
1

True Load Balancing for Matricized Tensor
Times Khatri-Rao Product

Nabil Abubaker, Seher Acer, and Cevdet Aykanat

Abstract—MTTKRP is the bottleneck operation in algorithms used to compute the CP tensor decomposition. For sparse tensors,
utilizing the compressed sparse fibers (CSF) storage format and the CSF-oriented MTTKRP algorithms is important for both memory
and computational efficiency on distributed-memory architectures. Existing intelligent tensor partitioning models assume the
computational cost of MTTKRP to be proportional to the total number of nonzeros in the tensor. However, this is not the case for the
CSF-oriented MTTKRP on distributed-memory architectures. We outline two deficiencies of nonzero-based intelligent partitioning
models when CSF-oriented MTTKRP operations are performed locally: failure to encode processors’ computational loads and increase
in total computation due to fiber fragmentation. We focus on existing fine-grain hypergraph model and propose a novel vertex weighting
scheme that enables this model encode correct computational loads of processors. We also propose to augment the fine-grain model
by fiber nets for reducing the increase in total computational load via minimizing fiber fragmentation. In this way, the proposed model
encodes minimizing the load of the bottleneck processor. Parallel experiments with real-world sparse tensors on up to 1024 processors
prove the validity of the outlined deficiencies and demonstrate the merit of our proposed improvements in terms of parallel runtimes.

Index Terms—Load balancing, Sparse tensors, MTTKRP, CP Decomposition, Fine-grain hypergraph partitioning.

F

1 INTRODUCTION

CANONICAL polyadic decomposition (CPD) is an exten-
sion of singular value decomposition to tensors and

a fundamental tool for the analysis of multiway data. It
approximates a given tensor by the sum of multiple rank-
one tensors so that each rank-one tensor corresponds to a
structural feature in the data set. CPD is used for dimension-
ality reduction, data completion and compression, and finds
application in various domains such as neuroscience [1, 2],
machine learning [3, 4], chemistry [5], cybersecurity [6],
signal processing [7], and network analysis [8].

The most popular algorithm that computes the CPD is
based on the alternating least squares method and gener-
ally referred to as CP-ALS. Each iteration of the CP-ALS
algorithm computes a new factor matrix for each mode
by performing several computational steps. Among those
steps, matricized tensor times Khatri-Rao product (MT-
TKRP) constitutes the biggest bottleneck because of its high
computational cost.

When CP-ALS is performed on a sparse tensor and
on a distributed-memory setting, the optimization of the
MTTKRP operation becomes more tedious due to the irreg-
ular sparsity pattern of the tensor nonzeros. Practitioners
usually perform tensor decomposition many times with
different ranks, which makes the optimization of MTTKRP
even more crucial for reducing the turnaround time of their
analysis. For achieving a performant and scalable parallel
decomposition, one should take the sparsity information
into account in crucial design decisions associated with high
communication and computational costs. These decisions

• N. Abubaker and C. Aykanat are with the Department of Computer
Engineering, Bilkent University, Turkey.
E-mail: nabil.abubaker@bilkent.edu.tr, aykanat@cs.bilkent.edu.tr
S. Acer is with Sandia National Labs, Albuquerque, NM, USA.
E-mail: sacer@sandia.gov

involve

(i) how the input tensor is distributed among processors,
(ii) how the tensor nonzeros are stored in each processor,

(iii) and how MTTKRP is realized on the given storage.

To address (i), several successful partitioning models [9–
12] have been proposed with the goal of reducing the com-
munication cost of MTTKRP while maintaining a balance on
its computational costs on all processors. To address (ii) and
(iii), several storage formats [13–15] have been proposed,
usually together with a new method to realize MTTKRP
on the proposed format. Among those, compressed sparse
fiber (CSF) proves to be the most commonly-used storage
format due to its efficiency in terms of both memory and
computation [11, 13, 14]. CSF is an extension of the com-
pressed sparse row format to tensors and the total flop count
in the CSF-oriented MTTKRP is proportional to the total
number of nonzeros and fibers (along a specified mode)
in the given tensor. The flop count of the CSF-oriented
MTTKRP is significantly smaller than the flop count of the
MTTKRP based on the coordinate-format [13, 14].

Besides the popularity of the CSF format, tensor par-
titioning models still assume the computational cost of
MTTKRP to be proportional to the total number of nonzeros
in the input sparse tensor. This creates a discrepancy when
the tensor is stored in a CSF format and hence a CSF-
oriented MTTKRP operation is performed. This discrepancy
leads to a failure in balancing the computational loads of
processors in the distributed-memory parallelization. This
failure becomes more prominent as the variance on the
nonzero counts of fibers becomes larger, that is, as the tensor
becomes more irregular.

In this work, we propose a tensor partitioning model
with true load balancing for MTTKRP operation when the
CSF format is used. Our model is based on the fine-grain

SAND2021-0767J

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

2

model [9], which is (theoretically and practically) the most
successful model in reducing the total communication vol-
ume and balancing the number of tensor nonzeros in pro-
cessors. Our contributions can be summarized as follows:
• We outline two deficiencies of the existing fine-grain

model when the CSF scheme is used for local MTTKRP
operations: failure to encode the correct computational
loads of processors and the increase in the total amount
of computation due to fiber fragmentation.

• We first propose a heuristic that leads to a novel
vertex weighting scheme which helps the hypergraph
model correctly encapsulate the computational loads of
processors. We then utilize the well-known recursive
bipartitioning framework for improving the accuracy
of the heuristic.

• We also propose an augmentation to the fine-grain
model by fiber nets that reduce the fiber fragmentation
and help the weighting scheme achieve its potential.

The rest of the paper is organized as follows. In Sec-
tion 2 the necessary backgrounds for CPD, CP-ALS, and
hypergraph partitioning are given. The deficiencies of the
HP-based fine-grain method are discussed in Section 3.
In Section 4, our proposed framework is presented and
discussed in details. Experimental results are given and
discussed in Section 5. Related work is given in Section 6
and the paper is concluded in Section 7.

2 BACKGROUND

2.1 Tensors and notations
We denote tensors by calligraphic letters (X) and matrices
by bold capital letters (A). The number of dimensions of a
tensor, denoted by N , is called the mode of the tensor. Note
that matrices and vectors are 2-mode and 1-mode tensors,
respectively. For the sake of simplicity, we assume 3-mode
tensors of size I×J×K .

Fibers are analogous to matrix rows or columns, which
can be obtained by fixing all but one indices of the tensor.
In 3-mode tensors there are row, column and tube fibers
which are respectively denoted by X (i, :, k), X (:, j, k) and
X (i, j, :). Slices are analogous to matrices and can be ob-
tained by fixing all but two indices. In 3-mode tensors,
there are horizontal (e.g., X (i, :, :)), lateral (e.g., X (:, j, :))
and frontal (e.g., X (:, :, k)) slices. Matricization of a tensor
means unfolding it into a matrix shape along one of its
modes. For instance, the matricization of X along the first
mode, denoted by X(1), is a matrix of size I × JK . We refer
the reader to the survey by Kolda and Bader [16] for more
details on tensor decompositions.

2.2 The Canonical Polyadic Decomposition
The CPD, with R as the decomposition rank, approximates
tensor X as the sum of R rank-one tensors: X ≈

∑R
r=1 ar ◦

br ◦ cr . Here “◦” denotes the outer product operation. The
a, b and c components in each of the R rank-one tensors are
assembled to respectively form factor matrices A ∈ RI×R,
B ∈ RJ×R and C ∈ RK×R.

The most commonly used algorithm to compute the
CPD is CP-ALS, which uses the Alternating Least Squares
approach. Algorithm 1 shows the steps of the CP-ALS algo-
rithm. During each iteration, two factor matrices are fixed to

find the remaining one by solving a linear alternating least
squares problem. For instance, minA||X(1)−A(C�B)T ||2R
is solved to find A by computing X(1)(C�B)(CTC∗BTB).
The columns of factor matrices are then normalized to
length one, and the actual lengths are stored in λ. The op-
erations � and ∗ denote the Khatri-Rao and the Hadamard
products, respectively.

The MTTKRP operation, which is the target operation in
this work, takes place in lines 4, 7, and 10 of Algorithm 1,
each of which is for computing a factor matrix along a
different mode. Although it is shown as a multiply of an
unfolded (matricized) tensor (e.g., X(1)) with a large matrix
(e.g., (B � C)), this is basically for simplicity and the cor-
responding multiply is impractical for sparse tensors. Many
implementations prefer to realize the MTTKRP operation
Â← X(1)(B�C) in a rowwise way for Â, such as

Â(i, :) =
∑

X (i,j,k) 6=0

X (i, j, k)[B(j, :) ∗C(k :)]. (1)

This computation style is preferred when the tensor is stored
as a list of (i, j, k, val) coordinates, called the COO format.
Note that in this formulation, the corresponding rows of B
and C are retrieved and multiplied for each nonzero.

