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Abstract

A key challenge to nonlocal models is the analytical complexity of deriving them from
first principles, and frequently their use is justified a posteriori. In this work we extract
nonlocal models from data, circumventing these challenges and providing data-driven jus-
tification for the resulting model form. Extracting provably robust data-driven surrogates
is a major challenge for machine learning (ML) approaches, due to nonlinearities and lack
of convexity. Our scheme allows extraction of provably invertible nonlocal models whose
kernels may be partially negative. To achieve this, based on established nonlocal theory,
we embed in our algorithm sufficient conditions on the non-positive part of the kernel that
guarantee well-posedness of the learnt operator. These conditions are imposed as inequality
constraints and ensure that models are robust, even in small-data regimes. We demonstrate
this workflow for a range of applications, including reproduction of manufactured nonlocal
kernels; numerical homogenization of Darcy flow associated with a heterogeneous periodic
microstructure; nonlocal approximation to high-order local transport phenomena; and ap-

proximation of globally supported fractional diffusion operators by truncated kernels.

Keywords: mnonlocal models, data-driven learning, multiscale modeling, machine learning,
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1. Background

In contrast to partial differential equation (PDE) models which typically govern classical
continuum mechanics and standard diffusion, nonlocal models describe systems in terms

of integro-differential equations (IDEs). IDEs possess several modeling advantages over
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PDEs: reduced regularity requirements admit simpler descriptions of fracture mechanics[1-
3]; integral operators allow more natural description of long-range molecular interactions such
as electrokinetic and surface tension effects [4-8]; and compactly supported integral operators
introduce a modeling lengthscale 6 which may be used to model subgrid microstructures [9-
13]. We consider in this work compactly supported nonlocal diffusion models, extensively
analyzed in the literature [14-16]. While they have been effectively used, it is in general
unclear how to justify the use of a kernel for a given application. As an example, in the
peridynamic theory of continuum mechanics, the choice of nonlocal kernel is often justified
a posteriori. Free parameters in constitutive models, including the lengthscale §, are often
tuned to obtain agreement with experiment. In this manner, peridynamics has yielded
enhanced descriptions of fracture mechanics, composite mechanics, but it is an open question
how to obtain predictive nonlocal models from first principles.

Recent work presents compelling justification of nonlocal kernels’ role bridging mi-
crostructure and homogenized continuum response. Weckner and Silling characterize the
multiscale response of elastic media by calibrating nonlocal dispersion relations to neutron
scattering data data [17]. Delgoshaie argued that nonlocal diffusion kernels naturally describe
tortuous flow pathways in porous media [18], while Chung obtained a nonlocal description
of flow in fractured media via a multiscale finite element framework [19]. Several authors
have established conditions where nonlocal diffusion kernels admit interpretation as jump
rates of stochastic processes [20-22]. Recently, Xu and Foster derived kernels describing an
elastic medium with heterogeneous microstructure via homogenization[23].

Works which provide rigorous a priori justification of nonlocal kernels typically require
mathematically complex and lengthy derivations, often relying on restrictive assumptions of
microstructure geometry. The goal of the current work is to establish a data-driven extraction
of nonlocal models from observations of high-fidelity simulations, skirting the mathematical
complexity of deriving nonlocal models. We pursue an inequality-constrained least squares
approach which guarantees that extracted models are well-posed. In addition to learning un-
known physics from systems, our method may be used to perform numerical homogenization,
extracting efficient coarse-grained nonlocal models from high-fidelity synthetic data, such as
microstructure-resolved local simulations. Furthermore, our algorithm may be applied to
learn computationally cheap approximations of nonlocal operators of fractional-type while
preserving accuracy. The latter are characterized by an infinite lengthscale and, as such,
are computationally prohibitively expensive. Our technique delivers compactly supported
nonlocal models that mimic the action of a fractional Laplacian at a much cheaper cost.

An additional open question in nonlocal modeling is whether kernels should be strictly

positive. In some cases, nonlocal solutions can be interpreted as probability density functions



of jump processes with jump rate given by the kernel, which, in turn, must be positive [20—
22]. On the other hand, in multiscale problems, several authors have extracted sign-changing
kernels [17]; see also the discussion in [24]. It is unclear however, whether multiscale physics
inherently lead to sign-changing kernels or if one could derive equally descriptive positive
kernels. We note also that the mathematical analysis of non-positive kernels is more in-
volved, suggesting that strictly positive kernels may be more desirable to work with [24].
Recently, Mengesha and Du provided necessary conditions for diffusion processes governed
by sign-changing kernels to be well-posed [24]. Their analysis requires that the kernel may be
decomposed into positive and non-positive parts, and that the negative part be sufficiently
small so as not to compromise the coercivity of the overall operator. Some other recent
works have explored extraction of nonlocal models from data, using either PDE-constrained
optimization [25] or nonlocal generalizations of physics-informed neural networks [26, 27]
to obtain strictly positive kernels, which are thus well-posed. A unique feature of our ap-
proach is the extraction of an inequality constraint from Mengesha and Du’s theory [24]
which allows learning of sign-changing kernels. Approximation of the kernel by Bernstein
polynomials allows for a simple implementation of the constraint, guaranteeing extraction of
well-posed sign-changing kernels. We will see that in various settings, sign-changing kernels
sometimes appear naturally and sometimes do not, and therefore this data-driven derivation

may suggest whether such kernels are appropriate for a given application.

Outline of the paper. The paper is organized as follows. To begin, in Section 2 we define an
abstract problem characterizing the fitting of nonlocal problems to high-fidelity observations.
In Section [3 we review the well-posedness theory for sign-changing kernels that guides the
discovery of well-posed nonlocal models and formulate the learning problem as an inequality-
constrained optimization problem. Then, in Section 4 we provide a two-stage algorithm
to solve the optimization problem efficiently. In Section 5 we illustrate properties of the
proposed technique by using manufactured kernels; these results highlight consistency and
robustness of our method. In Sections 6, [7, and |§ we consider specific applications such as
Darcy’s flow, homogenization of a higher-order PDE and a fractional diffusion model. For
each application, we highlight the impact of the proposed regression technique. Concluding

remarks are reported in Section 9.

