)i = (mu)i for
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each i ∈ A(u). To facilitate an incorporation of the active set constraints,
we define the operator PA that projects vectors such as m, to the |A|-
dimensional vector space of active degrees of freedom. The projector P I to
the space of inactive degrees of freedom can be similarly defined. We utilize
the aforementioned projection operators to explicitly expose the components
of m̂ and λ̂ that are not determined by active or inactive set constraints in
(31); for this we apply P I to obtain

Hm̂−Mλ̂ = −g,
HP>Im̂I −MP>Aλ̂A = −HP>Am̂A +MP>I λ̂I − g,

P IHP
>
Im̂I − P IMP>Aλ̂A = −P IHP

>
Am̂A + P IMP>I λ̂I − P Ig,

where λ̂ = ẑ`− ẑu is used to reduce notation. For a piecewise-constant finite
element discretization of m, the mass matrix M is diagonal, which implies
P IMP>A = 0. For such mass matrices, we observe that m̂I and λ̂A are
algebraically decoupled and, as a consequence, m̂I can then be written as
the solution of the symmetric linear system

P IHP
>
Im̂I = −P IHP

>
Am̂A + P IMP>I λ̂I − P Ig.

The above-mentioned algebraic decoupling is preferable and thus we approx-
imate P IMP>A by the zero matrix even for those finite element discretiza-
tions in which the mass matrix is not diagonal. We now summarize the steps
needed to determine m̂I :

P IHP
>
Im̂I = −P IHP

>
Am̂A + P IMP>I λ̂I − P Ig, (34a)

m̂A = PA (m` −m) , (34b)

λ̂I = ẑ`,I − ẑu,I , (34c)

ẑ`,I = −P Iz`, (34d)

ẑu,I = −P Izu. (34e)

For the given convex optimization problem, the Hessian will be symmet-
ric positive definite as will be the submatrix P IHP

>
I . This property can

be exploited to solve the linear system (34a) efficiently utilizing the precon-
ditoned conjugate-gradient algorithm. Had P IMP>A not been nullified, a
nonsymmetric linear system would need to be solved in order to simultane-
ously determine m̂A and λ̂I .
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Having infeasible iterates can cause the optimization algorithm to fail,
such as for those problems for which the state equation is not well defined
outside of the feasible region, e.g., subsection 3.2. For that reason, we choose
to project m̂ to ensure that the subsequent iterate m+ m̂ is in the feasible
region and, thus, constitutes a primal feasible ssN iterate update. Once m̂
is known, we need only determine ẑ` and ẑu, the steps needed to compute
them are summarized below:

Mλ̂ = Hm̂+ g, (35a)

(ẑ`)i = − (z`)i , i ∈ I`, (35b)

(ẑu)i = − (zu)i , i ∈ Iu, (35c)

(ẑ`)i =
(
ẑu + λ̂

)
i
, i ∈ A`, (35d)

(ẑu)i =
(
ẑ` − λ̂

)
i
, i ∈ Au. (35e)

3.2 Example 2: Determination of a diffusion coefficient
in Poisson’s equation

In this section, we seek to determine the spatially varying diffusion coeffi-
cient m of Poisson’s equation within given lower and upper bounds m`, mu

such that the PDE solution u matches a given data set ud. This can be
mathematically written as:

min
(u,m)∈H1(Ω)×L2(Ω)

J(u,m) :=
1

2
||u− ud||2L2(Ω) +

1

2
||m||2R (36)

such that

−∇ · (m∇u) = f weakly in Ω, (37)

u = u0 on ∂Ω, (38)

m` ≤ m ≤ mu a.e. in Ω. (39)

As before we follow the Lagrangian formalism by introducing a Lagrangian
functional L : Vu0 × V0 × L2 (Ω)× L2 (Ω)× L2 (Ω)→ R in the form of

L (u, p,m, z`, zu) :=J(u,m)−
∫

Ω

(m∇u ·∇p− f p) dV

−
∫

Ω

(z` (m−m`) + zu (mu −m)) dV.
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In order to determine a KKT point (u, p,m, z`, zu) we require that

Lpp̃ = 0, ∀p̃ ∈ V0, (40a)

Luũ = 0, ∀ũ ∈ V0, (40b)