As a better alternative, the software toolkit SPLATT [13]
uses the flops-reducing formulation

Â(i, :) =
∑

j�nnz(X (i,j,:)) 6=0

B(j, :)∗
∑

k�X (i,j,k)6=0

X (i, j, k)C(k :)

(2)
which uses a fiber-centric data structure (to be discussed in
the next subsection). Hereafter, nnz(.) refers to the number
of nonzeros in a (sub)tensor. In (2), the outer and inner
summations respectively run over all nonzero fibers of slice
X (i, :, :), and all nonzero entries of fiber X (i, j, :).

Algorithm 1 CP-ALS for 3-mode Tensors

1: procedure CP-ALS(X)
2: Initialize matrices A, B and C randomly
3: while not converged do
4: Â← X(1)(B�C)

5: A← Â(CTC ∗BTB)−1

6: Normalize columns of A into λ
7: B̂← X(2)(C�A)

8: B← B̂(CTC ∗ATA)−1

9: Normalize columns of B into λ
10: Ĉ← X(3)(B�A)

11: C← Ĉ(BTB ∗ATA)−1

12: Normalize columns of C into λ
return [[λ; A,B,C]]

2.3 Efficient computation of MTTKRP
The efficient formulation in (2) can be realized using the
Compressed Sparse Fibers (CSF) scheme, which was first
introduced by Smith and Karypis [14]. The CSF storage
scheme can be considered as a natural extension of the
Compressed Sparse Rows/Columns schemes widely used
for sparse matrices. Fig. 1 shows an illustration of the CSF
storage format for a 3-mode sparse tensor. In the figure,
the pSlice and pF iber arrays respectively represent the
compressed slices and fibers. The pSlice array consists of
pointers to the starting indices of the compressed fibers

3

1

2

3

1 2 3
4

+

+

Fig. 1: A 3-mode tensor (top) and the corresponding CSF
storage (bottom).

of the respective slices in the pF iber array. Similarly, the
pF iber array consists of pointers to the starting indices of
the nonzeros of the respective fibers in V als. The iSlice,
iF iber and iV als arrays respectively store the i, j and k
indices of the respective nonzero slices, fibers and entries.

Two CSF-based computational schemes are used for
computing the MTTKRP operations in Algorithm 1 using
the formulation in (2). These two schemes will be referred
to as CSF-S and CSF-D, where “-S” and “-D” refer to the use
of Single and Double storage, as will be explained shortly.

The CSF-S scheme operates on a single CSF storage of
the tensor, where the compressed fibers are the tensor’s
fibers along the longest mode. This scheme is proposed
by Smith and Karypis [14] and currently used in SPLATT.
CSF-S utilizes Algorithm 2 for computing the MTTKRP
operations along all modes but the longest mode, while
it utilizes Algorithm 3 to compute the MTTKRP operation
along the longest mode.

The CSF-D scheme uses two different CSF storages of the
tensor. The first storage s1 is the same as of CSF-S, while the
second storage s2 utilizes the fibers along the second longest
mode as the compressed pF iber array. This scheme was
used in several works that target computing the MTTKRP in
distributed settings [11, 13, 17]. CSF-D utilizes Algorithm 2
for computing the MTTKRP operations along all modes but
the longest mode by feeding s1, and it utilizes the same
algorithm to compute the MTTKRP operation along the
longest mode by feeding s2. Although CSF-D has a larger
memory footprint compared to CSF-S, it has the advantage
of avoiding the use of costly mutexes when used in hybrid
(distributed + shared) settings [14].

2.4 Hypergraph Partitioning (HP)

A hypergraphH=(V,N) is defined as a set of vertices V and
a set of netsN . Each net n∈N connects a subset of vertices,
which is denoted by Pins(n). Each net n is assigned a
cost c(n), whereas each vertex v maybe assigned C weights
denoted by wc(v) where c ∈ {1, 2, .., C}. For C > 1, the HP
problem is commonly known as multi-constraint HP.

Π = {V1,V2, ...,VP } denotes a P -way partition of H if
the vertex parts are mutually exclusive and exhaustive. For

Algorithm 2 MTTKRP used by both CSF-D and CSF-S

Require: Tensor X stored in CSF, A,B and C
1: for i← 1 to size(pSlice) do
2: is← iSlice[i]
3: for j ← pSlice[i] to pSlice[i+ 1]− 1 do
4: jf ← iF iber[j]
5: if pF iber[j + 1]− pF iber[j] = 1 then
6: k ← pF iber[j]
7: Â(is, :)+=V als[k]∗C(iV als[k])∗B(if, :)
8: else
9: acc(:)← 0

10: for k ← pF iber[j] to pF iber[j + 1]− 1 do
11: acc(:)+= acc(:) + V als[k] ∗C(iV als[k], :)

12: Â(is, :)+= acc(:) ∗B(jf, :)

Algorithm 3 MTTKRP used by CSF-S

Require: Tensor X stored in CSF, A,B and C
1: for i← 1 to size(pSlice) do
2: is← iSlice[i]
3: for j ← pSlice[i] to pSlice[i+ 1]− 1 do
4: jf ← iF iber[j]
5: if pF iber[j + 1]− pF iber[j] = 1 then
6: k ← pF iber[j]
7: Ĉ(iV als[k], :)+= V als[k] ∗A(is, :) ∗B(jf, :)
8: else
9: acc(:)← A(is, :) ∗B(jf, :)

10: for k ← pF iber[j] to pF iber[j + 1]− 1 do
11: Ĉ(iV als[k], :)+= acc(:) ∗ V als[k]

a given partition Π,

W c(Vp) =
∑

vi∈Vp

wc(vi),∀c ∈ {1, 2, .., C}. (3)

denotes the cth weight of part Vp. In Π, a net is said to
connect a part if it connects at least one vertex in that part.
con(n) denotes the number of parts that net n connects. Net
n is called cut if it connects at least two parts, i.e., con(n) >
1, and called internal otherwise.

In the HP problem, the partitioning objective is to mini-
mize the cutsize, which is defined as

cutsize(Π) =
∑
n∈N

(con(n)− 1)c(n). (4)

The partitioning constraint is to maintain balance on part
weights

W c(Vp) ≤W c
avg(1 + ε),∀Vp ∈ Π,∀c ∈ {1, 2, .., C}, (5)

where W c
avg =

∑P
p=1W

c(Vp)/P denotes the average part
weight for the cth constraint and ε denotes the maximum
allowed imbalance ratio.

The Recursive Bipartitioning (RB) paradigm is widely
used in graph/hypergraph partitioning. In the RB
paradigm, an input hypergraph is bipartitioned recursively
in log2P steps to obtain P parts. Without loss of generality,
we assume that P is an exact power of 2. A bipartition
Π2 = {VL,VR} of a hypergraph H at some RB step is
used to produce two new hypergraphs HL = (VL,NL) and
HR = (VR,NR), where L and R to refer to the two parts
as Left and Right, respectively. The net sets NL and NR

are obtained by keeping all internal nets of each part and
splitting the cut-nets using the cut-net splitting method [18].

4

2.5 Fine-Grain (FG) Partitioning for MTTKRP

In the work by Kaya and Uçar [9], a fine-grain task is defined
as the multiplication of a tensor nonzero by the Hadamard
product of the corresponding rows of the factor matrices
along all but the mode of the factor matrix being computed
(according to (1)).

A fine-grain hypergraph model H = (V,N) is pro-
posed [9] for fine-grain task partitioning.H contains a vertex
vijk for each tensor nonzero X (i,j,k), and nets nHi , nLj and
nFk for respectively each nonempty horizontal, lateral and
frontal slice of the tensor. Each vertex vijk is connected by
three nets nHi , nLj and nFk .

All vertices of H are assigned a unit weight under the
assumption that every nonzero ofX incurs the same amount
of computation during the MTTKRP operations. All nets
of H are assigned a cost of R since factor-matrix rows
of size R words are communicated between processors.
Then, the partitioning objective of minimizing the cutsize
encodes minimizing the total volume of communication due
to expand-type communications on input matrix rows as
well as reduce-type communications on output matrix rows.

3 DEFICIENCIES OF THE FINE-GRAIN MODEL

Fig. 2: A bipartition of slice X (:, :, k) to processors p1 and
p2, having the same nonzero count but different flop counts.

3.1 Failure to encode processors’ computational loads

The COO-based implementation of the MTTKRP operation
according to (1) incurs 3Rm flops for tensor X with m
nonzero elements. Here, 2Rm flops are performed for the
initial products andRm flops are performed for the summa-
tion operations. In other words, each tensor nonzero incurs
3R flops. So although vertices are assigned unit weight
in the conventional FG model, we assume the vertices are
assigned a weight of

w(vijk) = 3R. (6)

In this way, the part weights computed by using (6) in (3)
will correctly encapsulate processor’s computational loads .

