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An Implementation of SISAL
for Distributed-Memory Architectures
Abstract

This thesis describes a new implementation of the implicitly parallel functional
programming language SISAL, for massively parallel processor supercomputers.
The Optimizing SISAL Compiler (OSC), developed at Lawrence Livermore
National Laboratory, was originally designed for shared-memory multiprocessor
machines and has been adapted to distributed-memory architectures. OSC has
been relatively portable between shared-memory architectures, because they are
architecturally similar, and OSC generates portable C code. Howe.ver,
distributed-memory architectures are not standardized — each has a different
programming model. Distributed-memory SISAL depends on a layer of software
that provides a portable, distributed, shared-memory abstraction. This layer is
provided by Split-C, a dialect of the C programming language developed at U. C.
Berkeley, which has demonstrated good performance on distributed-memory
architectures. Split-C provides important capabilities for good performance:
support for program-specific distributed data structures, and split-phase
memory operations. Distributed data structures help achieve good memory
locality, while split-phase memory operations help tolerate the longer
communication latencies inherent in distributed-memory architectures. The
distributed-memory SISAL compiler and run-time system takes advantage of
these capabilities. The results of these efforts is a compiler that runs identically -
on the Thinking Machines Connection Machine (CM-5), and the Meiko
Computing Surface (CS-2).
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1 Introduction

“16,384 processors make short work” — MPP project motto [ Sc85]
11  History of SISAL
SISAL (Streams, Iteration, in a Single Assignment Language) is a special purpose
functional language intended to be a comfortable, expressive and efficient
alternative to FORTRAN for parallel scientific computing. The language was
developed in a collaborative effort between Lawrence Livermore National
Laboratory (LLNL), Colorado State University, the University of Manchester, and
Digital Equipment Corporation. SISAL was initially defined in 1983 (v1.0),
revised in 1985 (v1.2), and branched into two main development directions
[Mc93]. Version 2.0 of the language was defined by Colorado State University
and LLNL, but was never implemented. SISAL-90 is being developed at LLNL
and will incorporate features from SISAL 2.0, as well as features from
FORTRAN-90 [Fe95].

The goals of the SISAL project, given in [Fe90], are: to create a general
purpose language that lets scientific programmers concentrate more on solving
. problems and less on implementation issues; to invent optimization techniques

for high-performance parallel computing; to provide dataflow computing on
~conventional hardware; and to prove that applicative (functional) computing can
be used for scientific computation.

In 1995, what can we state about the success of the SISAL project? Has it
met its goals? SISAL is implicitly parallel, so that while a programmer need not
be concerned with the low-level details of parallel machines, his choice of
algorithm will affect how much parallelism the compiler can realize. Still, all
issues such as parallelism management, communication and synchronization are
handled by the compiler and the runtime system, without involving the SISAL
application programmer. This meets the first stated goal quite well.



In the areas of functional language optimization, SISAL implementors
have pioneered in the areas of dataflow optimization for non-dataflow
architectures, copy elimination and modify-in-place analysis (both critical for
applicative languages to perform well), and parallelism detection and utilization
[Ca92]. The current release version of the SISAL compiler supports loop-level
parallelism — earlier versions provided function-level and producer-consumer?
parallelism.

SISAL has proven the viability of functional languages for scientific
computing. Worldwide, there are more than 250 users of SISAL at 75 sites, and
there are yearly conferences and workshops devoted to the language. SISAL is an
efficient alternative to imperative languages even running sequentially. Recent
comparative studies discussed in [Mc93] show SISAL performing only 5 to 20%
slower than FORTRAN wilen running comparable algorithms on a single
processor, but 10% faster on 8 processors, without any source code changes in the
SISAL program.

SISAL has also proven to be a fruitful tool for research. Several groups
outside of LLNL have used the SISAL language and compiler as starting points
for new languages [Sa95]. One researcher has implemented an APL compiler that
generates SISAL as its target language. There are also implementations of
FORTRAN, C, Ada, Pascal and Id, that generate the same intermediate form as
SISAL, and use SISAL’s back end.

1 Also called streams. An experimental version of the SISAL compiler was recently released that
supports stream parallelism.



12  Future of SISAL

Since SISAL is an implicitly parallel functional language, it has been remarkably
versatile in taking advantage of disparate architectures. At present, SISAL runs
on more than seventeen different platforms, from running sequentially on UNIX,
DOS, and Macintosh workstations, to running in parallel on shared-memory
multiprocessors such as the Encore Multimax, and utilizing vector processing on
the Crays. However, SISAL has not been available for the latest generation of
parallel computers, distributed-memory, massively parallel processor (MPP)
machines, which require significantly different programming techniques.

MPP computers provide a large number of processing elements (PEs)
which contain a memory module and one or more processors, interconnected by
a “scalable” communication network. ([Ku94] provides a godd survey of
communication networks.) Communication between PEs is often explicitly
programmed, rather than being hidden by virtual memory or cache hardware?.
Since MPPs typically do not provide a global address space, and the current
SISAL compiler only generates code for shared-memory machines, getting SISAL
programs to run on MPP hardware has required a substantial engineering effort,
as this thesis will show.

1.3 Scope of the Thesis

This thesis describes the modification of the Optimizing SISAL Compiler (OSC)
for distributed-memory, massively parallel processing (MPP) supercomputers.
Section 2 provides an overview of the SISAL system, presents some of the issues
of compiling for distributed-memory architectures, and describes how these

issues are addressed in the distributed-memory SISAL system.

2The Cray T3D does provide hardware that translates a virtual address into a node and physical
address, but must still be programmed explicitly. Split-C hides this.



Section 3 describes the construction of the new distributed-memory SISAL
system. The work proceeded in four phases: (1) identifying the requirements of
compiling for MPP machines, choosing a target language and shared memory
abstraction that would be portable between MPP machines, and studying the
original shared-memory compiler to plan the modifications; (2) rewriting the
run-time system, implementing the necessary changes for MPP machines and
testing it on a real MPP machine (the CM-5); (3) hand-modification of the output
of the SISAL compiler to function with the new run-time system, and using these
results to modify the code generator to emit MPP-compatible code; (4) moving
the compiler to a different MPP architecture to demonstrate the portability of the
implementation.

Finally, section 4 examines the performance of distributed-memory SISAL,

suggests improvements, and discusses related work.



2  SISAL Compiler Overview

Since the Optimizing SISAL Compiler (OSC) was originally designed for shared-
memory multiprocessors, it had to be extended to satisfy the requirements
imposed by MPP architectures. This section provides an overview of the SISAL
system, discusses MPP architecture requirements, and how they can be

accommodated by distributed-memory SISAL.

21 A Tour of the SISAL System

A large portion of the Optimizing SISAL Compiler is devoted to converting a
SISAL program into data flow graphs, and improving these graphs with a variety
of machine—independent‘ obﬁmizaﬁons. These sections of the compiler are
described in detail in [Ca92a]. The discussion here will focus on the lowest level
portions of the SISAL system: the run-time system and code generator.

211 SISAL’s Run-Time System

SISAL’s Run-Time System (SRTS, pronounce like “certs”) is written in the C
programming language, and provides services used by all SISAL programs.
-SRTS provides a main () function for stand-alone SISAL programs (programs
written entirely in SISAL), structured sequential I/O, memory management, task
scheduling, and performance monitoring.