2. Abstract problem

We consider in this section a framework for extraction of nonlocal operators which match

observations of a given system in an optimal sense. We assume that a quantity of interest u



satisfies the problem

(2.1)

Lyrlul(z) = f(x) z€Q,
Bu(z) = g(xz) z € 09, or u is periodic,

where Lyr is a high-fidelity (HF) operator that faithfully represents the system; this can
either be a partial differential equation or a fractional-differential operator. The function
f denotes a forcing term and operator B specifies a boundary or exterior condition. For
example, when Lyr is a local operator, B = Id corresponds to a Dirichlet boundary condition
and B = 9/0n a Neumann boundary condition. We hypothesize that solutions to this HF
problem may be approximated by solutions to an equivalent nonlocal volume-constrained

problem of the form

flz) ze€q,

(2.2)
g(x) =€ Qp, oru is periodic.

{Ck[u](l’)
Bru(z)

Here, Lk is a nonlocal operator parametrized by K, defined below, {2; an appropriate nonlo-
cal interaction domain, and By the corresponding nonlocal interaction operator specifying a
volume constraint. In (2.2), u and f may coincide with the quantities of interest u and f in
(2.1)), or they may be appropriate “coarse-grained” representations of the same, we postpone
a discussion of this multiscale scenario until Section 6.

We seek L as a linear nonlocal operator of the form

Lilul(z) = - K(z,y) (u(y) — u(z)) dy, (2.3)
QUQ;
where K denotes a nonlocal kernel compactly supported on the ball of radius ¢ centered
at x, i.e. Bgs(x). Desired properties of the kernel and details on the analysis of problems
associated with operator (2.3) are reported in Section 3. The interaction domain is defined
as
Qr = {y € R such that |y — x| < § for some z € Q}; (2.4)

a condition for u on ) is required to specify L u(x) for z € Q, by (2.3). Thus, an appropriate
exterior volume condition on §2; replaces the local boundary condition in (2.2). For simplicity
we will assume B; to be given: in the case of manufactured solutions one may apply the
solution as a Dirichlet condition, while in the periodic case it need not be specified.

To learn the operator L, we assume that we are given a collection of pairs of forcing



terms f; and corresponding w; which arise from solutions to (2.1)),

D = {(wi, fi)}ils -

These observations will be used to train (2.3). In the simplest setting, D consists of pairs of
forcing terms and corresponding solutions of (2.1). In specific coarse-graining applications,
we can apply appropriate post-processing — averaging, for example — to coarsen such “fine-
scale” solutions to construct D. We then extract the nonlocal model by finding a kernel such
that the action of Lx most closely maps u; to f;.

That is, we solve an optimization problem of the form

N
K* = argminz ||£K[uz] — fiH)ﬁ (2.5)

& i=1

H » denotes an appropriate norm over (2.

In doing so, since f; represents Lyp[u;] either exactly or in a post-processed sense, L+

where H .

best matches the action of Ly on the training data D, in the sense of problem (2.5).

In this manner, solution of the problem associated with Ly« provides a surrogate for the
given high-fidelity problem (2.1)). We note, however, that there is no reason to expect the as-
sociated problem (2.2) to be solvable. Previous works have imposed solvability via imposition
of kernel positivity (either by positivity constraint [25, 28] or restricting parameterization to
only admit positive kernels [26]), they do not generalize naturally to kernels with negative
part. In the next section, we consider a particular class of kernels allowing the addition of
constraints to the optimization problem (2.5) to guarantee extraction of well-posed models.

We use this abstract setting as a framework for extracting nonlocal surrogates in a variety
of scenarios where nonlocal models are expected to provide advantages. Before specializing
to these application-specific settings, we first gather relevant theory regarding the stability

and well-posedness of sign-changing nonlocal operators.

3. Data-driven discovery of well-posed nonlocal models

The ultimate goal of the operator regression discussed above is obtain a nonlocal model
(2.2) that can be solved for a class of forcing terms f of interest — for example, forcing
functions at a suitable coarse scale and with certain regularity properties. However, without
a careful definition and parametrization of a feasible set of such nonlocal operators Ly of
the form (2.3), there is no guarantee that regression will recover an operator Lx that enjoys
this property, meaning that when (2.2) is discretized, the resulting linear system will be

singular. Such operators cannot be used to extrapolate and generate predictions from new



forcing functions f. Thus, we must avoid learning kernels K* that solve (2.5), but lead to
non-invertible operators Ly«.

The article [24] gives an overview and establishes a generalized framework of well-posed
nonlocal problems based on properties of the nonlocal kernel. In this context, well-posedness
refers to existence and uniqueness of a solution to a nonlocal problem in an appropriate weak
or variational sense, implying that suitable finite-dimensional discretizations of the problem
can be solved numerically in a consistent and stable way.

Below, we review the theory of [24] which we will use throughout the article to ensure
the discovery of well-posed nonlocal models. This reference discusses two sets of conditions
for well-posedness. First, it reviews the case of nonlocal operators with nonnegative kernels,
reviewed in Section 3.1. Next, it weakens this condition and establishes well-posedness for a
class of sign-changing kernels satisfying conditions on the negative part of the kernel function,
reviewed in Section 3.2. We shall consider operator regression in the latter class of kernels.
Our purpose for this is two-fold: first, this more general class of kernels is, in principle, more
expressive and able to provide better fit to data. Second, we aim to study the utility of this
sign-changing kernels for nonlocal modeling. In other words, we study the question: is there
an advantage to using sign-changing kernels, as opposed to nonnegative kernels, in fitting
nonlocal models to data?

The conditions for well-posedness lead to constraints for the operator regression optimiza-
tion problem. We define our parametrization of the unknown kernel in Bernstein polynomials

and state the constrained optimization problem that arises in Section {3.3.