On the other hand, the CSF format enables reducing the
amount of total computation from 3Rm flops to 2R(m+F)
flops, where F denotes the number of fibers, using the
formulation in (2). This is because, in (2), each nonzero
X (i, j, k) incurs 2R flops due to C(k, :), whereas each fiber
X (i, j, :) incurs 2R flops due to B(j, :). That is, the amount
of computation associated with each nonzero may differ
depending on the fiber fragmentation introduced by the
partitioning algorithm. So, the part weights computed ac-
cording to (6) fail to correctly encapsulate the computational
loads of processors.

The top part of Fig. 2 shows a sample 8×6 frontal slice
X (:, :, k) with 24 nonzeros. In the figure, stars represent
nonzeros while shaded rectangles represent fibers along the
longest mode which is the second mode. The bottom part
shows a bipartition of the nonzeros of the slice between
two processors p1 and p2. The subslices assigned to p1 and
p2 are respectively denoted by X (:, :, k)p1

and X (:, :, k)p2
.

This bipartition shows an even nonzero partition since each
subslice has 12 nonzeros. However, the nonzeros of the sub-
slicesX (:, :, k)p1

andX (:, :, k)p2
respectively belong to 6 and

4 subfibers. Thus, X (:, :, k)p1
will incur 2R(12 + 6) = 36R

flops associated with the MTTKRP operation on p1, whereas
X (:, :, k)p2

will incur 32R flops on p2. So, despite the
even nonzero distribution, the partition incurs a significant
amount of computational load imbalance.

3.2 Increase in total computation

As mentioned in Section 3.1, the number of flops performed
using the fiber-centric MTTKRP formulation in (2) is equal
to 2R(m + F) in serial and shared-memory settings. How-
ever, in distributed-memory settings, since the fibers are
local to the processors, the number of flops increases as a
result of fragmenting fibers among processors.

Assuming single precision floating-point values, the
COO-based MTTKRP incurs 16m + 12Rm memory byte
accesses [19], whereas the CSF-based MTTKRP with S slices
incurs 8(S + F + m) + 12R(m + F) accesses . Note that
fiber fragmentation increases the number of flops as well
as the number of memory accesses at the same rate, thus
it does not affect the arithmetic intensity (flops per byte) of
the CSF-based MTTKRP. Therefore, any further discussion
on increasing/decreasing flop counts also applies to the
associated number of memory accesses.

In an ideal situation, each fiber is assigned to a single
processor as a whole without any fragmentation thus re-
sulting in no increase in the number of flops, which can
be set as the lower bound for distributed-memory settings.
However, any fiber whose nonzeros are fragmented among
λ processors will incur 2R(λ − 1) additional flops. In the
worst-case, if every nonzero of each fiber is assigned to
a different processor, then each fiber will have a single
nonzero, resulting in a loose upper bound of 3Rm total flops
following the if -statement in Algorithm 2.

The bipartition shown in the bottom part of Fig. 2 incurs
the fragmentation of 4 out of 6 fibers of X (:, :, k). So, this
bipartition incurs an increase in the total number of fibers
from 6 to 10 thus increasing the total number of flops from

5

2R(24+6) = 60R to 36R+32R = 68R during the MTTKRP
operations associated with X (:, :, k).

Since the fine-grain HP-based method described in Sec-
tion 2.5 is not aware of the role of tensor fibers while
partitioning the HP model, it may incur a significant amount
of fiber fragmentation leading to significant increase in the
total computational load.

4 IMPROVING FINE-GRAIN HP MODEL

4.1 A novel vertex weighting scheme

As mentioned earlier, balancing on the flop counts of pro-
cessors cannot be enforced during partitioning the fine-grain
HP model. This is because of the vertex weighting scheme
that only encodes balancing nonzero counts of processors
while failing to encode the fiber counts.

Here, we propose a novel vertex weighting scheme for
estimating correct flop counts of processors during parti-
tioning the fine-grain model. For this purpose, we pro-
pose an Inverse-Fiber-Size (IFS) heuristic for estimating the
fiber counts of processors. In the IFS scheme, the 2R flop
contribution of a fiber is distributed uniformly, as vertex
weights, among the vertices representing the tensor nonze-
ros constituting that fiber. That is, a fiber X (i, j, :) of size
nnz(X (i, j, :)) contributes 2R/nnz(X (i, j, :)), as a weight,
to each vertex representing its constituent nonzeros.

In a given nonzero partition, if the nonzeros of a given
fiber are all assigned to the same part, the IFS scheme
correctly encodes the contribution of a fiber count (2R) to
the respective part. If, however, the nonzeros of a given fiber
are fragmented between two parts, then the IFS scheme will
incur fractional fiber count contributions to these two parts
with a sum of 2R.

Since the two efficient schemes described in Section 2.3
(CSF-S and CSF-D) for computing the MTTKRP have differ-
ent algorithms and different fiber types, we describe how
the IFS scheme is applied to each of them separately. With-
out loss of generality, we assume that tube fibers (X (i, j, :))
and row fibers (X (i, :, k)) are the tensor’s fibers along the
longest and second longest modes, respectively.

4.1.1 IFS scheme for CSF-S
In this scheme, the tensor is stored only once as fibers
of the longest mode. While computing the MTTKRP for
N−1 modes as described in Algorithm 2, the number of
fibers times 2R correctly encapsulate flop count of the
Hadamard product and the addition operation involving
B(jf, :) (line 12). On the other hand, while computing
the MTTKRP for the longest mode using Algorithm 3, the
number of fibers times 2R correctly encapsulates the flop
count of only the Hadamard product operations (line 9).
Therefore, we use the IFS scheme for updating the weights
of the vertices as follows: for each vijk ∈ V

w(vijk) = 2R+
2R

nnz(X (i, j, :))
. (7)

Here, “2R” refers to the number of flops associated with the
respective nonzero, whereas 2R/nnz(X (i, j, :)) refers to the
number of flops associated with the fiber that contains the
respective nonzero.

4.1.2 IFS scheme for CSF-D
In this scheme, the tensor is stored twice in fiber-centric
fashion. As discussed in Section 2.3, the first storage utilizes
the fibers of the longest mode, while the second storage
utilizes the fibers of the second longest mode. For both fiber
types, the number of fibers times 2R correctly encapsulate
flop count of the Hadamard product and addition opera-
tions (Algorithm 2 line 12). The distinction is, the number
of fibers along the longest mode correctly encapsulates the
number of flops during each of the N − 1 MTTKRP oper-
ations performed along all but the longest mode, whereas
number of fibers along the second longest mode correctly
encapsulates the number of flops during the MTTKRP oper-
ation along the longest mode.

A two-constraint formulation is needed for balancing
the computational loads of processors in the computational
scheme that utilizes CSF-D. This is because, in the CP-ALS
algorithm, MTTKRP operations are performed in different
phases interleaved with synchronizing communication op-
erations, and the MTTKRP operations are performed with
two different types of fibers.

We use the IFS scheme to compute the two weights of
the vertices for the two-constraint formulation as follows:
for each vijk ∈ V

w1(vijk) = 2R+
2R

nnz(X (i, j, :))
(8a)

w2(vijk) = 2R+
2R

nnz(X (i, :, k))
. (8b)

At each iteration, W 1(Vp) (computed using (3)) encodes the
computational load of processor p during N − 1 MTTKRP
operations, whereas W 2(Vp) encodes the computational
load of processor p during only one MTTKRP operation. So,
the success of this two-constraint scheme depends on giving
more importance to the first over second constraint. This can
only be achieved by relaxing the maximum allowed imbal-
ance ratio (ε) of the second constraint. Unfortunately, the
state-of-the-art HP tools do not support different ε values
for different constraints. For this reason, we propose the fol-
lowing alternative single-constraint weighting scheme that
can emulate the above mentioned two-constraint scheme:

w(vijk) = (N − 1)w1(vijk) + w2(vijk) (9a)

= 2RN +
2R(N − 1)

nnz(X (i, j, :))
+

2R

nnz(X (i, :, k))
(9b)

for each vijk ∈ V . In (9a), the relative importance of w1(vijk)
over w2(vijk) is modeled by multiplying w1(vijk) by N−1
as the CSF storage along the longest mode is used in N−
1 MTTKRP operations at each CP-ALS iteration. Note that
in (9a) and (9b) the value of N should be set to 3 in case of
a 3-mode tensor, but we prefer to use N for a more general
presentation.