The function main (), used by stand-alone SISAL programs, processes
command-line arguments, initializes SRTS, reads program inputs, and then calls
the user’s SISAL program, which is C code generated by the SISAL back-end.
After the program executes, main.() generates performance diagnostics, and

prints the program results.



Because SISAL provides a rich set of data-types, representing program
inputs and outputs is difficult. To make this easier, SRTS implements a language
called FIBRE for expressing the inputs and outputs of a SISAL program [Ca92b].
FIBRE is used to describe all possible SISAL values, which can be scalar values
(character, integer, floating point), arrays of scalar values, strings (arrays of
characters), arrays of arrays (to support multi-dimensional arrays), unions, and
records. Since user-defined data structures vary from program to program,
FIBRE routines provide primitive I/O operations for use by compiler generated
routines for user-defined data. Since SISAL is a purely functional, and
deterministic language, all SISAL 1/0O is performed sequentially; inputs are read -
at the start of the program, and outputs are written at the end.

When SRTS is initialized, (by default) a large block of memory is allocated
for the exclusive use of the running SISAL program. If the program needs more
memory than is allocated at startup, the run-time system signals an error and
terminates the computation. In response to this, the user can specify that more
memory be allocated with a command line option. Once this memory is
allocated, it is never given back to the operating system, but is instead managed
by the run-time system. Instead of deallocating unused memory, blocks of
unused memory are placed on various free lists, so they can be reused quickly.
This was done to increase the performance of memory management, as general
purpose memory allocators provided by the host operating system were found to
be too slow.

A running SISAL program consists of sequential sections that run on only
one processor (the master), and parallel sections that run on all available
processors (the workers). SISAL is an implicitly parallel language, and parallelism
is realized in the form of loops in which all iterations can be executed

independently. To execute a loop in parallel, SISAL “slices” the loop into sub-



tasks which compute a fraction of the total number of iterations of the loop. The
SISAL compiler specifies how loops are sliced, but the run-time system
distributes loop slices to the workers as independent tasks. At the beginning of
each parallel loop, these tasks are created by SRTS, and placed in a queue for the
workers to execute. To help avoid memory contention (hot-spots), SRTS uses a
separate queue for each worker. When the workers finish the tasks, they notify
the master, which can proceed only after all tasks complete.

The simplest strategy for task allocation is that a loop of n iterations is
divided up among p processors into n/p loop slices of contiguous loop indices,
and each worker is given a single slice. If necessary, the user can request strided
(non-contiguously indexed) and variable sized slices (e.g. using guided self-
scheduling), by issuing appropriate command line options to the SISAL compiler
and run-time system. The run-time system also supports multiple levels of loop
slicing, where nested parallel loops are further sub-divided when there is
sufficient parallel work to warrant it.

The above architecture requires that SRTS maintain shared data structures
for memory management (the free lists) and task distribution (the work queues),
as well as shared lock variables for synchronization. MPP architectures do not
provide direct support for such shared data structures, and require that
programs written in a shared-memory style be rewritten using explicit
communications. This would require a major rewrite of SRTS, doing away with
shared data structures, and using messages for all data exchange and
synchronization. Since the data structures uéed_ to represent loop slices use
pointers to the actual data needed to perform the computation, using messages
rather than shared data structures would require copying this data into message
buffers, and could present significant overhead. Moreover, a loop body might

not touch all the elements of input data, thus the cost of communication might be



wasted. What is needed is a way to support shared data structures on MPP
machines® in a way that does not require such drastic changes and provides a

degree of portability so that SISAL can be used on a wider variety of machines.

2.1.2 Back-End Code Generator

The Optimizing SISAL Compiler (OSC) translates SISAL source programs into a
data-flow graph intermediate form called IF [Sk85, We86}. Each successive phase
of the compiler reads in the IF representation, applies a series of optimizations
and transformations, and then writes out the results for the next phase. The final
phase of the compiler, known as IF2GEN, translates IF into C, which is then
passed to the host operating system’s C compiler.

IF2GEN generates a single C source file consisting of several distinct
sections. The important sections are the file prologue, the functions and loop slice
bodies, and the file epilogue. The file prologue contains #include directives, data
type declarations, and array copy functions. The second major section contains
code that implements the user’s program, including functions to compute the
loop slices. The file epilogue contains global data declarations and initializations,
the function sisailMain() (if a stand-alone SISAL program), and, finally, FIBRE
functions for reading and writing the user-defined data structures (records and
unions).

The next section examines the requirements of programming for
distributed-memory architectures, and suggests how these requirements can be

met by an enhanced SISAL system.

3Cray has predicated the design of its T3D MPP on providing efficient support for shared data
structures. Hopefully, this will become a trend. Tera’s Multithreaded Architecture (MTA) goes
even further.



22  Distributed-Memory Programming Model
Distributed-memory architectures provide a programming model that is
fundamentally different from shared-memory architectures. In the distributed-
memory model, processoré can only communicate by explicitly exchanging
messages and cannot access each other’s memory directly. This explicit exchange
of messages is programmed using “send/receive” communication primitives,
which are provided in a library by the system manufacturer. A message passing
program is structured so that for every send that occurs on one processor, a
corresponding receive must eventually occur on the processor that is the target of
the send, otherwise the program will never complete. A detailed discussion of
message passing programming is given in [An91].

In contrast, in the shared-memory programming model, any processor can
read or write arbitrary memory locations, independently of other processors,
with the trade-off that consistency (by mutual exclusion) must be explicitly
programmed using synchronization primitives (semaphores, lock variables, for
atomic operations). Message passing programming does not require explicit
synchronization, as the send/receive operations provide implicit “rendezvous”
synchronization [An91].

Although the power of the two models is equivalent, it is generally easier
to implement message passing in terms of shared-memory operations (via
message queues and locks), rather than vice-versa. However, since distributed-
memory architectures do not support shared-memory operations in hardware,
programmers are usually required to use message passing on these machines.

Another issue that arises in the message passing model is the lack of a
standard message passing library that runs on multiple MPP platforms. Each
vendor provides its own imiplementation, designed espedially for its platform.

While all message passing systems are similar, the details of each has made



portability difficult. Recently, two standards have been gaining acceptance, the
older PVM, and the newer MPI, but their use is not universally accepted, as they
tend to under-perform the vendor-supplied libraries (performance still matters).

Still, despite the proliferation of libraries for message passing
programming, the shared-memory programming model, if it can provide
reasonable efficiency, tends to be preferred by most programmers (and it is the
model that SISAL was originally designed for). One reason for this is that many
algorithms are easier to write (and understand) for shared-memory machines,
especially those problems which are most naturally represented using linked
data structures (e.g. graph algorithms). This is important — no matter how fast a
machine is, how eaéy it is to program is a serious consideration.

Perhaps MPP manufacturers should concentrate on providing
communication architectures on which either programming model can be built.
This was asserted in [Ei93] as the rationale for the design of a new
communications architecture known as “active messages” which supports both
message passing and shared-memory programming models, and is designed
specifically for MPP n;achines. Active messages has formed the basis of work on
new programming languages that hide the details of interprocessor

communications, and provide programmers with a unified shared-memory

viewt.