3.1. Well-posedness with nonnegative kernels

In this section we introduce a standard nonlocal model with a nonnegative kernel and
recall conditions for the well-posedness of associated diffusion problems. Let @ C R? be a
connected bounded domain with sufficiently smooth boundary and let €2; be its interaction

domain defined as in (2.4). We denote their union by Q = QU ;. We define the action of

a nonlocal diffusion operator £, on a function u as

£outa) ==2 [ plly = al) (o) ~ uta) (31)
where the nonnegative and compactly supported kernel p = p(|£]) is such that

€12p(€]) € LL.(R%), and

loc

Jo > 0 such that (0,0) C supp(p).



To study existence and uniqueness of solutions to the equation

L=, (3.3)

~

we define the space S(€2) associated with £, as the typical energy space considered for
nonlocal problems [15, 24, 29, 30], i.e.

S(Q) = {u = L2(Q) : /A/Ap(]y —z))|u(y) — u(z)]Pdydx < oo} )
0Ja
Note that S(Q) arises naturally from the symmetric bilinear form

(Lot ) oy = =2 / w(2) / ol — 2]} (1ly) — 8(a) dyd
: / / plly — ) (uly) — u(@)) (w(y) — w(z)) dydz.

We denote by &’ the dual space of S. Let V be a closed subspace of L2(SA2) that contains

the constant function v = 0 and no other constant functions, we define the solution space as

-~

Vs =V NS(Q). According to Corollary 1 of [24], if p satisfies (3.2), there exists a coercivity
constant & = k(p, V, Q) of L,:S — &' such that

||u||iz(§) < K(Lpu,u) g, forallueVnS(Q), (3.4)
where (-,-)2() denotes the L? inner product. By Lemma 3.1 of [24], this result guarantees
that there exists a unique u € V, such that, for b € &’ and for all w € V,

(ﬁpu,w)Lz(Q) = (b,w)Lz(Q), (3.5)

Equation (3.5) is the weak form of (3.3).

3.2. Well-posedness for sign-changing kernels
In this section we consider the type of sign-changing kernels studied by [24]. These kernels

define operators of the form
Lg =Ly 4+ Ay, (3.6)

where £, is the operator defined in (3.1) and the nonlocal operator £, on the right-hand
side is defined as

Cou(z) = 2 / oy — o) (uly) — u(z)) dy.

Q



Thus, we consider integral operators of the form

Lxu(z /K ,y) — u(z)) dy,

with kernel
K(z,y) =2p(ly — =|) + 2Ag(ly — z]). (3.7)

The function p is assumed to satisfy the conditions (3.2)) for well-posedness of the problem
(3.3), so that the associated bilinear form is coercive as in (3.4) with coercivity constant
k. The idea of [24] is to think of Lk as a small perturbation of £, by AL,. Then, for

well-posedness of equations of the form
L KU = b, (38)

we need the contribution of the perturbation £, not to compromise the coercivity of the
variational form associated with £,, so that Lx will also induce a coercive, hence well-posed,
variational problem.

We now summarize the conditions on g and A that guarantee well-posedness of the
perturbed system (3.6). From Lemma 4.2, Theorem 4.3, and Corollary 2 of [24], have that
if g is a compactly supported locally integrable radial function, and if g and \ satisfy

1
2% (gl + Gl

A < (3.9)

with G(z) = [59(|ly — z|)dy and  defined as in (3.4), then, for b € V., the weak form of

equation (3.8)
(Lru, w)r2@) = (b,w)r2@), Yw eV,

has a unique solution u € V. This is the analogue of (3.5) for the equation (3.8).

In the following section, we will parametrize p and A in coefficients of a polynomial
expansion, making A in (3.7) a redundant parameter that scales the coefficients. Writing
h = Ag, multiplying (3.9) through by the factor (”g”Ll(Rd) + ||G||Loo(§)> and pulling A inside
the norms, the setup of (3.7) with condition (3.9) can be written as

K(w y) = 2p(ly — x|) + 2h(ly — =|),
= J5h(ly — z|)dy, (3.10)
||hHL1(Rd) + HHHLoo(ﬁ) = ﬂ'



Accordingly, we also define £, = A\L,, so that the operator Lx in (3.6) can be written as
Lr = Lo+ Ly,

3.3. Sign-changing kernel regression

With the purpose of applying the abstract formulation introduced in Section 2 to the
discovery of kernels described in Section 3, we introduce a representation of the kernel as
a linear combination of Bernstein basis polynomials. Notably, we assume that K is radial,
i.e., that K(x,y) is a function of |*5¥|, and expand in polynomials in this single variable.

Specifically, we parametrize (3.7) by defining
M
x—y D
5 D 2 WBWM(
m=0
where the Bernstein basis functions are defined as

By (2 = <M> z™(1 — z)M~™,

K(@,y) =) <75 Bmu =), (3.11)
m=0

m

This corresponds to setting

= Gy M D,
2p(|§|)=ZWBm,M<‘§D, and 2h(yg|):ZWBm,M<’§D (3.12)
m m=0

=0

in (3.10), where the coefficients of the linear combinations are unknown. The scaling of
Cy’s and Dy,’s is standard and has been used in the literature (see, e.g. [31]) to guarantee
convergence of nonlocal diffusion operators to A, the classical Laplacian, as 6 — 0.
For C € RM*! D € RM*! the kernel discovery problem can be stated as
C

min L
R2M 42 ( D ) (313)
subject to: C >0, N(D) < [2k(C)]",




([ ([c 1 &
L ( D ) = NZ I(£C + LP)[u] - fill%
i=1
M M
1 D,, z 1 D, y—x

N<D):§ ZmBmM<g> +§ Zm/Bm,Md 5 )dy

m=0 L1(R4) m=0 R LOO(Q)
| 5(C) is a constant satisfying (3.4).

(3.14)

Above, L€ denotes L£,, LP denotes L}, following the parametrization (3.12), and we delay
specification of the norm || - ||x until the following section. Numerical optimization of this

problem is discussed in Section 4.