4.2 Improving IFS through utilizing RB

The accuracy of the IFS heuristic depends on keeping track
of the correct fibers sizes, which could change significantly
as a result of fiber fragmentation during partitioning. We
propose to utilize the RB scheme to increase the accuracy of
the IFS heuristic in estimating the fiber counts of parts. After
each bipartitioning step, the sizes of the fragmented fibers

6

Algorithm 4 RB-based FG HP with IFS scheme

Require: Sparse tensor X
1: H ← Fine-grain hypergraph of X
2: . F is the set of nonzero fibers along the longest mode.
3: F ← {fij = X (i, j, :) : nnz(X (i, j, :)) 6= 0}
4: if X is stored as CSF-S then
5: RB-STEP-S(H, F)
6: else . X is stored as CSF-D
7: . F2 is the set of nonzero fibers along 2nd longest mode.
8: F2← {fik = X (i, :, k) : nnz(X (i, :, k)) 6= 0}
9: RB-STEP-D(H, F , F2)

10: function RB-STEP-S(H, F)
11: Π2 = (VL,VR)← BIPARTITION(H)
12: Form HL = (VL,NL) and HR = (VR,NR)
13: (FL,FR)= SPLIT-FIBERS(Π2, F)
14: UPDATE-WEIGHTS-S(Π2,FL,FR)
15: RB-STEP-S(HL, FL)
16: RB-STEP-S(HR, FR)
17: function RB-STEP-D(H, F , F2)
18: Π2 = (VL,VR)← BIPARTITION(H)
19: Form HL = (VL,NL) and HR = (VR,NR)
20: (FL,FR)= SPLIT-FIBERS(F ,Π2)
21: (F2L,F2R)= SPLIT-FIBERS(F2,Π2)
22: UPDATE-WEIGHTS-D(Π2, FL, FR, F2L, F2R)
23: RB-STEP-D(HL, FL, F2L)
24: RB-STEP-D(HR, FR, F2R)

Algorithm 5 SPLIT-FIBERS

Require: (Π2, F)
1: FL,FR ← ∅
2: for all X (i, j, :) = fij ∈ F do
3: fL

ij = XL(i, j, :) = X (i, j, :) ∩ {X (i,j,k) : vijk ∈ VL}
4: fR

ij = XR(i, j, :) = X (i, j, :) ∩ {X (i,j,k) : vijk ∈ VR}
5: if nnz(fL

ij) > 0 then
6: FL ← FL ∪ {fL

ij}
7: if nnz(fR

ij) > 0 then
8: FR ← FR ∪ {fR

ij}
return (FL,FR)

Algorithm 6 UPDATE-WEIGHTS-S

Require: Π2 , FL, FR

1: for all vijk ∈ VL do

2: w(vijk)← 2R+
2R

nnz(XL(i, j, :))

3: for all vijk ∈ VR do

4: w(vijk)← 2R+
2R

nnz(XR(i, j, :))

Algorithm 7 UPDATE-WEIGHTS-D

Require: Π2, FL, FR, F2L, F2R

1: for all vijk ∈ VL do

2: w(vijk) = 2RN +
2R(N − 1)

nnz(XL(i, j, :))
+

2R

nnz(XL(i, :, k))

3: for all vijk ∈ VR do

4: w(vijk) = 2RN +
2R(N − 1)

nnz(XR(i, j, :))
+

2R

nnz(XR(i, :, k))

are updated for recomputing the vertex weights according
to the IFS heuristic.

Algorithm 4 shows the proposed RB-based IFS scheme.
In the algorithm, H refers to the current hypergraph to be
bipartitioned, whereas F and F2 refer to the current set of

nonzero fibers along the first and second longest modes,
respectively. The sets of (fragmented) fibers are maintained
during the RB scheme for recomputing the vertex weights
according to the correct fiber sizes. Note that both F and
F2 are used for the CSF-D scheme while only F is required
for the CSF-S scheme. The algorithm checks whether CSF-S
or CSF-D is used and respectively invokes RB-STEP-S or
RB-STEP-D accordingly.

In lines 11 and 18 of Algorithm 4, the hypergraph par-
titioning tool is invoked to obtain a bipartition Π2 on the
vertices of H. In lines 12 and 19, the left hypergraph HL

and right hypergraph HR are constructed according to the
net-splitting strategy mentioned in Section 2.4. In line 13,
SPLIT-FIBERS function is invoked to form the fiber sets
FL and FR of the left and right parts, for the CSF-S scheme.
In lines 20 and 21, SPLIT-FIBERS is invoked to compute
FL and FR as well as F2L and F2R of the left and right
parts, respectively, for the CSF-D scheme.

The SPLIT-FIBERS function (Algorithm 5) implements
the fiber fragmentation strategy as follows. The for-loop
in lines 2-8 computes the intersection of each fiber of the
current fiber set F with the nonzeros corresponding to
the vertices of the left and right parts. Then, it assigns an
unfragmented fiber to either FL or FR, whereas it adds the
subfibers of a fragmented fiber to both FL and FR.

Then, in lines 14 and 22 of Algorithm 4, the ver-
tex weighting scheme is invoked in order to recompute
the weights of vertices according to the IFS scheme with
correct (fragmented) fiber sizes. Algorithm 6 (UPDATE-
WEIGHTS-S) is used to update the weights for CSF-S ac-
cording to (7), whereas Algorithm 7 (UPDATE-WEIGHTS-
D) is used to update the weights for CSF-D according to (9).

4.3 Fiber-net augmentation for reducing total flops

In conventional graph/hypergraph partitioning formula-
tions used for irregular scientific applications in distributed
settings, the total amount of computational work is constant.
So, in these formulations the partitioning constraint of bal-
ancing the part weights correctly corresponds to reducing
the computational load of the maximally loaded processor
(bottleneck processor). This correspondence will refer to
minimizing the computational load of the bottleneck proces-
sor as the maximum allowed imbalance ratio (ε) is reduced.
This is in fact the case for finding a fine-grain partitioning
formulation for parallel tensor decomposition which utilizes
the COO format for local MTTKRP computations (formula-
tion (1)). However, the total amount of computational work
is not constant in the fine-grain partitioning formulation
that utilizes the CSF format for local MTTKRP computa-
tions (formulation (2)). Hence, the partitioning constraint of
balancing the part weights loosely relates to reducing the
computational load of the bottleneck processor.

The partitioning constraint of balancing part weights
correctly refers to reducing the computational load of the
bottleneck processor if the partitioning formulation targets
at reducing the increase in the total computational load due
to fiber fragmentation while minimizing the total commu-
nication volume. For this purpose, the standard fine-grain
hypergraph model, which contains slice nets that encode
communication volume, is augmented with fiber nets. Each

7

fiber net connects all vertices corresponding to the nonzeros
constituting the fiber.

For the CSF-D scheme, a net nfij is created for each
nonzero fiber X (i, j, :) along the longest mode. Similarly,
a net nfik is created for each nonzero fiber X (i, :, k) along
the second longest mode. The sets of vertices connected by
nfij and nfik are respectively defined as:

Pins(nfij) = {vijk : X (i,j,k) 6= 0 ∀k ∈ {1, ..,K}} (10a)

Pins(nfik) = {vijk : X (i,j,k) 6= 0 ∀j ∈ {1, .., J}} (10b)

For the CSF-S scheme, constructing the nets for the
longest-mode fibers suffices, and the set of vertices con-
nected by each fiber net is the same as in (10a).

The fiber-net augmentation can be easily integrated
into the RB-based framework given in Algorithm 4. After
constructing the hypergraph model, the sets of fibers F
(line 3) and F2 (line 8) provide the sufficient nonzero-to-
fiber relations that can be used to construct the fiber nets.
No other modifications are needed in the RB-STEP routines.

Consider a partition Π of an augmented hypergraph for
the CSF-S scheme. In Π, a cut slice net ns with connectivity
con(ns) will incur a communication ofR(con(ns)−1) words
during each MTTKRP operation as in the standard fine-
grain hypergraph model. In Π, internal fiber nets do not
incur any increase in the total number of flops. However,
a cut fiber net nf with connectivity con(nf) encodes an
increase of 2R(con(nf) − 1) flops during each MTTKRP
operation. A similar discussion holds for the CSF-D scheme.

For the CSF-S scheme, the cost of fiber nets along the
longest mode is set to 2R, whereas the cost of slice nets is
set to αR. For the CSF-D scheme, the cost of fiber nets along
the longest and second longest modes are set to 2R(N−1)
and 2R respectively, whereas the cost of slice nets are set to
αRN . Here, α refers to the scaling factor between the cost
of increasing the communication volume by R words and
the cost of increasing the total flop count by 2R.

In the augmented fine-grain hypergraph model, the
partitioning objective of minimizing the cut size will si-
multaneously encode minimizing both the communication
volume and the increase in total flop count. The partitioning
constraint of maintaining balance on part weighs (accord-
ing to the proposed vertex weighting schemes described
in Section 4.1) will encode minimizing the flop count of
the bottleneck processor with decreasing ε because of the
proposed fiber-net augmentation.