2.3  Implications for SISAL
Since the SISAL system was originally designed for shared-memory hardware,
the above discussion suggests several approaches for targeting distributed-

memory hardware:

4 Active messages are now supported directly by Thinking Machines’ CM-5.
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1. Use a standard message passing library (e.g. PVM or MP]) to perform
all interprocessor data movement.

2. Implement and use shared-memory operations on top of message
passing.

3. Retarget the compiler to a higher-level language that provides shared-
memory operations on distributed-memory hardware, based on active
messages.

The first approach would have required drastic changes to the existing
SISAL source code. To use straight message passing, every shared-memory
pointer dereference would have to be replaced with send/receive operations.
This large a change would result in a version of the SISAL system that would
have to be maintained separately from the shared memory versions. The ability
to incorporate the changes for MPP machines into the main sources enhances the
maintainability of the system.

The second approach, implementing a shared-memory abstraction on top
of a message passing system, has been explored in [Ha93a]. Their VISA system
used software address translation to map virtual addresses on to a message
passing system. This technique gave the flexibility of creating replicated and
distributed data structures, but proved to be too costly due to the software
address translation for every memory reference.

We chose the third approach — to retarget the SISAL compiler to a new
dialect of C, Split-C, developed at U. C. Berkeley, that provides shared-memory
operations at the language level [Cu93]. This choice lets us transport SISAL easily
to any platform that supports Split-C. Currently, Split-C runs on the TMC CM-5,
the Meiko CS-2, the Cray T3D, and Networks of Workstations (NOW), and more
platforms are on the way. Since each of these platforms has very different
communications architectures (from the CM-5’s custom hardware interconnects

to NOW’s TCP/IP over ATM networks), Split-C provides abstracts the

11



underlying communications hardware, but provides a powerful programming
model.

The next section describes the Split-C programming language and the
support it provides for distributed shared-memory.

24  Distributed Shared-Memory

SISAL'’s run-time system (SRTS) manages a variety of shared data structures in
order to coordinate the parallel execution of a SISAL program. Therefore it is
important to provide efficient shared-memory support so that the run-time
system does not become a bottleneck to good performance. The following sub-
sections describe how Split-C supports a shared-memory abstraction on

distributed-memory hardware.

24.1 The Split-C Language

Recently a group at U. C. Berkeley, led by Dr. David Culler, created Split-C, a
dialect of the C programming language for distributed computing [Cu93, Lu94].
Split-C maps a shared-memory address space on to the multiple memories of a
distributed-memory computer. This mapping provides a two-dimensional view
of distributed-memory: the first dimension indicates which processor a memory
location resides on, and the second gives the actual address within a given
processing element’s memory. Split-C gives the programmer ultimate control
over how memory will be allocated to a program’s data structures, so that
parallel algorithms can be tuned to keep memory accesses local as much as
possible. Split-C provides a fairly low-level programming model, but its
powerful primitive operations make it well-suited as a target for compiling high-

level languages such as SISAL.

12



One important benefit Split-C provides is that it imposes no performance
penalty (over regular C) when a computation accesses only local dataS. This is
accomplished by extending C’s type system with two new pointer types: global
pointers (declared as type *global identifier) extend the programmer’s reach
by providing a way to access memory locations on any processor; and spread
pointers (declared as type *spread identifier) support data structures that are
distributed across multiple ﬁroc&csors. Split-C retains the semantics of regular C
pointers, to address local memory locations.

An important constraint of MPP architectures is that remote memory
operations can take between 10 to 1000 times longer than local memory
operations. Two major techniques have been developed to tolerate these longer
latencies: multiple threads of execution can be used to keep a processor busy
during high-latency operations, suspending the current thread when remote
memory operations initiate and resuming when they completeb; software
pipelining transforms programs by moving non-blocking communications to an
earlier point in a program, so that computations using local data can be
performed concurrently with communications. The limiting factor in multi-
threading is how many threads a program can be divided into, keeping the
_processor sufficiently busy?.

Split-C directly supports the second technique by providing non-blocking,
“split-phase” communications. A new assignment operator, :=, provides
asynchronous put/get operations. If a global pointer is dereferenced on the left-

side of :=, we have a put, otherwise a get. These operations are weakly ordered,

SStarvation is stilla problem, however. See §2.4.2 for a discussion of polling.

6This has spawned a variety of new architectures that support fast thread switching in hardware,
such as MIT’s Alewife project, and Tera’s MTA.

7This approach has been used in another implementation of distributed memory SISAL [An95] —
see §4.3 for a comparison. .

13



so a new language statement, synch, is provided to force the completion of all

pending puts and gets.

242 The Split-C Programming Model

Split-C provides a Single-Program-Multiple-Data (SPMD) programnﬁng model.
This is a hybrid of the Single-Instruction-Multiple-Data (SIMD) and Multiple-
Instruction-Multiple-Data (MIMD) parallel programming models. Although it
can be shown that SIMD machines can emulate MIMD machines, and vice versa
[Hi85], the MIMD model gets better processor utilization when executing non
data-parallel programs. In. the SPMD model, all processors load the same
program image, but, unlike SIMD machines, the instruction streams are not
synchronized across all processors. Moreover, SPMD programs can emulate
MIMD programs, by choosing the instructions to execute as a function of the
processor number.

While Split-C emulates shared-memory on distributed-memory hardware,
the emulation is incomplete in some respects, and goes beyond shared-memory
in others. Split-C is an incomplete emulation of shared-memory on two counts: 1)
global objects are not shared, sharing is only done via global pointers to objects
(this is not really a problem, but it must be understood to use Split-C effectively);
2) it is possible for processor i to starve processor j if the processor i is involved in
only local computation (no global pointers are in use), and processor j attempts
to dereference a global pointer that refers to processor i's memory. This second
limitation can be alleviated if processor i periodically polls for remote memory

requests.
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3  Implementing Distributed-Memory SISAL

The following sections describe in detail the implementation of distributed-
memory SISAL (DMS). Section 3.1 details -the changes made to get SISAL
running correctly on distributed-memory, and section 3.2 describes the
procedures used to verify the run-time system and compiler. Section 3.3
discusses some simple optimizations that were tried to improve distributed-
memory performance. (Section 4 contains an extended discussion of future

work.)

31  Getting SISAL Running

The following two sub-sections illustrate the components of the Optimizing
SISAL Compiler (OSC) that were changed for running on distributed-memory
architectures. These are respectively, SISAL’s run-time system, and code

generator.

3.1.1 Run-time System Changes
SISAL’s Run-Time System (SRTS), described in §2.1.1, provides support for the
-execution of SISAL programs in parallel. It provides sequential formatted 1/0,

memory management, synchronization mechanisms, and task management.

Transition to SPMD Execution

The first major change to SRTS was the conversion to an SPMD execution model.
Earlier versions of SRTS were designed to begin execution of a parallel program
on a single processor, which “spawns” the worker processor programs. Split-C’s
SPMD execution model requires that SRTS run on all processors, symmetrically.

SRTS now begins execution at a new main entry point, splitc main(), which
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processes command-line arguments and initializes the run-time system on all
nodes.