4. Algorithm

The problem (3.13) is expected to be nonconvex and susceptible to many local minima.
At the same time, while the constraint C > 0 is easier to enforce, the second constraint
involving N(D) and x(C) in (3.14) is highly nonlinear in both the left-hand and right-hand
sides, posing a significant challenge. For numerical efficiency, we have followed a “two-stage”
strategy for numerical optimization.

We first find a set of C* representing an initial fit to the data using only the nonnegative

kernel p as in (3.12), ignoring the term h and avoiding the nonlinear constraint. We minimize

the loss
y—x
By,
fona([5

Here we use the notation [ |- dy} A o denote the discrete approximation of a nonlocal

(4.1)

X

)(w(az) - m(y))dy] ()

A

kernel by applying quadrature. For the purposes of this work, we will use Silling’s one-point
quadrature [32], popular in particle discretizations of peridynamics. We note however that
any choice of quadrature for discretization of the integral in the strong form [33, 34], or basis
for the discretization of the weak form, may be applied here; see [35] and references therein.
For a given nonlocal operator Lx and basis functions ® = [%]5:1 and corresponding degrees

of freedom w = [wp]p:1 the discretization provides mass and nonlocal stiffness matrices

My = | [ow@as] sy | [ Lxlo@lo@n] . a2
Q A Q A
Note the presence of the ReLU function in L;. We minimize L using the Adam optimizer

10



[36], also mapping
C — ReLU(C)

after each step of gradient descent. This leaves L invariant but ensures that the sequence and
local minimum produced by gradient descent satisfies C > 0. Thus, the simpler constraint
C > 0 is hard-coded into the loss function and algorithm, allowing us to obtain C* by
applying the Adam algorithm to the unconstrained optimization problem.

We then compute the coercivity constant £(C*) corresponding to the operator £LE . For
w, S, and M consistent with the choice of discretization [ IE dy} A» We solve the following

generalized eigenvalue problem

(4.3)

This computation happens only once in our algorithm, so that C* and «(C*) are fixed in
the next stage.

In the second stage, we correct the initial fit given by £€ by finding £P" subject to the
second constraint in (3.13), in which the right-hand side [2k(C*)] ™" of the constraint is fixed.
We apply the augmented Lagrangian method [37, 38] to solve for D under the constraint

condition, using the function

H(D,0) = ~ N(D) - ¢*

2/{(0*)

- oy -3 2y o5,
2o |32 g (5],

Here, 6 is the slack variable arising from the inequality constraint. We then apply the Adam

— 0%

optimizer to the penalized loss function

1£S+P ] — £i||% + AH(D, 6) + ”H?(D,@) (4.4)

y—x
By,
/@ (3

2 |

-y

Z (o) - ui<y>>dy] @)

i=1 A X
+AH(D,0) + gm(D,e),

2 |

adjusting the parameters A and p as described in Algorithm [I. We denote the minimum by

11



D*.

Although this two-stage optimization algorithm is numerically efficient, there is a degree
of overconstraining arising from a single computation of the coercivity constant x. That is,
although C* is a local minimum of L; and D* is a local minimum of L,, (C*,D*) is not
necessarily a local minimum of L.

A more advanced algorithm could involve iterated computation of the coercivity con-
straint k. In our examples below, however, we found that the two-stage algorithm is suffi-
cient and that there was no significant benefit to more complex and expensive optimization

algorithms. Therefore, we have used the two-stage algorithm throughout.

Algorithm 1 Nonlocal kernel regression

1: Initialize CY) ~ 14 (0,1).
2: Obtain C* as a local minimum of L;(C), using the Adam optimizer while updating
C < ReLU(C) after each step of gradient descent.
: Select basis {w,(z)}, p =1, ..., P, and assemble the matrices M and S in (4.2).
: Solve the generalized eigenvalue problem (4.3)) for x(C*).

3
4
5: Initialize DO ~ U ( 1 L ) and 00 = 1.
6
7
8

- VM+1 VML
. Set STEP MAX =100, A\ =0, u=1,s=1,p=10,c=1/4, e = 1075,
: while s < STEP_MAX: do > Perform Augmented Lagrangian Algorithm for D
Solve the unconstrained optimization problem

(D@, 9¢)) = argmin Ly(D, 6).

D0
9: if HD®, 0®)) < ¢ then
10: Stop.
11: else
12 if H(D®,0©)) > cH(DED, 9D then
13: Update penalty p < pp.
14: if ;1 > 10% then
15: Stop.
16: else
17: Update Lagrange multiplier A <~ \ 4+ pH(D®), ().
18: Update the iteration number s < s + 1.
19: D* =D®,

In applying Algorithm [I, we run the Adam optimizer (in PyTorch) using a batch size of
100 and learning rate 5e-3 throughout the article. We run until the loss stagnates, indicating
that a stationary point has been reached. This was typically between 200 and 500 epochs for
the first stage of the algorithm (to find C*) and 10 epochs for the second stage (to find D*)
per iteration of the augmented Lagrangian method. In general we will take at least O(1, 000)

12



samples for the purposes of training, to ensure we are well into the regime of having sufficient

data. Throughout, we use the norm

1
1f 1l = g > fla)?

TEEX

in (4.1) and (4.4), for a discrete collection X of points in Q. We specify the collection X in

the sections below.

5. Tests with Manufactured Kernels

In this section, we give the first illustration of the method described above by training on
data Diain = {(ui, i)}, generated from a nonlocal equation of the form (2.2) with periodic
boundary conditions, for a manufactured kernel K., that is given a priori. This allows us
to validate the approach and quantify its ability to handle nonnegative and sign-changing
kernels, before moving to noisy data in subsequent sections.

We generate 50,000 training pairs (u;, f;) in the following way. First we randomly generate

the coeflicients of a Fourier series for u; as
ak ~ eXp(_akQ)gv 5 ~ Z/{[O, 1]7 (51)

where U0, 1] denotes the uniform distribution on [0, 1] and o = 0.1. Then, u; is given by

100

W = Z uy, cos(2wkx /L) (5.2)

k=0

and f; is obtained from (2.1)) via a numerical Fourier transform. We train the kernel using
A to be 101 equidistant points in [0, 1].