The augmentation of fiber nets is also expected to con-
tribute to improving the accuracy of the IFS scheme. Reduc-
ing the number of cut fiber nets relates to maximizing the
number of internal nets, where internal nets correspond to
unfragmented fibers. So, increasing the number of unfrag-
mented fibers enables the IFS scheme to correctly encode the
contribution of larger number of fibers to the part weights.
So, the objective of reducing fiber fragmentation decreases
the number of erroneous vertex weight contributions in-
curred by fragmented fibers. This decrease is expected to
improve the accuracy of the IFS scheme thus leading to
better load balancing.

5 EXPERIMENTS

5.1 Setting
There are several successful hypergraph partitioning
tools [18, 20, 21]. We use PaToH [18] (version 3.2) in speed
mode and the value of ε is set to 0.10. Since PaToH contains
randomized algorithms, we partition each tensor three times
for each partitioning method, and we report the average of
the three instances.

The topologies of the hypergraph models are orthogonal
to the value of R. On the other hand, the vertex weighting
schemes as well as the net costs presented in this paper
involve R, which acts as a scaling factor, for the sake of
clarity of presentation. Thus, removing this scaling factor
affects neither the cutsize nor the balancing qualities, so in
our partitioning implementation the R value is set to one.

For the parallel experiments, we use the parallel CP-ALS
code developed and used in the work by Acer et al. [11].
The code is implemented in C, uses MPI for interprocess
communication and compiled with gcc version 8.3.0 using
O3 optimization flag. The MTTKRP implementation in the
code is based on the flop-efficient formulation in (2), which
is identical to CSF-D. We have modified the code to include
CSF-S. The runtimes of CP-ALS are reported as per-iteration
times by taking the average of total runtime of 50 iterations.

Our parallel experiments are conducted on Bull Sequana
X1000 system. A node in this system operates on dual Intel
Xeon Skylake 8168 with total of 48 cores, 96 GB of memory
and 2.70 GHz clock frequency. The nodes are connected with
the high speed network EDR-Infiniband (Connect-X4).

5.2 Dataset
Our dataset is composed of six real-world sparse tensors
commonly used as a benchmark for parallel sparse ten-
sor research. Table 1 shows the properties of the tensors.
Enron [22] consists of words of email exchanges in the
form of sender-receiver-word-date quadruplets. It has been
used with tensor decomposition methods for social network
analysis and link prediction [23]. Flickr is a binary ten-
sor representing user-image-tag-date quadruplets, which was
first crawled by Görlitz et al. [24] from flickr.com.

Bhargava et al. [25] factorize Flickr using CP-ALS
for forming multi-dimensional collaborative recommenda-
tions. Movies-amazon represents user-movie-word triplets
extracted from the user reviews of movies in Amazon [26].
Movies-amazon is one of the datasets used for evaluat-
ing recommender systems research, including CPD-based
systems. Nell-1 and Nell-2 [27] represent entity-relation-
entity tuples of the Never Ending Language Learner knowl-
edge base. Kang et al. [28] used both tensors for con-
cept discovery and contextual synonym detection using
CP-ALS. Yelp contains user-business-word triplets obtained
from business reviews in Yelp academic dataset 1. Yelp is
generally used in the context of tensor decomposition for
community detection and recommender systems.

5.3 Performance comparison
We compare the performance of the proposed improve-
ment schemes against the baseline FG method in terms of
computational and communication cost metrics as well as

1. https://www.yelp.com/dataset/challenge

8

TABLE 1: Properties of Test Tensors

size of dimensions

Tensor I J K L nnz Density

Enron 6.0K 5.6K 244.2K 1.1K 54.2M 5.5·10−9

Flickr 319.6K 28.1M 1.6M 730 112.9M 1.1·10−14

Movies-amazon 87.8K 4.4K 226.5K — 15.0M 1.7·10−7

Nell-1 2.9M 2.1M 25.5M — 143.6M 9.1·10−13

Nell-2 12.1K 9.2K 28.8K — 76.8M 2.4·10−5

Yelp 686.5K 85.5K 773.2K — 185.5M 4.1·10−9

parallel MTTKRP and CP-ALS times on the 6 tensors given
in Table 1. We use P = 512 and α = 10 in all tables unless
specified otherwise.

The computational cost metrics consist of maximum
and average number of flops performed by a processor.
The communication cost metrics consist of maximum and
average send volume handled by a processor. The latency-
based communication cost metrics regarding maximum and
average number of messages sent by a processor are not re-
ported as all methods display almost the same performance
on these metrics. Here, average flop count and average
volume values refer to the total flop count and total volume
values, respectively, divided by the number of processors.
We prefer to report average values instead of total values
because the former give a better view on the deviation of
maximum from average. When a normalized value is pre-
sented, it means the value of the respective method divided
by that of other method (usually the baseline). Since we aim
at minimizing all performance metrics considered in this
paper, a normalized value of < 1 means an improvement
over the baseline, and deterioration otherwise.

5.3.1 Results of CSF-S experiments
Table 2 displays the performance improvement rates at-
tained by the optimization schemes in Section 4 in an
incremental way. Note that ”Avg.” row at the bottom of
the table and all other tables refers to the geometric mean.
As seen in the table, on average, utilizing IFS for vertex
weighting (Algorithm 4) in FG+ improves the maximum
and average flop counts by 8.0% and 4.0%, respectively,
compared to FG. Fiber-net augmentation used in FG++
significantly decreases maximum and average flop counts
respectively by 16.3% and 14.6% compared to FG+. As seen
in the table, utilizing the two optimization schemes in FG++
leads to a significant decrease in the maximum and average
flop counts respectively by 23.2% and 17.8% compared to
the baseline FG method.

As seen in Table 2, in terms of communication volume
metrics, FG+ attains slightly better performance compared
to FG. That is, FG+ reduces the maximum and average com-
munication volumes by 6.2% and 7.0% compared to FG, on
average. Comparing FG++ against FG+ shows that although
they display comparable performance in terms of average
communication volume, FG++ achieves considerably better
performance in terms of maximum communication volume
by an amount of 9.6%. As seen in the table, FG++ achieves
a considerable decrease in the maximum and average com-
munication volume respectively by 15.5% and 7.3% com-
pared to the baseline FG method. These findings show that
the use of fiber nets do not lead to performance degradation

in communication volume metrics. This can be attributed to
the fact that fiber nets are subnets of the slice nets. Relatively
better performance obtained by FG++ against FG in terms
of maximum volume compared to average volume can be
attributed to the expectation that better computational load
balancing achieved by FG++ leads to a better communica-
tion volume balancing. Here and hereafter, the proposed
FG++ will be referred to as impFG.

Table 3 shows how the above-mentioned performance
improvements lead to improving the actual parallel run-
times. In the table, the values under FG are actual runtimes,
while those under impFG are normalized with respect to
those of FG. Under MTTKRP tab, the “comp” column
refers to the computational part of the MTTKRP operation,
whereas “tot” refers to the total runtime of the MTTKRP op-
eration including communication. Comparing “max flops”
column of impFG in Table 2 with the “comp” column of
impFG in Table 3 show that there exist close correlation
between the amount of improvement in maximum flop
count and the amount of improvement in parallel MTTKRP
computation time. That is, the 23% improvement attained
by impFG in maximum flop count reflects as approximately
22% improvement in parallel MTTKRP computation time.
In fact, this close relation also applies to individual tensors
except for Nell-2. For example, 28%, 25%, 13%, 18% and
29% reduction in max flop counts obtained by impFG for the
tensors Enron, Flickr, Amazon, Nell-1 and Yelp
respectively reflect as approximately 36%, 23%, 11%, 15%
and 32% improvement in parallel MTTKRP computation
times. This confirms the validity of the maximum flop count
metric in determining the parallel computation time.

Table 3 also shows relative runtime performance varia-
tion of impFG over FG with increasing R. We use the same
partitioned tensor, for each tensor, to obtain the parallel
running times with different R values. Keep in mind that
with increasing R value, the improvement ratios of impFG
over FG remain the same in terms of computational and
communication cost metrics (as in Table 2). As seen in the
normalized columns of Table 3, the relative performance
of impFG over FG slightly increases with increasing R in
terms of both parallel MTTKRP and CP-ALS runtimes. This
is expected because, with increasing R, while latency-based
communication costs remain the same, communication vol-
ume and computational costs increase.

Table 4 shows the effect of augmenting fiber nets on the
total communication volume along the longest mode as well
as the other N−1 modes. In the table, the values under FG
are actual communication volume values (in words), while
those under impFG are normalized with respect to those of
FG. Comparing the relative performance of impFG over FG,
the fiber-net augmentation along the longest mode incurs
an increase in communication volume during the MTTKRP
operation along that mode, whereas it achieves a decrease in
communication volume during MTTKRP operations along
all other N − 1 modes. As seen in the table, on average,
impFG incurs 16% increase in total volume during MTTKRP
along the longest mode, whereas it achieves 20% decrease in
that along all other N−1 modes.