Lmm̃ = 0, ∀m̃ ∈ L2 (Ω) , (40c)

z` ≥ 0, m ≥ m`, z` (m−m`) = 0 a.e. in Ω, (40d)

zu ≥ 0, mu ≥ m, zu (mu −m) = 0 a.e. in Ω. (40e)

Above we introduced the following quantities:

Lpp̃ = −
∫

Ω

(m∇u ·∇p̃− f p̃) dV,

Luũ = Juũ−
∫

Ω

m∇ũ ·∇p dV,

Lmm̃ = Jmm̃−
∫

Ω

m̃∇u ·∇p dV −
∫

Ω

m̃ (z` − zu) dV,

Juũ =

∫
Ω

ũ (u− ud) dV,

Jmm̃ =

∫
Ω

R (m, m̃) dV.

3.2.1 The Semismooth reformulation of the optimality system

Again we utilize the functionals Φ(`), Φ(u) defined by

Φ(`) (m, z`) z̃` :=

∫
Ω

z̃`φ (m−m`, z`) dV, (41a)

Φ(u) (m, zu) z̃u :=

∫
Ω

z̃uφ (mu −m, zu) dV. (41b)

This allows for the following equivalent reformulation of the optimality sys-
tem

Lpp̃ = 0, ∀p̃ ∈ V0, (42a)

Luũ = 0, ∀ũ ∈ V0, (42b)

Lmm̃ = 0, ∀m̃ ∈ L2 (Ω) , (42c)

Φ(`)z̃` = 0, ∀z̃` ∈ L2 (Ω) , (42d)

Φ(u)z̃u = 0, ∀z̃u ∈ L2 (Ω) . (42e)
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The semi-smooth Newton method is then applied to iteratively obtain up-
dates (p̂, û, m̂, ẑ`, ẑu) which solve the following linear system

Lp,u (p̃, û) + Lp,m (p̃, m̂) =− Lpp̃, ∀p̃ ∈ V0, (43a)

Lu,p (ũ, p̂) + Lu,u (ũ, û) + Lu,m (ũ, m̂) =− Luũ, ∀ũ ∈ V0, (43b)

Lm,p (m̃, p̂) + Lm,u (m̃, û) + Lm,m (m̃, m̂) +

Lm,z` (m̃, ẑ`) + Lm,zu (m̃, ẑu) =− Lmm̃, ∀m̃ ∈ L2 (Ω) , (43c)

Φ(`)
m (z̃`, m̂) + Φ(`)

z`
(z̃`, ẑ`) =− Φ(`)z̃`, ∀z̃` ∈ L2 (Ω) , (43d)

Φ(u)
m (z̃u, m̂) + Φ(u)

zu (z̃u, ẑu) =− Φ(u)z̃u, ∀z̃u ∈ L2 (Ω) . (43e)

Above we have introduced the variations

Lp,u (p̃, û) = −
∫

Ω

m∇û ·∇p̃ dV,

Lp,m (p̃, m̂) = −
∫

Ω

m̂∇u ·∇p̃ dV,

Lu,u (ũ, û) =

∫
Ω

ũ û dV,

Lu,m (ũ, m̂) = −
∫

Ω

m̂∇ũ ·∇p dV,

Lm,m (m̃, m̂) =

∫
Ω

R (m̃, m̂) dV,

Lm,z` (m̃, ẑ`) = −
∫

Ω

m̃ ẑ` dV,

Lm,zu (m̃, ẑu) =

∫
Ω

m̃ ẑu dV.

We do not proceed with the the development of the ssN framework for
this example as it is identical to that of the first example. We do note that
the second order adjoint equations are not independent of u,m, p and as such
the elements of the ssN system matrix H , need to be updated at each ssN
iterate.

4 Software Implementation

The goal of this section is to describe how one can utilize the modular finite
element methods MFEM library in order solve the example problems by the ssN
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method as previously detailed. A ReducedHessianOperator class is devel-
oped to inherit from the MFEM Operator class. Furthermore, our application
code specifies:

� MFEM FiniteElementSpace – pointer data for the discretization of both
the state and parameter fields,

� MFEM GridFunction – data for ud, f , m`, mu, the ‘observation’ data,
rhs state equation forcing term, lower and upper bounds for the pa-
rameter field, respectively,

� MFEM Array<int> – which specifies which discretized state boundary
degrees of freedom will a Dirichlet condition apply to,