The learned kernel K* is validated on a test set consisting of a different set of samples
Diest = {(uj, f;)})L, generated as above, with N = 10,000. We test two types of basis
expansions in (3.11)) for learning K: a linear kernel (M = 1) and a quadratic kernel (M = 2).

For the case of a linear manufactured kernel

Koy (‘ Y g g >v (5.3)

used to generate data, prediction using Lx- is shown for two test pairs (u, f) in Figure

4

Kman(xa y) = 5

y—x

J

for regression using a linear kernel, and Figure 2 for regression using a quadratic basis. In

these first examples, we only learned the nonnegative coefficients C, effectively setting D = 0

13



and not performing the second stage of the algorithm. This verifies that given data from a
nonnegative manufactured kernel, the algorithm can provide a good fit with a nonnegative

learned kernel.

—— target
prediction

u
o N
f
| |
50N N
o o o o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X

—— target
prediction

u
|
N o
% |
f
| |
S N N
o (6] o (S}

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 1: Comparison of the prediction Lx-[u] and target f when generating data from the manufactured
kernel (5.3) and fitting a nonnegative linear basis polynomial kernel K*. The left column illustrates wu,
whereas the right column f (target) and Lx-[u] (prediction), for a sample of (u, f) € Diest in each row.

—— target
prediction

u
o~ N W
f
| |
D N N
S o© o o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X

50

—— target

u
| |
.. 3 N (on | N
é .
f
o

0.0 0.2 0.4 0.6 0.8 1.0
X

-50

prediction

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 2: Comparison of the prediction Lx-[u] and target f when generating data from the manufactured
kernel (5.3) and fitting a nonnegative quadratic basis polynomial kernel K*. The left column illustrates w,
whereas the right column f (target) and Lg+[u] (prediction), for a sample of (u, f) € Dyest in each row.
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In the next example, we fit data generated from the sign-changing kernel

21.4615 3Ty —x
Kman(x7 y) = 53 COS (%) . (54)

Here, we apply the second stage of Algorithm [I}, learning both C and D. We use this example
to explore whether learning a kernel K* by fitting the action of Lx on the data Dy, can be
expected to reproduce the kernel K,.,. Of course, for a general kernel K,.,, this can only
be expected for increasing basis order M of the polynomial expansion in (3.11)). We generate
two sets of training and test data. The first set, which we refer to as “low-frequency”,
consists of 50,000 samples of the form ([5.2) with distribution (5.1), just as for the previous
example. The second set, which we refer to as “high-frequency”, consists of 25,000 of such

low-frequency samples and 25,000 samples (u;, f;) where
w; = & sin(2nkyx/L) 4 & cos(2mkex /L), (5.5)

for &,& ~ U[0,1] and k; and ko being random integers sampled uniformly in [5,15], and
with f; computed using a numerical Fourier transform.

We learn kernels K of the form (3.11) with degrees M of the basis increasing 2 to 20, for
both data sets.

The plots of training and validation losses for both sets of data are shown in Figure
3. This figure shows no benefit to increasing the basis order past 11 for the case of low-
frequency data, in contrast to the high-frequency test data for which both losses improve
through order 20. This test illustrates that the choice of basis order M should take into
account the frequency of the training and test data, an issue which will arise in Section 6
below. Next, to study the question of reproducing the manufactured kernel K,,,, with the
learned kernel K*, we compare K., to K* first for the low-frequency data and varying basis
order M in Figure 4. We show both the nonnegative part 2p and the full kernel 2p + 2h to

illustrate the contribution of 2h.
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Figure 3: Left: The training loss and validation loss versus basis order for low-frequency data generated
using the manufactured kernel K.y (5.4). Right: The training loss and validation loss versus basis order
for high-frequency data generated using the manufactured kernel K., (5.4).
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Figure 4: Left: Comparison of the nonnegative part 2p(z,y) of the kernel K* trained with low-frequency
data and the manufactured kernel Ky, (5.4). Right: Comparison of the full kernel K* = 2p(z,y) +2h(x, y)
trained with low-frequency data and the manufactured kernel K., (5.4). Note the improved fit of the
negative tails of the kernel.

While the kernel is approximated by 2p + 2h for larger |y — z|/0 and sufficiently high-
order basis, Figure 4 demonstrates that the manufactured kernel is not recovered for small
|z — y|/0, implying that the action of the operator p is insensitive to the kernel shape for
small |x —y|/0 for training data f; of the form (5.2) with (5.1)). We hypothesize this is due to
lack of higher frequencies in f; and the resulting solution u;. By repeating this experiment
in Figure 5 for the high-frequency data (5.5), we obtain evidence for this hypothesis, as a
closer fit is obtained for small |z — y|/J than for the low-frequency training data in Figure {4
as the basis increases.

These experiments suggest that our algorithm cannot be expected to recover exactly
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the kernel K., from the data Di.,;,. Moreover, resolution of the kernel in the vicinity
of |x — y|/é = 0 is aided by the incorporation of higher frequency training data. Perhaps
unsurprisingly, for such a sign-changing kernel, incorporation of D improves reproduction of
Kman-
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Figure 5: Left: Comparison of the nonnegative part 2p(x,y) of the kernel K* trained with high-frequency
data and the manufactured kernel K.y (5.4). Right: Comparison of the full kernel K* = 2p(z, y) + 2h(z, y)
trained with high-frequency data and the manufactured kernel K., (5.4)). Note the improved fit of the
negative tails of the kernel.