The above-mentioned experimental finding can be at-
tributed to the fact that the nets representing the fibers along
the longest mode are subnets of the nets that represent slices

9

TABLE 2: Performance comparison in terms of computational and communication cost metrics on P = 512 processors for
CSF-S.

Actual values (in terms of R) Normalized with respect to FG

FG FG+IFS
(FG+)

FG+IFS+FNA
(FG++ ≡ impFG)

flops comm. vol. flops comm. vol. flops comm. vol.

Tensor max avg max avg max avg max avg max avg max avg

Enron 718,123 648,890 43,723 22,436 0.99 0.91 1.00 0.93 0.72 0.70 0.86 0.81
Flickr 1,477,230 1,157,132 105,871 52,912 0.80 0.99 0.86 0.96 0.75 0.93 0.75 0.85
Movies-amazon 126,153 107,987 40,290 22,137 0.93 0.96 1.03 0.89 0.87 0.92 1.00 0.94
Nell-1 1,491,700 1,421,460 409,820 279,581 0.98 0.98 0.98 0.98 0.82 0.84 0.92 1.04
Nell-2 769,255 734,175 82,056 40,171 1.00 0.98 0.90 0.92 0.74 0.73 0.79 1.15
Yelp 1,689,961 1,320,840 384,328 113,941 0.85 0.94 0.86 0.93 0.71 0.85 0.79 0.82

Avg. 798,660 694,041 115,793 56,814 0.92 0.96 0.94 0.93 0.77 0.82 0.85 0.93

IFS: Inverse-Fiber-Size for vertex weighting with RB (Secs. 4.1 & 4.2); FNA: Fiber Net Augmentation (Sec. 4.3) with α = 10.

TABLE 3: Performance comparison in terms of parallel
runtimes on P = 512 processors for CSF-S.

FG (times in ms) impFG (normalized)

Tensor R
MTTKRP CP-

ALS
MTTKRP CP-

ALS
comp tot comp tot

Enron
32 55.9 152.4 156.8 0.68 0.83 0.83
64 124.0 245.0 260.9 0.64 0.77 0.77

128 302.2 477.5 527.6 0.58 0.69 0.72

Flickr
32 128.5 246.6 330.1 0.77 0.84 0.93
64 246.3 435.3 628.8 0.77 0.80 0.92

128 485.0 824.9 1, 312.1 0.76 0.80 0.95

Movies-a
32 12.5 92.2 100.0 0.91 0.93 0.93
64 28.2 135.5 153.4 0.89 0.93 0.93

128 60.4 218.7 276.3 0.89 0.93 0.92

Nell-1
32 295.3 718.7 888.4 0.86 0.81 0.85
64 570.1 1, 422.2 1, 772.8 0.85 0.82 0.87

128 1, 249.0 3, 106.2 3, 975.8 0.84 0.85 0.89

Nell-2
32 67.7 165.7 176.4 0.99 1.02 1.03
64 159.7 295.4 325.2 0.95 0.99 0.99

128 419.8 643.6 733.1 0.89 0.93 0.94

Yelp
32 202.8 386.2 457.6 0.63 0.75 0.74
64 379.3 716.5 891.3 0.66 0.73 0.72

128 725.8 1, 365.8 1, 861.1 0.72 0.76 0.74

Avg.
32 84.5 232.9 268.1 0.79 0.86 0.88
64 176.0 404.0 484.5 0.78 0.84 0.86

128 387.2 785.7 1,006.2 0.77 0.82 0.85

TABLE 4: Performance comparison in terms of total volume
during MTTKRP along the longest mode and other N−1
modes on P = 512 processors for CSF-S.

FG (total volume, in terms of R) impFG (normalized)

Tensor Longest
mode

N−1
modes

Longest
mode

N−1
modes

Enron 4,476,252 7,006,890 1.06 0.65
Flickr 968,022 26,119,510 1.11 0.84
Movies-a 4,926,116 6,405,454 1.09 0.83
Nell-1 55,605,248 87,536,435 1.24 0.91
Nell-2 10,726,748 9,837,220 1.37 0.91
Yelp 18,634,076 39,700,541 1.10 0.68

Avg. 7,868,030 18,499,059 1.16 0.80

of the other N−1 modes. That is, trying to keep fiber nets
along the longest mode internal can be expected to increase
the possibility of keeping the nets representing slices along

TABLE 5: Computational and communication cost metrics
(in terms of R) of the impFG method with different α values
on P = 512 for CSF-S.

α
flops comm. vol.

max avg max avg

Avg. of all tensors

5 600, 591 564, 647 99, 463 54, 371
10 613, 372 572, 075 97, 739 52, 903
50 623, 855 578, 992 94, 929 51, 453

100 626, 631 580, 123 95, 516 51, 085

other N−1 modes internal as well. Recall that the commu-
nication volume during MTTKRP operations along different
modes differ depending on the number and connectivities of
the cut nets representing slices along those modes. As seen
in the last column of Table 3, impFG achieves an average
decrease of 7% compared to FG in total volume during all
MTTKRP operations. However, for some tensors such as
Nell-1 and Nell-2, fiber-net augmentation respectively
incurs overall communication volume increase of 4% and
15%. This is because for FG on Nell-1 and Nell-2, the
total volume along the longest mode is larger than or very
close to that of all otherN−1 modes. In other tensors, such as
Flickr, the communication volume along allN−1 modes is
significantly larger than that of the longest mode. Therefore,
the overall improvement achieved by fiber-net augmenta-
tion depends on two factors; the relative communication
volume during the longest and N − 1 modes, and the in-
crease/decrease incurred/achieved along the longest and
other N−1 modes.

Table 5 shows the effect of different α values on the
performance of fiber-net augmentation in impFG. We ran
the impFG method with α = 5, 10, 50 and 100. We report the
average flop count and communication volume statistics in
Table 5 as actual values. As seen in the table, increasing the
α value (giving more importance to decreasing total com-
munication volume over decreasing fiber fragmentation)
results in increasing the total flops while the communication
volume is decreased. As a trade-off between total flops and
communication volume, we choose α = 10 for the rest of
tables and figures in this section.

10

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●

●

●

Enron Flickr Movies−Amazon Nell−1 Nell−2 Yelp

128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700

300

350

400

450

500

550

600

650

700

750

800

1000

1500

2000

2500

3000

3500

4000

140

145

150

155

160

165

170

175

180

185

400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

200

250

300

350

400

450

500

number of processors

C
P

−A
LS

 ru
nt

im
e

(in
 m

s)
● FG impFG

(a) CSF-S

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

Enron Flickr Movies−Amazon Nell−1 Nell−2 Yelp

128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024

600

800

1000

1200

1400

1600

1800

2000

2200

250

300

350

400

450

500

550

600

650

700

1000

1500

2000

2500

3000

3500

4000

135
140
145
150
155
160
165
170
175
180
185
190
195

400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

220
240
260
280
300
320
340
360
380
400
420
440
460
480
500

number of processors

C
P

−A
LS

 ru
nt

im
e

(in
 m

s)

(b) CSF-D

Fig. 3: Strong scaling curves for parallel CP-ALS obtained by FG and impFG using (a) CSF-S and (b) CSF-D

TABLE 6: Performance comparison in terms of computational and total volume metrics on P = 512 processors for CSF-D.

FG + IFSS +FNAS (impFGS) FG+IFSD+FNAD (impFGD)

Longest mode N−1 modes All modes Longest mode N−1 modes All modes

flops tot.
vol.

flops tot.
vol.

flops tot.
vol.

flops tot.
vol.

flops tot.
vol.

flops tot.
vol.

Tensor max avg max avg max avg max avg max avg max avg

Enron 1.06 1.00 1.06 0.72 0.70 0.65 0.82 0.79 0.81 1.01 0.97 1.07 0.74 0.71 0.65 0.82 0.79 0.81
Flickr 1.23 1.00 1.11 0.75 0.93 0.84 0.86 0.95 0.85 1.10 1.00 0.46 0.81 0.94 0.85 0.88 0.95 0.84
Movies-amazon 1.04 1.00 1.09 0.87 0.92 0.83 0.94 0.95 0.94 0.87 0.72 0.94 0.85 0.92 0.76 0.86 0.83 0.84
Nell-1 1.18 1.00 1.24 0.82 0.84 0.91 0.95 0.89 1.04 1.05 0.95 1.21 0.84 0.86 0.92 0.91 0.89 1.04
Nell-2 1.01 1.02 1.37 0.74 0.73 0.91 0.84 0.83 1.15 0.81 0.69 0.96 0.74 0.71 0.66 0.77 0.70 0.81
Yelp 1.01 1.00 1.10 0.71 0.85 0.68 0.83 0.92 0.82 0.81 0.71 0.97 0.73 0.87 0.74 0.76 0.80 0.81

Avg. 1.09 1.00 1.16 0.77 0.82 0.80 0.87 0.89 0.93 0.93 0.83 0.90 0.78 0.83 0.76 0.83 0.82 0.86

IFSS, FNAS and impFGS denote the improvement schemes denoted at the bottom of Table 2

TABLE 7: Performance comparison in terms of parallel
runtimes on P = 512 processors for CSF-D with R = 64.