The effects of the SPMD programming model change rippled throughout
SRTS, requiring many changes, and permitting a few improvements. In many
cases SRTS maintains arrays of data structures, one element per processor, such
as the work queue. In the old run-time system, these arrays had to be initialized
sequentially, by the master processor. Split-C supports distributed arrays, in
which element i resides on processor (i mod p). In the new run-time system, these
arrays are initialized in parallel, which is not only simpler, but faster. Listing 3.1
shows an example of parallel initialization in which each instance of the runtime
system is responsible for initializing its portion of a distributed data structure.

void InitReadyList ()

{

#ifdef DISTMEM MPP
/* initialize in parallel & locally. */
MY INIT LOCK (&ARList [MYPROC] .Mutex);
ARList [MYPROC] .Head = 0;
ARList [MYPROC].Tail = 0;
WorkAvailable [MYPROC] = FALSE;

#else
register int Index;

ARList = (ActRecCachePtr) SharedMalloc(
SIZEOF (struct ActRecCache) * NumWorkers );

for ( Index = 0; Index < NumWorkers; Index++ ) {
MY _INIT LOCK( (&(ARList[Index].Mutex)) );
ARList [Index] .Head 0;
ARList [Index].Tail 0;
}
#endif
}

listing 3.1: Parallel initialization of the distributed task queue

Global Pointers Everywhere
Split-C global pointers support the illusion of shared-memory on distributed-
memory architectures by extending the semantics of C pointer dereferencing to

include interprocessor communication. To explain how global pointers affect
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SRTS, we will examine how they are implemented. Global pointers can be
represented in regular C as a struct, as shown in listing 3.2.

struct GlobalPointer {
int proc; /* processor number */
void *addr; /* local address */

}:

listing 3.2: C representation of a global pointer
When a global pointer is dereferenced, the Split-C compiler implicitly generates a
test to determine if the pointer represents an on-processor location, and if not, a
call to an appropriate communication primitive. To illustrate, listings 3.3 and 3.4
show code for post-incrementing an integer referenced to by global pointer, in

Split-C and in the equivalent C code.

int post_increment (int *global x)
{

int old x = *x;

int new_x = old x + 1;

*x = new_x;

return old x;

listing 3.3: Split-C post-increment code

int post_increment (GlobalPointer x)
{
int old x = (x.proc == MYPROC ?
*(int*)x.addr : __i_ read(x.proc, x.addr);
int new_x = old x + 1;
if (x.proc == MYPROC)
*(int*)x.addr = new_x;
else
_ i write(x.proc, x.addr, new x);
return old x;

listing 3.4: Equivalent C post-increment code

SISAL-generated code is well-suited to use global pointers, because it
makes extensive use of dynamically ’allocated data structures. Getting the SISAL
run-time system running under Split-C required converting pointer variables to
global pointer variables. To simplify this task, C typedefs were used whenever
JPpossible to change the meaning of pointer types from local to global. Many of the
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type names used by the run-time system were defined with C typedefs
(originally macros) that defined the pointer to the type, such as the type defined
for SISAL arrays shown in listing 3.5. ' |

typedef struct Array *ARRAYP;

listing 3.5: Typedef for SISAL array data type
Listing 3.6 shows the change to the pointer type to use global pointers.

typedef struct Array *global ARRAYP;

listing 3.6: Typedef for global pointer to SISAL array
This change seems simple, but it exposed portability problems in the

original run-time system. The pervasive assumption that pointers are the same
 size as integers, and the lack of ANSI C prototypes8 for functions that accept
pointers became a problem in the new run-time system, because global pointers
are in general larger than local pointers (see listing 3.1), and hence global pointers
are larger than integers. Since there were no function prototypes in the original
sources, global pointers would be implicitly truncated to integer size, essentially
corrupting their values. Creating prototypes for all exported functions solved this
problem. However, there were also numerous instances of pointers to built-in C

data types (i.e. char*), that had to be converted by hand to (char *global).

Memory Management

The original run-time system was written for systems with a single shared
address space. This assumption permitted the use of a simple memory
management algorithm: pre-allocate a large block of memory, allocate memory
by incrementing a pointer into this block, and deallocate by placing free blocks

into “free lists,” which are searched using a best-fit or first-fit criteria for

8Prototypes are generally placed in C header files, and provide a way to ensure consistent calling
conventions between the caller of a function and the function itself.



. subsequent allocations. Unfortunately, this type of memory management
algorithm is not well-suited to distributed-memory machines, because it assumes
all memory can come from a central pool. This centralized pool is impractical due
to the limited amount of memory available in each node. By allocating memory
on all nodes larger problems can be solved by using more nodes. A central pool
would also be a performance bottleneck.

The first version of the distributed run-time system used a simple
adaptation of this algorithm, except that a block of memory was allocated on
each processor, and an independent local pointer was used by each processor to
keep track of allocations. This initial design did not support deallocation, so it
was limited in the size of problems that could be solved. (§3.2 discusses simple
improvements in the design of the memory allocation that removed this

restriction.)

Distributed Synchronization

Split-C provides barriers and atomic operations (test_and_set, and
fetch_and_add) for performing synchronization. While these mechanisms are
required by SRTS, they are much more expensive to use in a distributed-memory
_system, and in many cases their use can be minimized. (See §3.2 for a discﬁssion

of why their use should be minimized and how this was accomplished.)

3.1.2 Code Generation Changes

The Optimizing SISAL Compiler (OSC) is a multiple pass compiler that performs
a wide variety of optimizations for producing efficient code. The final pass of the
compiler, IF2GEN, generates code in the C programming language. This section
describes how IF2GEN was modified to generate Split-C compatible code.
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Global Pointer Conversion
The same pointer conversions that took place in the run-time system were
required in the compiler generated code, so typedefs were used to create pointer
types that encapsulate the use of global pointers. IF2GEN génerates C structures
to represent the parameter lists of every function in a SISAL program. Since
pointers to these parameter structures are used extensively in the generated C
code, these had to be converted to global pointers. Rather than changing
instances of (struct Params *) to (struct Params *global) everywhere in the
compiler, typedefs were generated so that (Paransptr) could be used instead.
Another vital piece of code used by every SISAL program was the C
header file “sisal.n.” IF2GEN relies on C macros contained in this file, which
define a simple abstract machine code. A benefit of this design is that changes
can be made to the operation of the generated code by editing this header file
without modifying the compiler?. This header file also had to be modified to be
Split-C compatible. Many macros were of the form shown in listing 3.7.

#define AddOp(type, dest, opl, op2) \
*(type*)dest = * (type*)opl + * (type*)op2

listing 3.7: Macro for addition of any types
Given this macro definition, the statement addop (float, &x[i], &y[jl, &z[k]);
results in the ﬂoating-point. addition of the j-th element of array y to the k-th
element of z, and stores the results in x[i]. When the statement is compiled by
Split-C, the operands can come from anywhere in distributed-memory, so the
(type*) cast is not correct in general. Thus, for every macro of this form, all
instances of (type*) had to be converted to (type *global). This code is perhaps
overly general, because it imposes some additional tests for every pointer

operation (see listing 3.3), but it is correct.