� double – value to specify γ the strength of the L2 regularization,

and contains member functions

� void set_forward_parameters – which sets the parameter GridFunction
member data from an application code GridFunction, and then up-
dates the LinearForm state equation member data,

� void state_solve – solves the state equation, using PCG with a GSSmoother
and writes the solution data to a state GridFunction member data,

� double eval_cost() – returns the value of the cost functional for the
given state and parameter GridFunction member data,

� void set_adj_parameters – which sets the LinearForm adjoint equa-
tion member data from the state and parameter GridFunction member
data,

� void adj_solve – solves the adjoint equation, using PCG with a GSSmoother
and writes the solution data to an adjoint GridFunction member data,

� void eval_grad – for the given state, parameter and adjoint GridFunction
member data, evaluate the gradient as a GridFunction over the pa-
rameter FiniteElementSpace,

� void set_incremental_parameters – set MixedBilinear form and
associated SparseMatrix member data that implicitly define the Hes-
sian,
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� void set_active_set – compute Array <int> member data that will
mark which discretized parameter degrees of freedom are active and
inactive,

� void set_rhs – writes−
(
g +MP>IλI

)
to a pointer to Vector passed

as argument from the application code,

� void reduce_rhs – alter the application Newton system rhs Vector in
a manner similar to that which is employed in the MFEM::ConstrainedOperator
class,

� void set_mhat_initial – alter the application code initial Vector

pointer iterate for the Newton conjugate-gradient solve, again in a man-
ner similar to that which is employed in the MFEM::ConstrianedOperator,

� void project_update – alter m̂ in order that when it is added to the
parameter GridFunction member data, the result is feasible,

� void z_solve – backsolve to update the z`, zu GridFunction Lagrange
multipliers for the lower and upper bound constraints,

� bool is_primal_feasible – check if the parameter member data is
feasible,

� bool is_dual_feasible – check if the Lagrange multipliers for the
lower and upper bound constraints are dual feasible.

5 Numerical Results

5.1 Example 1: Determination of a source term in
Poisson’s equation

We first verify that the adjoint-based gradient and Hessian apply routines
are correctly implemented, by means of a finite difference check.

5.1.1 Adjoint-based Gradient and Hessian Apply Verification

The consistency of the discretized cost functional evaluation and adjoint-
based gradient are verified by computing the finite difference approximation
error of the gradient g at m0 in direction m1
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E (ε) :=

∣∣∣∣J (m0 + εm1)− J (m0)

ε
−m>1 g (m0)

∣∣∣∣ , (44)

which with infinite-precision arithmetic is O (ε).
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Finite difference gradient approximation error

Similar tests were performed to verify the Hessian apply implemented.

5.1.2 Problem setup and solution estimation

The state and adjoint variables u, p, are here discretized by linear H1 (Ω)
elements and the parameter m, by piecewise constant L2 (Ω) elements. For
simplicity, the Dirichlet condition is chosen to be consistent with the data
set ud. The PDE inverse problem is regularized with the inclusion of a
L2 regularization term in the cost functional, with γ = 10−4 as the reg-
ularization parameter. The lower and upper bounds m`, mu are taken
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to be the constants m` = −30, mu = 30 and observation data set of
ud(x, y) = sin (2 π x) sin (2π y) exp (2x) /6.

On a coarse unit square mesh, with 968 degrees of freedom for the dis-
cretized parameter field and 525 degrees of freedom for the discretized state
the following solution estimate to the inverse with bound constraints is ob-
tained

(1) True
Parameter

(2) Projected True
Parameter

(3) Parameter
Reconstruction

The true parameter −∆ud, is that which gives rise to the data ud. As
illustrated above the true parameter is not contained within the lower and
upper bounds m` and mu. To assess the quality of the parameter estimate,
the true parameter is projected onto the feasible region and compared to the
estimate. The parameter reconstruction agrees well with the projected true
parameter.

5.1.3 Convergence Results

Table 1 demonstrates that the optimization algorithm is consistent with the
infinite-dimensional formulation, in that the number of ssN updates needed
to converge to a KKT point is largely independent of the level of mesh re-
finement.
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dim(m) ssN iters dim (A`) dim (A`) /dim (m)

968 4 28 0.0289

3872 3 117 0.0302

15488 4 480 0.0310

61952 4 1930 0.0312

Table 1: ssN iterations needed to reach KKT point and relative size of active
set at KKT point upon mesh refinement.