FG (in ms) impFGD (normalized)

MTTKRP CP-
ALS

MTTKRP CP-
ALS

Tensor comp tot comp tot

Enron 131.2 252.7 266.2 0.73 0.81 0.82
Flickr 252.0 443.6 631.5 0.81 0.84 0.93
Movies-amazon 29.5 136.1 154.2 0.90 0.88 0.89
Nell-1 521.6 1, 393.8 1, 746.0 0.92 0.83 0.90
Nell-2 155.7 296.2 325.6 0.71 0.78 0.78
Yelp 502.7 851.8 1, 027.2 0.69 0.73 0.71

Avg. 184.78 418.40 497.36 0.79 0.81 0.83

5.3.2 Results of CSF-D experiments

The performance comparisons in the previous section re-
garding the incremental performance improvement attained
by the optimization schemes in Section 4, the effect of
different R values as well as the effect of α value apply
to the CSF-D scheme as well. In order to present a wider
spectrum of results, here we study the effect of applying
the CSF-S-based and the CSF-D-based optimization schemes
on the computational and total volume cost metrics for the
CSF-D-based MTTKRP. We perform this in order to justify
proposing a separate optimization techniques for CSF-D.
Here and hereafter, the superscripts ‘S’ and ‘D’ will be used
to distinguish the CSF-S-based and CSF-D-based optimiza-
tion schemes on the FG method. All the experiments in this

11

section utilize the CSF-D-based MTTKRP regardless of the
type of optimization scheme applied.

Table 6 compares impFGD against impFGS in terms of
computational and total communication volume statistics
normalized with respect to those of FG. In the table, these
statistics are detailed along the longest mode, remaining
N−1 modes, and all modes. As seen in the table, on average,
utilizing the IFS scheme and fiber-net augmentation for
the longest mode only (CSF-S-based improvements) in the
impFGS method improves the maximum and average flop
counts by 13.0% and 11.0%, respectively, compared to the FG
method in all modes. Utilizing the IFS scheme and fiber-net
augmentation for both longest and second longest modes
(CSF-D-based improvements) in the impFGD method im-
proves the maximum and average flop counts by 4.6% and
7.8%, respectively, compared to the impFGS method in all
modes. Although the maximum and average flop counts
along N−1 modes are almost the same for both impFGS and
impFGD, the relative improvements in all modes come from
improving the maximum and average flop counts along
the longest mode by 14.6% and 17.0%, respectively. As also
seen in the table, the impFGD method respectively achieves
17.0% and 18.0% improvements in maximum and average
flop counts compared to the baseline FG method.

Comparison in terms of total volume metric shows a
similar behavior as the comparison in terms of computa-
tional cost metrics discussed above. That is, utilizing the
CSF-S-based improvements for the CSF-D-based MTTKRP
in the impFGS method incurs an increase of 16.0%, on av-
erage, in total volume along the longest mode compared to
FG. On the other hand, impFGD achieves an improvement
of 10.0% in total volume during the MTTKRP along the
longest mode as a result of augmenting the fiber nets along
the second longest mode. The effect of this improvement can
be seen in the table as 7.5% improvement in terms of total
volume of impFGD compared to impFGS along all modes.
As seen in the table, impFGD achieves 14% improvement in
terms of total volume compared to FG along all modes.

Table 7 shows how the performance improvement
achieved by the proposed impFGD method in computa-
tional and total volume metrics lead to improvements in
actual parallel runtimes. In the table, the values under
FG are actual runtimes, while those under impFGD are
normalized with respect to those of FG. Comparing “max
flop” column of impFGD in Table 6 (along all modes) with
the “MTTKRP comp” column of impFGD in Table 7 shows
the close correlation between the amount of improvement
in maximum flop count and the amount of improvement
in parallel MTTKRP computation time. That is, the 17.0%
improvement attained by impFGD in maximum flop count
reflects as approximately 21.0% improvement in parallel
MTTKRP computation time, on average. As also seen in the
table, the CP-ALS runtime improves, on average, by 17.0%
as a result of applying the optimization schemes for CSF-D.

Figures 3a and 3b respectively display the strong scaling
curves of impFG vs FG and impFGD vs FG. Note that
in 3a the CSF-S scheme is utilized for computing the MT-
TKRP, whereas in 3b the CSF-D is utilized instead. The
curves display parallel runtimes of the CP-ALS algorithm
on P = 128 up to P = 1024 processors with R = 64.
As seen in the figure, impFG increases the scalability of

FG for both CSF-S and CSF-D schemes on all tensors.
The relative scalability between impFG and FG for CSF-
S and CSF-D schemes shows similar trend for all tensors,
except for Nell-2 which favors the CSF-D scheme. That
is, for Nell-2, although impFG and FG show very close
scaling performance for CSF-S scheme, impFGD displays
significantly better performance than FG for CSF-D. A grasp
of the actual runtime values can be taken from comparing
the values of the CP-ALS column in Table 3 for R = 64 with
the same column values in Table 7.

6 RELATED WORK

In the literature, there are various CP-ALS implementa-
tions adopting different parallelism paradigms [13, 17, 28–
32]. On distributed-memory systems, DMS [17] is the
most commonly-used implementation. DMS adopts a multi-
dimensional cartesian partitioning approach, however it
does not support different partitioning techniques coming
in more irregular forms.

To devise intelligent tensor partitioning models, sparse
matrix partitioning community adapted well-known sparse
matrix partitioning models for tensors. These models
came in different granularities: coarse-grain [9], multi-
dimensional cartesian model [11], fine-grain [9] and
medium-grain [12]. The multidimensional cartesian model
is derived from the hypergraph model proposed earlier for
2D checkerboard partitioning of sparse matrices [33, 34]. The
fine-grain model can be considered as an extension of the
fine-grain hypergraph model for 2D nonzero-based sparse
matrix partitioning [33, 35, 36] to multi-dimensional tensor
partitioning. The recent general medium-grain model [12]
can be considered as an extension of the medium-grain
model for 2D sparse matrix partitioning [37] to tensors.
Among these, fine-grain model achieves the minimum com-
munication volume as well as the best computational bal-
ance on the tensor nonzeros assigned to processors.

Sparse tensor storage formats include COO (coordi-
nate) [9], CSF (compressed sparse fiber) [14], and HiCOO
(hierarchical coordinate) [15]. COO corresponds to a list
of tensor nonzeros, where each nonzero represented by a
list of indices and the value. Besides its simplicity, COO
stores repeated indices (within a fiber or a slice) redundantly
and the MTTKRP on COO performs redundant flops (see
section 3.1). CSF and HiCOO are motivated by reducing
the storage used by COO, due to the limited memory in
shared-memory architectures. While the (sequential) MT-
TKRP algorithm on HiCOO has the same flop count as
that on COO, the algorithm on CSF achieves a much bet-
ter flop count compared to those on COO-based formats.
This improvement in the flop count makes CSF the most
favorable alternative for the local MTTRKP computation on
distributed-memory systems.

7 CONCLUSION

We proposed two improvement schemes to the existing
fine-grain hypergraph model in order to address the defi-
ciencies introduced by utilizing the CSF-oriented MTTKRP
for distributed-memory CP-ALS computation. The improve-
ment schemes target at achieving true computational load
balancing among processors, thus leading to faster parallel

12

runtime. The improvement schemes do not deteriorate the
communication overhead. In fact, the total volume overhead
decreases as a result of better load balancing, while the la-
tency overhead stays the same as that of the FG method. On
average, applying the proposed improvement schemes to
the FG method improves the parallel MTTKRP computation
time and the overall CP-ALS time respectively by 22.0% and
14.0% on 512 processors, and with similar percentages on
128, 256 and 1024. As future work, we plan to extend the
proposed true balancing method for other nonzero-based
tensor partitioning models.

ACKNOWLEDGEMENT

This work was supported by the Scientific and Technolog-
ical Research Council of Turkey (TUBITAK) under project
EEEAG-116E043. Sandia National Laboratories is a mul-
timission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-NA-0003525.

REFERENCES

[1] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and
B. Yener, “Multiway analysis of epilepsy tensors,”
Bioinformatics, vol. 23, no. 13, pp. i10–i18, 07 2007.