9A drawback is that the resulting C code is often impenetrable, and hard to debug.
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Structure Copying
A problem with Split-C occurs when using global pointers on both sides of an
assignment statement, as in listing 3.8.

struct stype { int x, y; }:
struct stype sl, s2, *global gpl, *global gp2;

gpl = &sl;
gp2 = &s2;
*gpl = *g-pz;

listing 3.8: Typedef for global pointer to SISAL array
In any given statement, Split-C only supports either one or more global pointer

reads from, or a single global pointer write. Many macros in “sisal.h” contained
this type of structure copying code. To produce correct code under Split-C, a
local variable must be used to read from the first global location, and then the
local copy is written to the second global location. This transformation is so
straightforward, that the Split-C compiler could be easily modified to do this
automatically.

Run-time Global Initialization

IF2GEN 'creates complex global data initialization statements in which elements
of structures are initialized to addresses of other global variables. Split-C does
not support the compile-time initialization of global pointers, and so this
initialization had to be moved to run-time. Fortunately, a routine that initializes
global data (1nitGlobalbata()) was already being generated — additional code to

perform the global pointer initializations was added to this routine.



3.2  Compiler Verification
The correctness of the new compiler implementation was verified empirically by
running a set of standard test programs. The simplest parallel program used is
shown in listing 3.9.

define main

function ArrayOfN(n : integer returns array[integer])
for i in 1i,n
returns array of i
end for

end function

function main(n : integer returns arrayl[integer])
ArrayOfN(n)
end function

listing 3.9: Simple SISAL program to build an array in parallel

This program was chosen for its extreme simplicity and for the ease of
understanding the resulting C program generated by the compiler. This
permitted the hand modification of the compiler output in order to verify the
correctness of the run-time system, and to guide the modifications to the code
generator.

Once the run-time system was working, the compiler was modified to
generate code identical to the hand-modified C code. The next step was to choose
a more ambitious test program, which uncov;ered latent bugs in the run-time
system and code generator. This iterative process of choosing more and more
complicated test programs worked well and progress was steadily made toward
a fully functional system.

Another way to ensure the correctness of the compiler was to get it
running on a completely different platform. As soon as the compiler was stable
enough, it was ported from the CM-5 to the Meiko CS-2, which helped to

uncover additional bugs.



3.3  Optimizations for Distributed-Memory

This section examines a few simple optimizations to the distributed-memory
SISAL run-time system, after it was running correctly. §4.1 analyzes the benefits
of these optimizations and suggests future work.

3.3.1 SISAL Run-Time System Optimizations
SISAL’s run-time system contains several shared data structures that were
considered for simple optimizations. These are shared signal variables, the work

queue, and the memory manager.

Replicated Condition Variables
The run-time system uses shared variables to control the execution of a SISAL
. program. The master processor uses shared boolean variables to signal the
workers when work is available, and when to exit the program. The initial
version of the distributed run-time system allocated these condition variables on
the master processor, requiring all other proceséors to read them from across the
network. This generated network traffic, but produced no useful work.
This type of traffic, caused by continual polling, can be reduced to nothing
by taking advantage of the fact that this is one-way communication only, from
the master to the workers. If these condition variables are replicated, and made
local to each worker processor, all polling traffic can be eliminated, until the
master sends the signal. This optimization was implemented by replacing each
signal variable with a distributed array, and having each processor poll its local
element. The master processor now signals a particular condition by looping

over all the elements of the distributed array, and writing the appropriate value.



Distributed Task Queue

The first version of distributed-memory SISAL’s run-time system (DM-SRTS)
used a central work queue, located in the master processor’s memory. Worker
processors would periodically inspect this queue to see if any work is available.
Before any worker could safely inspect the queue, it would first have to lock the
queue by performing an atomic update of a shared lock variable (a global pointer
initialized at startup of the run-time system). After obtaining the lock, the worker
would then examine the contents of the queue, and take an item of work (if
available), and then unlock the queue by clearing the lock variable.

This design had several deficiencies, which are compounded by a
distributed-memory architecture. First, having a centrally located queue means
that the master processor has to service every request (via polling) to permit the
worker processors to examine the lock variable and queue. Second, a large
amount of network traffic is generated even when there is no work to do! Two
enhancements were made to this design.

The first enhancement was to transform the central work queue into a
distributed array of queues, one per processor. Each worker then examines its
own work queue for work to do, and generates no network traffic when no work
is available. The master processor puts work into the workers’ queues, rather
than a worker getting work from the master. The second enhancement was to
add a replicated signal variable to indicate the availability of work, to save the
workers’ having to examine their queues when no work is available. This allows
the workers to avoid having to lock their queues until there is something in them.
To ensure consistency, the master only asserts the condition while it holds the
worker’s queue lock, and the workers only clear the condition while they hold
the lock.
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Distributed Memory Management

To correct the memory management limitations of the first version of DM-SRTS,
a new algorithm was developed. This algorithm, designed for Split-C, uses the
standard C library routines malioc() and free() to perform memory
management on each node. When one processor (the allocator) allocates a block
of memory on behalf of another processor, the pointer is converted0 to a global
pointer. When a processor is finished with remotely allocated memory, it places
the pointer in a free list located in the allocator’'s memory. The next time the
allocator needs more memory, it first checks the free list to see if any blocks have
been pla.ced there, and calls f£ree () on them before trying to perform new
allocations. This should give acceptable performance as reasonable
implementations of malloc() and free () will coalesce adjacent free blocks to
minimize heap fragmentation. This is also beneficial in that it takes platform-
specific knowledge out of SRTS, which enhances portability.

10Split-C pointers can be converted from local to global by type casting.



4 Results & Discussion

This section will provide a preliminary examination of the performance of
distributed-memory SISAL, on a small set of parallel programs from the SISAL
literature. The programs have been run with versions of the run-time system
with the simple optimizations discussed above, to measure their effectiveness.
The section closes with a comparison to related work, suggestions for future

work, and conclusions.

41  Performance Studies

The greatest difficulty in producing meaningful performance measurements is
choosing problems that are simple enough to fully analyze, and yet
representative of real problems. For this reason, problems were chosen from the
SISAL literature that are readily understandable, and yet are similar to more
complex problems. The first problem is an implementation of John Conway’s
famous cellular automaton, Life, which simulates an abstract biological system.
The second problem, an iterative Laplace heat equation solver, was used in
[Ha93b] to study the performance of another implementation of distributed-
memory SISAL. The final problem studied was matrix multiplication, which
exhibits a large amount of parallel work, but has pessimal communication

patterns.
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4.1.1 Performance Studies of Life
The SISAL program for Life is included in the appendix, §A.1. The high-level
algorithm used in the Life program is as follows:

I. Create a random starting configuration of R rows and C columns. This
consists of 1’s and 0’s placed randomly in an RxC grid. 1 means a cell is
alive, and 0 means a cell is dead (or absent). Pad the grid with 0’s all
around the perimeter (thus grid is actually (R+2)x(C+2).
II. Compute the next generation according to the following rules:
A. if a cell is alive, and >5 of its neighbors are alive, the cell dies
from overcrowding.
B. if a cell is absent, but has >=3 neighbors, a cell is born.
C. otherwise, nothing happens.
III. Repeat for N iterations.