Table 2 provides numerical evidence that the ssN iterates converge superlin-
early to a KKT point.

k ||m(k) − m̄||L2(Ω) ||m(k) − m̄||L2(Ω)/||m(k−1) − m̄||L2(Ω)

0 1.360× 101 -

1 3.503× 10−1 2.572× 10−2

2 8.299× 10−3 2.369× 10−2

3 7.446× 10−6 8.973× 10−4

4 5.327× 10−11 7.153× 10−6

Table 2: Convergence behavior of the ssN iterates, 15488 degrees of freedom
of the discretized parameter field m.

5.2 Example 2: Determination of a diffusion coefficient
in Poisson’s equation

This problem has features that make solution computation by the ssN method
more challenging than in the former example problem. Nonconvexity de-
mands that we use methods such as Armijo backtracking linesearch in order
that the scheme be globalized. The guarantee that the solution of the ssN
system is a descent direction, is not present in this nonconvex problem and
thus the ssN solution is not suitable for use in linesearch. Yet another chal-
lenging feature is that the forward state equation is not well-posed for each
m ∈ L2 (Ω), which is precisely what motivated the study of how to ensure
primal feasibility in the former problem. The traditional ssN method will
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in general, create infeasible iterates and hence the algorithm was modified
by means of projections onto the feasible set. We took note of more so-
phisticated projection techniques [13], but were concerned of an increase of
iterations caused by using a search direction that is a linear combination
of the ssN and gradient directions and potentially nearly parallel with the
gradient. Other works have also discussed the challenges of applying ssN to
this problem, [6] chose the parameter lower bound sufficiently far away from
0 but as the authors note this does not guarantee that all ssN parameter
iterates will generate a well-posed state equation.

After numerically observing that the ssN direction provided by m̂, ẑ`, ẑu
was not a descent direction for the discretized objective functional J , we
considered a common merit function [10, 8, 5] but designed to be consistent
with the infinite dimensional problem, that is

Θ =
1

2

∫
Ω

((
δL
δm

)2

+ φ (m−m`, z`)
2 + φ (mu −m, zu)2

)
dV, (45)

where δL
δm

is the variational derivative [4] of the Lagrangian functional with
respect to m

δL
δm

= γ m−∇u ·∇p− (z` − zu) . (46)

It was observed numerically that the ssN direction was not always a descent
direction for the merit functional Θ. Having not obtained a merit functional
where each projected ssN direction is a descent direction, we were then unable
to globalize the method in order to estimate KKT points for this problem.

6 Conclusions

One limitation of this framework is the approximation PIMPA
> = 0 we

have enforced. The error of this decoupling approximation increases as the
order of the finite element discretization of m and the number of nonzeros per
row of the mass matrix M increases. In this work, we have used the nodal
values of the finite element approximations of the fields u,m, p, z`, zu at each
ssN iteration to compute the respective active and inactive sets A,I and
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then employed the decoupling approximation. Alternatively, one could use
the finite element approximants to compute the boundary between the active
and inactive sets ΩA,ΩI , which will, in general, not conform to the finite ele-
ment discretization. After determining the active, inactive set boundary the
domain Ω, could be rediscretized in order that the finite element discretiza-
tion utilized conforms to the active, inactive set boundary. To the best of
our knowledge, MFEM does not currently offer API to implement such a task.
We are uncertain if this change would make the resulting algorithm mesh
dependent. The decoupling approximation allowed for the ssN updates to
be obtained by solving a linear system by the conjugate gradient algorithm,
we however did not incorporate a preconditioner such as multigrid which has
been developed for similar problems [3, 2].

We found MFEM to be a user-friendly productive software environment.
MFEM allowed for the utilization of many numerical subroutines needed for an
implementation of this computational framework. Examples of such software
features are the infrastructure to create a custom Operator, defined only by
its action on vectors, and to pass the resulting object to a Krylov subspace
IterativeSolver. This allows for the determination of linear system solu-
tions, where the Operator object implicitly defines the system matrix. Our
numerical results lead us to conclude that more work is needed to globalize
the ssN method. Globalization is necessary in order that the ssN method can
be effectively used to estimate solutions of topology optimization problems,
in which, the state equation is not well defined for densities outside of the
feasible region.
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