6. Nonlocal coarse-graining of Darcy flow

We next consider extraction of a nonlocal diffusion model by coarse-graining local so-
lutions of Darcy’s equation, a problem arising in subsurface flows through porous media
[39, 40]. In traditional inverse modeling and subsurface applications, the inference of an
effective permissivity from data is a canonical problem motivating the development of mul-
tiscale and homogenization methods [41-44]. Some works have argued that nonlocal models
converging to Darcy’s equations in the limit 6 — 0 provide an improved description of mul-
tiscale transport [18, 45]. We consider a simple 1D problem to demonstrate how nonlocal
kernels may be derived from data, illustrating viability of data-driven multiscale nonlocal
models for such processes. We numerically homogenize a repeated microstructure of length-
scale 2L using a nonlocal model with support lengthscale §. We will see that in this nonlocal
context, the choice of coarse-graining lengthscale relative to 2L is tied to the effectiveness of
the homogenization, similar to the local homogenization setting [46].

We assume a periodic domain Q = [0, 10], constituted of alternating subdomains of width
L and piecewise constant diffusivity k1 = 1, ke = 4 (Figure 6). Further, we use a P1 nodal

finite element solver to generate a collection of solutions U = {uz}f\il to the following high-
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Figure 6: Problem setup and relevant lengthscales for the Darcy coarse-graining problem. Periodic mi-
crostructure length is denoted 2L, while forcing used during testing/training corresponds to sin(\ 27z), and
entire domain has measure |2]. We will observe that choice of A used during test and training must be
sufficiently large relative to 2L to obtain good fit for data-driven nonlocal model.

fidelity problem

V - F; =sin(2rz)\;) = f;
F; = —k(z)Vu,.

Here, \; denotes a wavelength sampled from the uniform distribution A; ~ U ([Amin, [2]])-
We omit details regarding the finite element solution, noting that we use 16 elements per
subdomain, which was chosen to ensure sufficient resolution of training data, and take N =
1000.

We first coarse-grain U into a collection of averaged solutions U = {ﬂZ}N

i—1» Where we

define 7; (and likewise f;) as piecewise constant over a given interval z € [2Ln,2L(n + 1)],

1 2L(n+1)
Ui(z) = oL /2L ui(y) dy,

for a given domain n. In this manner, we obtain a representation of the local solution
homogenized over the periodic microstructure. Finally, we apply Algorithm [1 to find a

nonlocal kernel consistent with U. That is, we apply the algorithm with
Dtrain = {(Eu?z) i]\il'

A key feature of this data is the relative magnitude of the wavelength \; and the mi-
crostructure L; similar to traditional homogenization we require L/\; sufficiently small to

treat the material as a homogeneous continuum. In Figure 7 we present solutions to a pair
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Figure 7: Representative solutions to the extracted kernels, for 6 = 8L, testing against low-frequency (left)
and high-frequency (right) forcing. We note that for low-frequency forcing, the solution is primarily smooth,
and captured well by models extracted from low-frequency data. For high-frequency forcing, the local
solution has artifacts from the microstructure, preventing extraction of an effective model using either high-
or low-frequency training data.

of models with Ay, = 1/16 and 1, both for § = 8. When considering a low-frequency solu-
tion (L[u] = sin7z), the model trained on low-frequency data matches its local counterpart
well, while for a high-frequency problem (L[u] = sin 87x) neither model performs well. This
suggests that L/\y;, must be sufficiently small in the training data to prevent the model
from overfitting to high-frequency data. When applying the model, it will only agree with
the local solution over sufficiently large lengthscales.

Motivated by this observation, we perform a study sweeping over the choice of A, both
during training and testing, for § € {4L,8L,16L}. The results of the study are presented
in Figure 8, with the trend that smaller choice of § provides generally better results. The
extracted kernels associated with this study are presented in Figure 9. We observe that for
different o, the resulting kernel may have qualitatively different shape, and that for high-
frequency training (which tests poorly) the kernel shifts to a different shape. Most notably,
for this problem we observe no discernable negative part in the kernel, despite the fact that
the algorithm allows for it. This suggests that, at least for this diffusion process, it is not
necessary to introduce negativity into the kernel to obtain good fit; similar nonnegative

kernels were obtained in [18] as an upscaling of a pore network.

7. Extraction of nonlocal sign-changing kernels from high-order PDEs

We now seek an application where we expect to extract a sign-changing kernel. Weckner
and Silling summarized several works where authors augment second-order elliptic problems

with high-order derivatives to accommodate the high-frequency response of a given material
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(17, 47-51]. As an example, one may augment the description of a diffusion process by a
Laplacian with higher-order operators such as biharmonics. Oftentimes these corrections
provide a means to introduce lengthscales originating in microscales, e.g. Bazant introduces
a correction of the form c6?V* to the Poisson-Boltzmann equation to correct for the effect of
finite ion size [52, 53]. Such local corrections may be related to nonlocal models by assuming
a large degree of regularity, expanding the solution in a Taylor series, and matching the
moments of the kernel to corresponding local terms. However, nonlocal models possess the
desirable feature of only requiring L2-regularity. Weckner and Silling derived in this manner
a sign-changing kernel, where the high-frequency response manifests as a negative part.
We will consider a simplified problem, and illustrate that the introduction of a very small
negative component allows for a substantial improvement in model accuracy.

We seek a nonlocal surrogate for the biharmonic equation

Uy — C(Szua:xa:a: - f7 (71)

u is periodic on [0, L].

We generate data Dyt = {(us, fi)}X, for this equation for various ¢ and § by randomly

generating
99
fi= Z & cos(2rkx /L) (7.2)
k=1
for coefficients are sampled as
ﬁC ~ exp(—ozk2)§, € ~ u[()? 1]a (73)

where U[0, 1] denotes the uniform distribution on [0,1]. For each sampled f;, the corre-
sponding w; is solved from ([7.1) using the discrete Fourier transformation. We generate
N = 50,000 pairs of (u;, f;) for training, and train the kernel using an expansion (3.11) of
order M = 20 for a range of § from § = 0.125 to d = 0.99 and ¢ from ¢ = 0.0001 to ¢ = 0.1.