If R=C =10, and N = 2, and we have the initial random configuration shown in
the left half of figure 4.1, the final configuration will be that shown in the right
half.
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oj]1j0j0|1]1]1|D}jOjO]|O]O ojtjoiojofjt1|(t}j1i1j0]o0]|oO
o|jojt1jojojt1j{1it1io|t1|ojo ojtjofjojoj1|t1j1jt1j0}lo0]|oO
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figure 4.1: Life evolution, 10x10 Initially, and after 2 iterations

If we study the Generate function in section A.1, we see that it implements
step I of the algorithm. Although each row is built sequentially (for initial

loops are sequential), the outer loop, ranging over the number of rows, gathers



the results of each inner loop (which is a single row) into an array of arrays,
allowing the rows to be built in parallel. On a system with W workers, the SISAL
run-time system will give each worker R/ W rows to create. Since SISAL
represents two-dimensional arrays as “arrays of arrays”, the resulting grid will
be built as a distributed data structure, with the rows created by a given worker
residing in that worker’s memory.

The powork function implements step II of the algorithm. As in the
Generate function, the outer loop traverses over all the rows, and the inner loop
computes new rows. Here the inner loop is not constrained to be seqﬁential, if
there were enough processdrs, we would assign a single processor to compute
each new cell, and compute successive generations in constant time. By default,
though, the compiler only slices outer parallel loops, thus the rows will be
traversed in powork by the processor that created them in Generate!l.

Tables 4.1 and 4.2 show the running times and speedups for Life running
on a 64-node CM-5, for various problems sizes from 100x100 up to 1000x1000.
The speedups are based on the single-node performance of the Split-C runtime

system on the CM-5, as no sequential SISAL implementation was available.

Problem Size: 100x100 Problem Size: 250x250 "
PEs Time {sec) Speedup Time (sec) Speedup
1 5.33596 1.0 32.9267 1.0

4 2.01455 2.6487 11.5079 2.8612

8 1.00511 5.3088 5.22836 6.2977

16 0.581456 9.1769 2.73545 12.037
32 0.447704 11.9185 1.85134 17.785
0.349898 15.250 1.16183 28.3404

table 4.1: CM-5 Life performance for 100x100 & 250x250 grid size

1This is not completely correct, as each processor will access a single row above and below their
slice boundaries, but this is unavoidable.
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Problem Size: 500x500 Problem Size: 1000x1000
Time (sec) Speedup Time (sec) Speedup
1 145.592 1.0 574.0 1.0
4 49.639 i 2.93 196.114 2.93
8 22.2091 6.5555 85.1081 6.74
16 10.8963 13.3616 40.8928 14.037
6.56673 .22.1712 24.9315 23.02
3.9476 36.881 14.4458 39.74

table 4.2: CM-5 Life performance for 500x500 & 1600x1000 grid size

This problem has good locality, and reasonable speedups. Figure 4.2
shows the speedups curves for the data given in tables 4.1 and 4.2.

Speedups for Conway's Life
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figure 4.2: Life speedups for 64 processor CM-5

This machine could not run the 1000 square problem size on a single node, so
that result is extrapolated from an average of 2.93 speedup for 4 processors.

The plot shows a slightly super-linear speedup between 4 and 8
processors for the 1000x1000 grid size. This can be explained by better cache
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performance as the amount of data per node is reduced. Efficiency goes up as
problem size increases, not surprisingly, as there is more work for each processor
to do that is local.

The same program was run cn a Maiko CS-2 for the same problem sizes,
on 32 processors. Tables 4.3 and 4.4 give the results. While the Meiko gives better
absolute performance (approximately 3-5 times faster) for the same program and

run-time system (no source code changes to either), the speedup curve in figure

4.3 shows much lower efficiency.

100%100

" Problem Size: Problem Size: 250x250
PEs Time (sec) Speedup Time (sec) Speedup
1 1.57881 1.0 8.75142 1.0
4 1.50254 1.050761 7.12026 1.369531
8 0.868915 1.816990 3.88358 2.510936
16 0.699814 2.256042 2.38497 4.088697
32 0.598727 _2.636945 1.73075 5.634216
table 4.3: Meiko Li‘e rerformapr~2 for 109x100 & 250%259 grid size
Problem Size: 500x500 Problem Size: 1000x1000
PEs Time (sec) Speedup . Time (sec) Speedup
1 70.0468 1.0 153.821 1.0
4 29.1789% 2.400598 111.18 1.383531
8 14.2844 4.903727 54.0704 2.844828
16 8.33382 8.405125 28.1333 5.467578
32 4.86964 8.405125 16.2469 __59.467714

table 4.4: Meiko Life performance for 500x500 & 1000x1000 grid size
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figure 4.3: 32 processor Meiko CS-2, 2 iterations

412 Performance Studies of Laplace
The Laplace program (given in the appendix §A.2) was used to study the
performance of another implementation of distributed-memory SISAL in
[Ha93b]. An interesting puzzle came up while studying this program. If we
compare Laplace with Life, they have very similar structure. However, the
| performance of the original program as given in [Ha93b] is very different from
Life. Simply put, Life goes faster with more processors, whereas Laplace actually
slows down.
The original Laplace program from [Ha93b] is provided in §A.2.1. This
version of the program does not exhibit parallel speedup, even when compared
to its sequential running time with the distributed run-time s'ystem. Table 4.5

shows this program’s dismal performance on a 256x256 grid.
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Matrix Size: 256x256 il
PEs Time (sec) Speedup I
1 21.406 1.0
4 107.771 0.198625
8 105.969 0.20200
16 108.416 0.19744
32 106.702 0.20062

table 4.5: Original Laplace performance for 256x256 grid size

Several simple transformations to the program were attempted, with little
success. However, when the program was changed to take advantage of the
constant boundary conditions of the problem, we find that the first and last rows
and first and last columns are in fact loop invariants. This observation lets us
remove the test

if (I=1 | I =N | J=1 | J=N) then
from the inner loop of the Laplace function. This simple optimization was
enough to make the difference between no parallel speedup and actual speedups.
The results are shown in tables 4.6 and 4.7.

Matrix Size: 256x256 Matrix Size: 512x512
PEs Time (sec) Speedup Time (sec) Speedup
1 13.9495 1.0 64.7404 1.0
4 9.15779 1.523239 29.8246 2.170705
8 6.05997 2.301909 19.6748 3.290524
16 4.33537 3.217603 12.237 5.290545
3.69366 3.776606 9.38018 6.901829

" Matrix Size: 1024x1024 "
PEs Time (sec) Speedup "
1 223.66 1.0
4 112.216 1.993120
8 61.8501 3.616162
16 41.4315 5.398308
32 ___25.1166 __8.904868

table 4.7: Modified Laplace performance for 1024x1024 grid size



Comparison to Single Node SISAL

The Laplace program was also compiled with a single node version of SISAL on
the Meiko, and the distributed version was able to outperform the single node
version using more than 16 processors. A 1024x1024 grid (10 iterations) took 19.3
seconds on 64 processors, 25.6 seconds on 32 processors, 38.4 seconds on 16

processors, and 38.4 seconds on single node SISAL.

4.1.3 Performance Studies of Matrix Multiplication

- Matrix multiplication is a i/ery important parallel application that does not
always perform well on distributed-memory machines. A simple formulation of
the algorithm in SISAL appears in §A.3.1. This is a naive way to perform this
algorithm in SISAL, because traversing a single column is much slower than
traversing a row, because of the representation of two-dimensional arrays in
SISAL. A very simple change, pre-transposing the right hand matrix (§A.3.2),
allows the elements of the matrices to be traversed row-wise, and gives much

better performance, as the results in tables 4.8 and 4.9 show (kmax = 1).