[2] I. Davidson, S. Gilpin, O. Carmichael, and P. Walker,
“Network discovery via constrained tensor analysis of
fMRI data,” in Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, ser. KDD ‘13, New York, NY, USA, 2013, pp.
194–202.

[3] E. Acar and B. Yener, “Unsupervised multiway data
analysis: A literature survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 1, pp. 6–
20, 2009.

[4] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang,
E. E. Papalexakis, and C. Faloutsos, “Tensor decom-
position for signal processing and machine learning,”
IEEE Transactions on Signal Processing, vol. 65, no. 13,
pp. 3551–3582, 2017.

[5] K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro,
“Fluorescence spectroscopy and multi-way techniques.
PARAFAC,” Analytical Methods, vol. 5, no. 23, pp. 6557–
6566, 2013.

[6] K. Maruhashi, F. Guo, and C. Faloutsos, “MultiAspect-
Forensics: Pattern mining on large-scale heterogeneous
networks with tensor analysis,” in 2011 International
Conference on Advances in Social Networks Analysis and
Mining, 2011, pp. 203–210.

[7] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang,
E. E. Papalexakis, and C. Faloutsos, “Tensor decom-
position for signal processing and machine learning,”
IEEE Transactions on Signal Processing, vol. 65, no. 13,
pp. 3551–3582, 2017.

[8] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal
link prediction using matrix and tensor factorizations,”
ACM Trans. Knowl. Discov. Data, vol. 5, no. 2, Feb. 2011.

[9] O. Kaya and B. Uçar, “Scalable sparse tensor decom-
positions in distributed memory systems,” in SC ’15:

Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, Nov
2015, pp. 1–11.

[10] O. Kaya and B. Uçar, “Parallel CANDE-
COMP/PARAFAC decomposition of sparse tensors
using dimension trees,” SIAM Journal on Scientific
Computing, vol. 40, no. 1, pp. C99–C130, 2018.

[11] S. Acer, T. Torun, and C. Aykanat, “Improving
medium-grain partitioning for scalable sparse tensor
decomposition,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 29, no. 12, pp. 2814–2825, Dec
2018.

[12] M. O. Karsavuran, S. Acer, and C. Aykanat, “Partition-
ing models for general medium-grain parallel sparse
tensor decomposition,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 1, pp. 147–159, 2021.

[13] S. Smith, N. Ravindran, N. D. Sidiropoulos, and
G. Karypis, “SPLATT: Efficient and parallel sparse
tensor-matrix multiplication,” in 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium, May
2015, pp. 61–70.

[14] S. Smith and G. Karypis, “Tensor-matrix products with
a compressed sparse tensor,” in Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Al-
gorithms, ser. IA3 ’15. New York, NY, USA: ACM, 2015,
pp. 5:1–5:7.

[15] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical stor-
age of sparse tensors,” in SC18: International Conference
for High Performance Computing, Networking, Storage and
Analysis, 2018, pp. 238–252.

[16] T. Kolda and B. Bader, “Tensor decompositions and
applications,” SIAM Review, vol. 51, no. 3, pp. 455–500,
2009.

[17] S. Smith and G. Karypis, “A medium-grained algo-
rithm for sparse tensor factorization,” in 2016 IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2016, pp. 902–911.

[18] U. V. Catalyurek and C. Aykanat, “Hypergraph-
partitioning-based decomposition for parallel sparse-
matrix vector multiplication,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 10, no. 7, pp. 673–693,
July 1999.

[19] J. Li, Y. Ma, X. Wu, A. Li, and K. Barker, “PASTA: a
parallel sparse tensor algorithm benchmark suite,” CCF
Transactions on High Performance Computing, vol. 1, no. 2,
pp. 111–130, 2019.

[20] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
“Multilevel hypergraph partitioning: applications in
VLSI domain,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 7, no. 1, pp. 69–79, 1999.

[21] B. Vastenhouw and R. H. Bisseling, “A two-
dimensional data distribution method for parallel
sparse matrix-vector multiplication,” SIAM review,
vol. 47, no. 1, pp. 67–95, 2005.

[22] J. Shetty and J. Adibi, “The enron email dataset
database schema and brief statistical report,” Informa-
tion sciences institute technical report, University of South-
ern California, vol. 4, 2004.

[23] S. Fernandes, H. Fanaee-T, and J. Gama, “Tensor de-
composition for analysing time-evolving social net-
works: an overview,” Artificial Intelligence Review, pp.

13

1–26, 2020.
[24] O. Görlitz, S. Sizov, and S. Staab, “PINTS: peer-to-peer

infrastructure for tagging systems.” in IPTPS, 2008,
p. 19.

[25] P. Bhargava, T. Phan, J. Zhou, and J. Lee, “Who, what,
when, and where: Multi-dimensional collaborative rec-
ommendations using tensor factorization on sparse
user-generated data,” in Proceedings of the 24th Inter-
national Conference on World Wide Web, ser. WWW ’15.
Republic and Canton of Geneva, CHE: International
World Wide Web Conferences Steering Committee,
2015, p. 130?140.

[26] J. McAuley and J. Leskovec, “Hidden factors and
hidden topics: understanding rating dimensions with
review text,” in Proceedings of the 7th ACM conference on
Recommender systems, 2013, pp. 165–172.

[27] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hr-
uschka Jr., and T. M. Mitchell, “Toward an architecture
for never-ending language learning.” in AAAI, vol. 5,
2010, p. 3.

[28] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos,
“Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries,” in Proceedings of the 18th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 2012, pp. 316–324.

[29] B. W. Bader and T. G. Kolda, “Efficient MATLAB
computations with sparse and factored tensors,” SIAM
Journal on Scientific Computing, vol. 30, no. 1, pp. 205–
231, 2007.

[30] J. H. Choi and S. Vishwanathan, “DFacTo: Distributed
factorization of tensors,” in Advances in Neural Informa-
tion Processing Systems, 2014, pp. 1296–1304.

[31] E. T. Phipps and T. G. Kolda, “Software for sparse
tensor decomposition on emerging computing archi-
tectures,” SIAM Journal on Scientific Computing, vol. 41,
no. 3, pp. C269–C290, 2019.

[32] J. Li, Y. Ma, and R. Vuduc, “ParTI! : A parallel tensor in-
frastructure for multicore CPUs and GPUs,” Oct 2018.

[33] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar, “On two-
dimensional sparse matrix partitioning: Models, meth-
ods, and a recipe,” SIAM Journal on Scientific Computing,
vol. 32, no. 2, pp. 656–683, 2010.

[34] U. Catalyurek and C. Aykanat, “A hypergraph-
partitioning approach for coarse-grain decomposition,”
in Proceedings of the 2001 ACM/IEEE conference on Super-
computing, 2001, pp. 28–28.

[35] Ü. V. Çatalyürek and C. Aykanat, “A fine-grain hyper-
graph model for 2D decomposition of sparse matrices.”
in IPDPS, vol. 1, 2001, p. 118.

[36] B. Uçar and C. Aykanat, “Minimizing communication
cost in fine-grain partitioning of sparse matrices,” in
International Symposium on Computer and Information
Sciences. Springer, 2003, pp. 926–933.

[37] D. M. Pelt and R. H. Bisseling, “A medium-grain
method for fast 2D bipartitioning of sparse matrices,”
in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. IEEE, 2014, pp. 529–539.

Nabil Abubaker received the BS degree from
An-Najah National University, Nablus, Palestine,
and the MS degree from Bilkent University,
Ankara, Turkey where he is currently pursuing
his PhD degree, all in Computer Engineering.
His research interests include parallel and scien-
tific computing, with focus on graph/hypergraph-
partitioning-based decompositions for irregular
applications.

Seher Acer received her BS, MS and PhD
degrees in Computer Engineering from Bilkent
University, Turkey. She is currently a post-
doctoral researcher at Center for Computing
Research, Sandia National Laboratories, Albu-
querque, New Mexico, USA. Her research inter-
ests include parallel computing and combinato-
rial scientific computing with a focus on partition-
ing sparse irregular computations.

Cevdet Aykanat received the BS and MS de-
grees from Middle East Technical University,
Turkey, both in electrical engineering, and the
PhD degree from Ohio State University, Colum-
bus, in electrical and computer engineering. He
worked at the Intel Supercomputer Systems Di-
vision, Beaverton, Oregon, as a research asso-
ciate. Since 1989, he has been affiliated with the
Department of Computer Engineering, Bilkent
University, Turkey, where he is currently a profes-
sor. His research interests mainly include paral-

lel computing and its combinatorial aspects. He is the recipient of the
1995 Investigator Award of The Scientific and Technological Research
Council of Turkey and 2007 Parlar Science Award. He has served as
an Associate Editor of IEEE Transactions of Parallel and Distributed
Systems between 2009 and 2013.