In Table 1, we report the losses after the first stage of the algorithm, when C has been
trained and D = 0, and the loss after the second stage of the algorithm when both C and
D have been trained. Figure 10 compares these two kernels, for ¢ = 0.0003 and § = 0.5, to
illustrate that the two kernels are similar except for a small negative tail in the sign-changing
kernel for large |y — x|/d. Nevertheless, Table [l illustrates that by fitting a sign-changing
kernel as opposed to a nonnegative kernel, an average improvement in the loss by 18% for
0 =0.125, 126% for 0 = 0.25, 98% for § = 0.5, and 12% for § = 0.99 is observed.
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c 0 =0.125 0=0.25 0=20.5 0 =10.99
{Cm}  {Cm+Dm} | {Cn} {Cnm+Dm} | {Cn} {Cn+Dn} | {Cn} {Cn+ Dn}
0.0001 | 7.89e-5 6.49e-5 5.94e-4 1.48e-4 4.50e-3 1.50e-3 1.99e-2 1.78e-2
0.0003 | 8.47e-5 8.45e-5 6.08e-4 1.46e-4 4.87e-3 1.88e-3 2.27e-2 1.71e-2
0.0005 | 9.46e-5 8.30e-5 6.79e-4 1.99e-4 5.58e-3 2.44e-3 2.46e-2 1.81e-2
0.001 | 9.97e-5 7.77e-5 7.17e-4 3.11e-4 6.12e-3 2.07e-3 2.88e-2 2.45-02
0.003 | 1.46e-4 1.32e-4 1.10e-3 5.14e-4 1.11e-2 4.76e-3 4.84e-2 3.90e-2
0.005 | 1.95e-4 1.74e-5 1.73e-3 1.32e-3 1.52e-2 9.16e-3 6.11e-2 5.46e-2
0.01 3.52e-4 3.14e-4 3.18e-3 1.94e-3 2.20e-2 1.64e-2 8.16e-2 7.20e-2
0.03 1.30e-3 1.25e-3 1.04e-2 8.09e-3 5.09e-2 4.32e-2 1.04e-1 1.08e-1
0.05 | 2.61e-3 2.38e-3 1.91e-2 1.51e-2 6.77e-2 5.48e-2 1.10e-1 1.18e-1
0.1 6.35e-3 6.18e-3 3.37e-2 3.47e-2 8.81e-2 7.83e-2 1.34e-1 1.23e-1

Table 1: Training loss when using {C,,} only and {C,, + D, } under different settings. The loss averaged
over all ¢ improves by 18%, 126%, 98%, and 12% for 6 = 0.125,0.25,0.5 and 0.99, respectively, when allowing
for sign-changing kernels.

400 1 w
—— Kernel with only {Cm}
350 __ Kernel with {C}and{D } E

300 -

-50 . . I . . . I . L . .
-1 -0.5 0 0.5 1
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Figure 10: The comparison of the positive part of K* determined by {C,,} and the full kernel K* given by
both {C,,} and {D,,}, when ¢ = 0.003, § = 0.5. Note that allowing non-positive kernels provides only a
very small negative part near |y — 2| = 0, yet provides a substantial increase in accuracy (Tables [I] and [2)).
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Table 2 compares the relative error in solving ([7.1]) for the test forcing
f = —4n?sin(2rr) — 1667 sin(27x) (7.4)

using the nonlocal model (3.11)) with trained kernel K*. We solve the nonlocal equation
Li+u = f with periodic boundary condition. We compare the numerical solutions to the
exact solution u = sin(2mx). This table corroborates Table 1, showing a significant in
decrease testing error for § = 0.25 and 6 = 0.5 when using the sign-changing kernel rather

than a strictly nonnegative kernel.

0 =0.125 0=0.25 0=0.5 0=0.99
{Cn}t {Cwm+Dm} | {Cn} {Cn+Dn} | {Chn} {Cn+Dn} | {Cn} {Cwn+Dn}
0.0001 | 0.49% 0.39% 1.31% 0.19% 3.15% 0.09% 5.74% 1.37%
0.0003 | 0.48% 0.48% 1.27% 0.20% 3.39% 0.13% 5.66% 0.98%
0.0005 | 0.51% 0.54% 1.37% 0.25% 3.39% 0.13% 6.15% 1.42%
0.001 | 0.55% 0.44% 1.48% 0.46% 3.67% 0.12% 6.31% 0.87%
0.003 | 0.67% 0.61% 1.82% 0.52% 4.54% 0.15% 6.26% 0.86%
0.005 | 0.73% 0.71% 2.16% 1.11% 5.17% 0.24% 6.36% 0.94%

0.01 | 0.97% 1.04% 2.96% 1.05% 6.13% 0.42% 6.25% 1.27%
0.03 | 1.91% 1.67% 4.85% 2.59% 6.88% 0.20% 4.00% 0.97%
0.05 | 2.74% 2.33% 5.86% 2.97% 6.81% 0.19% 3.68% 0.71%
0.1 4.03% 3.69% 6.84% 5.17% 5.97% 1.29% 2.87% 0.95%

c

Table 2: Relative solution error for the test case (7.4) when using {C),} only and {C,, + D, } under different
settings. Note that while introduction of D,, provides notable increase in accuracy, the resulting kernels
differ by only a small negative tail (see Figure [10).

8. Fractional Laplacian

In this section we consider a high-fidelity model substantially different from the ones con-
sidered in Sections |6 and [7: the Poisson problem for the fractional Laplacian [16]. Fractional
order equations are nonlocal equations often used in subsurface modeling; they accurately
represent complex multi-scale phenomena by incorporating long-range interactions into the
model itself in the form of a fractional-exponent derivative, as opposed to the classical integer-
exponent derivative. This allows to capture the complete spectrum of diffusion through a
few scalar model parameters. Despite being known to be the model of choice for scientific
and engineering applications such as subsurface flow and transport [16], their adoption is
limited due to several technical challenges, computational cost being the most important.
This is understood by noting that the support of the nonlocal kernel is infinite, as opposed to

the kernels considered in this paper whose support is limited to a ball of radius §. Formally,
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the fractional Laplacian operator is defined as

(—A)'u=Ci, / uz) —uly) (8.1)

Ra |z —yld+2s

where s € (0,1) and Cy is a constant that depends on the dimension d and the fractional

order s. Here, the positive nonlocal kernel, with support on R? is given by
K(z,y)= T (8.2)

We point out that, the interaction domain associated with the fractional Laplacian equation
corresponds to the case of infinite horizon 6 = oo. Thus, the high-fidelity problem we
consider is (2.1) with Lgr = (—A)* and an exterior condition u = g on ; = R?\ Q. In
other words, exterior conditions must be prescribed on an infinite domain.