10x10 50x50 100x100__ |

PEs Time (sec) Time (sec) Time (sec) ||
1 0.0165464 1.6049 12.6117

4 0.131157 15.3429 115.951 ||
8 0.105396 12.221 97.2437

table 4.8: Matrix Multiplication without pre-transposition

10x10 50x50 100x100

PEs Time (sec) Time (sec) Time (sec)

" 1 0.0063352 0.0602764 0.222308
4 0.0167822 0.341258 1.24258

. 8 0.017565 0.289028 0.963906

table 4.9: Matrix Multiplication with pre-transposition
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Although running the algorithm sequentially gives better performance in both
cases, the speedups of the pre-transpose algorithm are striking. These are

summarized in table 4.10.
" 10x10 50x50 100x100
PEs Speedup Speedup Speedup
1 2.61182 26.625678 56.730752
4 7.815245 44,959825 93.314716
IL 8 6.000342 42.283101 100.885045

table 4.10: Relative speedups using pre-transposition

Other algorithms exist that perform better than this naive matrix multiply.
These algorithms divide each matrix into sub-matrices, which are distributed
among more processors (up to 7n2 processors can work on the matrix rather than
n processors) [Ku%4]. These algorithms can and should be adapted to SISAL,
because they should perform better on distributed-memory machines.

42  Related Work

There have been several distributed-memory SISAL projects. [Ha93a] describes
an implementation of SISAL for the nCube, which uses a software-based virtual
addressing scheme on top of message passing, to provide a global shared address
space for OSC. They also extend the run-time system with multi-threading and
hierarchical task distribution, techniques which allow the run-time system to
adapt itself to the characteristics of a particular machine, or application.

[Pa93] describes retargeting SISAL to Intel Touchstone i860 systems
(Gamma, Delta and Paragon). They argue that loop-level parallelism is
insufficient to employ the high degree of parallelism available on distributed-
memory machines, and concentrate on scheduling algorithms for functional

parallelism. Their work involved modifying the phase of the compiler



responsible for parallelizing SISAL programs, and adding scheduling of
functional parallelism. They also adapted the run-time system to use message
passing to perform interprocessor data exchange.

In [An95], a more recent effort is discussed which uses a com.bination of
fine-grained parallelism (stackless threads called “filaments”), with virtual
memory hardware initiated communication (i.e. when a page fault occurs, if the
page is “remote” it is requested from the “owner” of the page). The latency of a
page fault is tolerated by providing lots of fine-grained threads to do work
during communication. This approach is limited by the inherent parallelism of a
problem. Also, the use of virtual memory “protected” pages is not as portable as
using Split-C to provide a global address space. In fact, an implementation of
Split-C uses this scheme to provide global addressing on networks of
workstations (NOW).

We are not aware of other work that enjoys the same portability as our
distributed-memory SISAL built upon Split-C. The use of Split-C as an abstract
machine insulates our compiler from the multitude of incompatibilities between
different distributed-memory architectures.

4.3 Conclusions & Future Work
This project has laid the foundation for the development of potentially higher
performance MPP SISAL implementations. The work has concentrated on the
restructuring of the run-time system, because these improvements benefit all
programs.

The portability of distributed-memory SISAL has been demonstrated.
SISAL now runs on the Thinking Machines CM-5 and the Meiko CS-2. Once the
CM-5 version was working and fully debugged, the Meiko version was up and
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running within two days. As soon as Split-C compilers appear on other
platforms, distributed-memory SISAL will soon follow.

More improvements to the run-time system can and should be made. An
important enhancement will be the dynamic allocation of one-dimensional arrays
as distributed spread arrays. This will help to reduce communications when an
array is created by multiple workers; each worker will perform only local-
memory writes. Spread arrays will also help to reduce memory contention that
occurs when an array is read by multiple processors12. Since arrays of greater
than one-dimension are implemented as arrays of pointers, a similar
optimization can be performed for these arrays, by distributing outer dimension
arrays, which contain pointers to the inner dimension arrays.

Another run-time system improvement will involve the mechanism for
distributing work to the workers. Loop slices are represented in a data structure
called the “activation record” (listing 4.1).

struct ActRec {
GLOBAIL_POINTER ArgPointer; /* TASK ARGUMENT */

int AuxArgument; /* AUXILIARY TASK ARGUMENT */
void (*ChildCode) (); /* TASK ADDRESS */

int SliceBounds[3]; /* LOOP SLICE CONTROL INFO */
ActRecPtr NextAR; /* FORWARD QUEUE LINK */

int Done; /* IS THIS TASK DONE YET? */
int pid;

int Flush;

}:
listing 4.1: Data type for activation records
The C data type struct ActRec contains all of the information necessary to
execute a loop slice: the field argpointer contains a global pointer to an
application-specific record containing the inputs to the slice, and the outputs
produced by the slice; childcode holds a pointer to the C function representing

the slice body; siiceBounds provides the lower and upper bounds of the loop,

125ISAL’s single-assignment semantics also allows another optimization: data replication.
However, the cost of the extra communication to do the replication might be too prohibitive.



and the loop stride. A simpie improvement to the run-time system would be to
pre-allocate activation records on the processor they will be used on. Then, when
the master processor creates loop slices, the run-time system can use put
operaﬁoris to broadcast the activation records, asynchronously.

All of the improvements suggested above require the capability to allocate
memory on all processors simultaneously. The Split-C library provides a
function, a11l_spread_malloc (), which allocates spread arrays dynamically, but
must be called by all processors, like a barrier. To utilize this, an additional phase
will have to be added to the sequential-parallel execute cycle. This phase will be
an “allocate” phase in which the master processor instructs the other processors
in how many calls to all_spread malloc() should occur, and with what
parameters. In a sense, this is just another type of parallel task, but these tasks
must be performed strictly sequentially and in synchrony.

Additional performance gains will be obtained by performing distributed-
memory specific optimizations on the compiler generated code. Here are some
possibilities:

* Cache/replicate read-only data structures, such as the argpointer field
of slice activation records, to avoid repeated remote references. This has to
be done in the compiler generated code because its layout is not known to
the run-time system.

¢ Reorder communications and unroll loops so that communication and
computation can be overlapped. This can be done by using optimization
techniques being developed for the Tera MTA [Mi95].

¢ Improve local memory access performance by converting pointers to
local addresses when possible. This is important because every global
pointer reference imposes a test (as shown in listing 3.1) which results in
branch pipeline stall. Several techniques can be used to address this
problem: setting branch prediction bits; compiling different loops for local
and remote memory accesses, hoisting the tests outside of the loops;
generating optimal code at run-time, using dynamic code generation.
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Appendix

A1  SISAL Program: Life

This program is derived from an example given in [Ca92b], with minor

corrections. The original version only functioned with square grids. The program

given here does not include the random number package used to create the

initial grid.
define Main, rans, ranf

%

% John Conways Game of Life. Values of the Grid are 0s or 1s. A given

function Convert ( Seed:0neDim returns integer, OneDim )
let
Number, NewSeed := ranf( Seed );
V := if Number < 0.5D0 then 1 else 0 end if;
in
V, NewSeed
end let
end function

function Generate( Rows,Columns:integer returns Grid )
let

Seed Stream := rans(Columns,1);

First := array £ill(0,Columns+l,0);

Last := array fill(0,Columns+l,0);
Core := for i in 1,Rows
Row := for initial
j = 1;

V,Seed := Convert( Seed Stream[i] )

while ( j < Columns ) repeat

j :=01d j + 1;

V,Seed := Convert( old Seed ):;
returns array of v
end for;

% cell has 8 neighbors. On each iteration, the cells are updated as

% follows:

% -- If a cell contains a 1 and more than five of its neighbors contain
% ls, then it should become a 0.