Our goal in this section is to answer the following question: can we learn a nonlocal
compactly supported kernel (with a relatively small horizon) from high-fidelity data from a
fractional model such that the action of the corresponding nonlocal operator is equivalent
to the fractional Laplacian in (8.1)7 A positive answer would enable accurate computation
of fractional solutions at a much cheaper cost and increase the usability of fractional models
now hindered by computational challenges.

To answer the question above, we first note that solutions to the Poisson problem for the
truncated fractional Laplacian (obtained by simply truncating the domain of integration in
(8.1))) approach solutions of the non-truncated counterpart asymptotically with order O(§~%)
[54]; this type of convergence holds in general for other instances of fractional operators
such as the fractional gradient and divergence [55]. Thus, for very small horizons, e.g., for
d ~ ||, we cannot expect solutions to the truncated equation to be accurate approximations
of solutions to the non-truncated one. This fact can be observed in the last column of Table
3 where we report the relative difference, for different values of § between the non-truncated
and truncated solutions; as expected, for very small §, the truncated solution is significantly
different than the non-truncated one. These results are reported as a reference and their

importance will be clear after we describe the impact of our algorithm.

In order to reproduce the singularity in (8.2) we slightly modify the kernel expansion
(3.11) by dividing each basis function B, by |z — y|* instead of 92 where « is an
additional tunable parameter. This means that we augment the set of parameters to be
optimized within our algorithm by adding a. Furthermore, due to the positivity of the
fractional kernel (8.2), we only perform the first stage of Algorithm 1 to learn the coefficients

C and the parameter . Recall that, as mentioned in the introduction, fractional equations
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are master equations of stochastic processes and, as such, their kernels represent (positive)
jump rates.

We generate the training set Dyain = {(us, fi)}, by computing solutions of the fractional
Laplacian equation with s = 0.75 in Q = B;(0), a ball of radius 1 and centered at 0, and
exterior condition g = 0 in R?\ . in We sample 50,000 forcing terms f; as in (7.2) and
(7.3), and obtain the corresponding solutions w; by evaluating the integral

ui(x) = G(x,y) fi(y)dy,
B1(0)
using the trapezoidal quadrature rule, where G is the Green’s function [54]. We test our
algorithm for several values of  and various order M of the basis, initializing a to be 0.
In Table 3 we report the relative difference between the test solution for forcing f = 1 and
fractional order s = 0.75 and the solution obtained by solving the nonlocal problem (2.2)
with kernel K*. While a higher order does not necessarily yield a better prediction, for
higher values of §, as expected, we obtain a much better approximation. As a reference we
also report the difference that one would obtain by simply truncating the kernel (8.2). These
result show that it is possible to obtain relatively accurate solutions to fractional equations
at a much cheaper cost by using compactly supported fractional-type kernels learned from

fractional data.

5 relative difference
order = 0 | order = 5 | order = 10 | order =20 | truncated kernel
) 9.46% 7.93% 16.8% 19.8% 319%
o 15.4% 22.89% 23.5% 26.0% 182%
gl 13.2% 8.57% 10.0 % 7.2% 98%
g0 3.97% 1.76% 2.37% 2.88% 48%
2 0.84% 2.18% 1.84% 3.43% 23%
9 1.59% 4.25% 3.66% 1.95% 15%

Table 3: Relative difference between the analytic solution with forcing f = 1 and fractional order s = 0.75
and the solution obtained in correspondence of the reconstructed kernel for several values of § and different

basis orders.

9. Conclusion

In this work we have presented an optimization framework for discovering sign-changing
nonlocal models from high-fidelity synthetic data. In the nonlocal community there are
several open questions about the derivation of such models from first-principles, and the

data-driven approach presented here can provide guidance regarding what models emerge

25



naturally from data. The fundamental property we have pursued is a guarantee that learned
models be solvable - this ensures robustness without requiring access to complicated PDE-
constrained optimization codes, and may be implemented in popular optimization packages
such as Tensorflow [56] and PyTorch [57]. While we worked with Bernstein polynomials
for ease of implementing the resulting inequality constraints, an interesting area of future
research would be to consider whether incorporating deep learning architectures into this
framework provides benefit. Working with polynomials assumes regularity in the underlying
kernels, while e.g. shallow ReLU networks would allow parameterization of discontinuous
kernels [58, 59)].

While we have focused on simple one-dimensional experiments for ease of presentation
and to ensure examples are easily reproducible, the results demonstrate the potential impact
this framework may have for range of important problems. We have demonstrated in Section
6/ how one may use this approach to perform coarse-graining without incorporating restrictive
and mathematically complex derivations. In Section [7, we illustrated the instrumental role
sign-changing kernels have deriving reduced-regularity nonlocal versions of high-order PDEs,
which have been shown previously to be fundamental in resolving high-frequency response
of certain solid materials [17]. In Section |8, we see that one may extract computationally
efficient compactly supported models providing sparse discrete operators that accurately
approximate fractional operators with infinite horizons. This is particularly promising as
a means of deriving preconditioners and O(n) solvers for fractional systems, as naive dis-
cretizations provide dense matrices which require complex hierarchical preconditioners to
solve efficiently [60, 61]. However, these examples provide only a first sample of possible
directions to learn data-driven nonlocal models, and we pursue in future work application of
this framework toward large-scale datasets more representative of open problems in science

and engineering.
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