% +—- If a cell contains a 0 and from three to five of its neighbors

% contain 1s, then it should become a 1

% -- otherwise the value of a cell remains unchanged.

% The simulation of life iterates Iterations times. The boarder of the
grid

% is always zeros.

%

% Main(Iterations,Rows,Columns)

%

-
’
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returns array of array_addl(array_addh(Row,O),0) % [0, Row,

0]
end for
in
array addl (array_ addh(Core,Last),First)
end let .

end function

function Compute( G : Grid; I : integer; J : integer returns integer )
let
Total := G[I-1,J-1] + G[I-1,J] + G[I-1,J+1] +
G[I,J-1] + G[I,J+1] +
G[I+1,J-1] + G[I+1,J] + GI[I+1,J+1];
in
if ( Total > 5 ) then 0
elseif ( Total >= 3 ) then 1
else 0 end if
end let
end function

function DoWork( G:Grid; Rows,Columns:integer returns Grid )
let
First

= for i in 0,Columns+l returns array of G[0,i] end for;
Last £

: or i in 0,Columns+l returns array of G[Rows+l,i] end for;
Core := for I in 1, Rows
Mid := for J in 1, Columns
returns array of Compute (G,I,J)
end for;
Row := array_addl( Mid, 0 );
returns array of array_addh( Row, 0 )
end for;
in
array_addl (array_addh(Core,Last) ,First)
end let
.end function

function Main( Iterations,Rows,Columns:integer returns Grid,Grid )
let
Gin := Generate (Rows,Columns);
“in
Gin, for initial
Count := Iterations;
G := Gin;
while ( Count > 0 ) repeat
Count := old Count - 1;
G := DoWork( old G, Rows, Columns ):
returns value of G
end for
end let
end function



A2  SISAL Program: Laplace

This program was used in [Ha93b] to measure the performance of another
distributed-memory SISAL implementation. §A.2.1 contains the original
program. §A.2.2 is a slightly modified version that exhibits parallel speedup.

A.2.1 Original Laplace
This version of Laplace fails to exhibit parallel speedup in a distributed-memory
setting. The next section provides a version that does.

% laplacel.sis
define main

type OneD = array{double real];
type TwoD = array[OneD];

function TwoD_£ill (N : integer returns TwoD)
for I in 1,N cross J in 1,N
el :=
if (mod(I + J, 2) = 0) then
double real(l.0)
else
double real (N)
end if
returns array of el
end for

end function % TwoD_f£ill

function Laplace (Init M : TwoD; N, KMax : integer returns TwoD)
for initial

K :=1;
M := Init M;
repeat
K :=0l1ld K + 1;
M :=
for I in 1,N cross J in 1,N
nM :=
if (I=1 | I =N | J=1 | J=N) then
old M[I,J]
else
old M[I,J) / double _real(2.0) +
(old M[I-1,J] + old M[I+1,J] + old M[I,J-1] + old M[I,J+1])
/
double real (8.0)
end if
returns array of nM
end for

until K >= KMax
returns value of M
end for
end function % laplace



function main (N, KMax : integer returns TwoD)
let
M := TwoD_f£ill (N)
in )
Laplace (M, N, KMax)
end let
end function % main

A.2.2 Modified Laplace
This version of Laplace optimizes the original slightly — the conditional
statements are removed from the inner loop of the Laplace function. This version

gives parallel speedups. See §4.1.2 for a discussion of this result.

% laplace4d.sis
define main

type OneD = array[double real]:;
type TwoD = array[OneD];

function TwoD_f£fill (N : integer returns TwoD)
for I in 1,N cross J in 1,N
el :=
if (mod(I + J, 2) = 0) then

double real(1l.0)

else
double_ real (N)
end if
returns array of el
end for

end function % TwoD_f£ill

function Laplace (MIn : TwoD; N, KMax : integer returns TwoD)
for initial
K :=1;
M := MIn;
while (K < KMax) repeat
K := old K + 1;
MFirst := for J in 1,N returns array of old M[1l,J] end for;
MLast := for J in 1,N-returns array of old M[N, J] end for;

MInner :=
for I in 2,N-1
Row :=
for J in 2,N-1
el := old M[I,J] / double_real(2.0) +

(old M[I-1,J] + old M[I+1,J] +
old M[I,J-1] + old M[I,J+1]) / double real(8.0)
returns array of el
end for;
returns array of
array_addh(array_ addl (Row, old M[I, 1]), old M{I, NJ])
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end for;

M := array_addh(array_addl (MInner, MFirst), MLast);
returns value of M
end for
end function % Laplace

function main (N, KMax : integer returns TwoD)

let

M := TwoD_£ill (N)
in

Laplace (M, N, KMax)
end let

end function % main

A.3  SISAL Program: Matrix Multiply

Two versions of the matrix multiply algorithm are given. The second is a simple

modification of the first which pre-transposes the right hand matrix.

A.3.1 Simple Matrix Multiply

% mmult0.sis
define main

type TwoDim = array [ array [ double real ] 1;

function Gen( n : integer returns TwoDim, Twodim )
for i in 1, n cross j in 1, n
returns array of double_ real (i) /double_real (j)
array of double_real(i)*double real (j)
end for
end function % Gen

function Mmult( n : integer; A, B : TwoDim returns TwoDim )
for 1 in 1, n cross j in 1, n
c :=forkin i, n
t := A[i,k] * Bk, j]
returns value of sum t
end for
returns array of c
end for
end function % Mmult

function main (n, kmax : integer returns TwoDim )
for initial
k :=1
A, B := Gen( n )
while (k < kmax) repeat
k := o0ld k + 1;
A := Mmult(n, old A, B)
end for



45

end function % main

A.3.2 Pre-Transposed Matrix Multiply

% mmultl.sis
define main

type TwoDim = array [ array [ double real 1 1;

function Gen (n : integer.returns TwoDim, Twodim)
for 1 in 1,n cross j in 1,n
returns array of double_real (i) /double_real(j)
array of double_real(i)*double_ real (Jj)
end for

end function % Gen

function Mmult (n : integer; A, BT : TwoDim returns TwoDim)
% assumes that BT is already transposed.
for i in 1,n cross j in 1,n
¢ := for k in 1,n
t = A[i, k] * BT(j, k]
returns value of sum t
end for
returns array of c
end for
end function % Mmult

function Transpose (n : integer; M : TwoDim returns TwoDim)
for i in 1,n cross j in 1,n
returns array of M[j,i]
end for

end function % Transpose

function main (n, kmax : integer returns TwoDim)
for initial

k :=1;
A, B := Gen(n);
BT := Transpose(n, B);

while (k < kmax) repeat
k := 0ld k + 1;
A := Mmult(n, old A, BT):
returns value of A
end for
end function % main
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