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3 Abstract

Quantifying in-situ subsurface stresses and predicting fracture development are critical to reducing
risks of induced seismicity and improving modern energy activities in the subsurface. In this work,
we developed a novel integration of controlled mechanical failure experiments coupled with
microCT imaging, acoustic sensing, modeling of fracture initiation and propagation, and machine
learning for event detections and waveform characterization. Through additive manufacturing (3D
printing), we were able to produce bassanite-gypsum rock samples with repeatable physical,
geochemical and structural properties. With these "geo-architected" rock, we provided the role of
mineral texture orientation on fracture surface roughness. The impact of poroelastic coupling on
induced seismicity has been systematically investigated to improve mechanistic understanding of
post shut-in surge of induced seismicity. This research will set the groundwork for characterizing
seismic waveforms by using multiphysics and machine learning approaches and improve the
detection of low-magnitude seismic events leading to the discovery of hidden fault/fracture
systems.
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5 I Geoscience Research & Applications
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6

• Motivations

• Mechanical testing of Geo-architected rocks

• Machine learning applications at laboratory scale

• Machine learning applications at field scale

• Geological CO2 storage

• Unconventional resources & recovery

0



7 I Background & Motivations

• Motivations

• Fluid injection or withdrawal causes changes in pore pressure, resulting in

induced seismicity during subsurface energy activities

• Reduce risks of induced seismicity and improve subsurface energy activities
(unconventional resource recovery, geological carbon storage, geothermal

energy recovery)

• Goals

Induced (human-caused) seismicity

Direct fluid pressure
effects of injection

(fluid pressure
diffusion)

Well Fault

Increase in pore
pressure along
fault (requires

Permeable high-permeability
reservoir/ pathway)
aquifer

Changes in solid stress
due to fluid extraction or injection

(poro-thermoelastic effects,
changes in gravitational loading)

itti
Permeable

reservoir/aquifer

\lcittb,Dcrwtty, utyr*i il:45F,?

Fault

Change In loading
conditions on fault
(no direct hydrologic
connection required)

USGS: http://earthquake.uscis.gov/Research/induced/modeling.php

(1) Delineate fracture and failure mechanisms using well-controlled experiments

(2) Determine poro-elastic coupling mechanisms that lead to induced seismicity

during fluid injection into subsurface (Chang et al., 2018; Chang and Yoon (2018))

(3) Develop/apply machine-learning techniques for seismic wave data analysis and event detection

• Approaches

An ambitious integration of controlled mechanical failure experiments coupled with micro-

CT imaging, acoustic sensing, modeling of fracture initiation and propagation, and machine
learning for event detections and waveform characterization



Linkage between geomechanical and geophysical processes in mechanical
8 discontinuities

• Precursor(s) to the induced seismicity from existing
fault/fracture systems is key

• Changes in the spectral contents of waveforms are likely due to
wave propagation + faulting processes - initiation, propagation
and coalescence of pre-existing discontinuities loaded in mixed
mode I-11-111 (Damage Mechanics Challenge, AGU 2019 session)

Mode 11 Mode 111

Fluid Flow
/  N.

Contact
ApertureArea

A./
Fracture Stiffness

1

Seismic Attenuation
& Velocity

Courtesy from Pyrak-Nolte

Fracture
mechanisms
in geothermal
reservoirs

Hydraulic

Holtzman et al. Sci Adv 2018



9 I Precursors to Slip along a Mechanical Discontinuity
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► Increase in transmitted shear wave amplitude prior to
achieving the peak shear stress
► Post pre-peak seismic response depends on the

frictional characteristics of the interface

Need to determine how these results apply in a more realistic setting with spatial and temporal
variations in pre-existing discontinuities, stress and pressure fields, fluid migration and rock types
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• Motivations

• Mechanical testing of Geo-architected rocks

• Machine learning applications at laboratory scale

• Machine learning applications at field scale

• Geological CO2 storage

• Unconventional resources & recovery



11 Integrated approach for geomechanical and geophysical measurements

Geo-architected Rock
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12 I Powder Based 3D Printing Process

powders

SEM HV: 20.0 kV WO: 42.07 min
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13 Geo-architected Rock

A geo-architected rock is a rock analog that is fabricated and structured
using conventional or unconventional methods to develop controlled
features in specimens that promote repeatable experimental behavior.

*Material Properties I

*Unconfined Compressive Strength Test

*Ultrasonic Compressional & Shear Wave Measurements

*Tensile Failure of Geo-Architected Rock I
(three point bending test)



14  Rock Variability: "Shale"
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15 I Observations of Fracture Resistance in Layered Geological Media

A. A thin section of Mancos shale
after Indirect tensile testing

Quartz

Geo-architected
Rock

B. Lateral strain based on digital C. Phase field modeling results
image correlation measurements (crack initiation Et propagation)

Anaft-ter CH)

di2
No crack

= 1

= 0
Fracture

Na et al. (2017, JGR); Yoon et al. (2019, AAPG Memoir 102)



16 Three Point Bending Experiments: Repeatability
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17 I Observation of Seismic Anisotropy in 3D Printed Samples
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18 Wave Velocity for 3D Printed Samples
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19 Load-Displacement Behavior
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20 Fracture roughness and mineral texture

Strongest

High
Amplitude

Corrugations I

ic (a) Arrester H

If
' .• ••1
•

3

`7411' X
-4 -2 0 2 4
Deems (rron)

(c) Arrester Halt

-4 -2 0 2 4
Distance Own)

(b) Divider V11

(d) Divider VVaIt

oWbs.

-4 -2 0 2 4
Distance (wen)

-4 •2 0 2
Delano? (emu

Weakest

(e) Short Traverse V
';
a
441114(Ain.p,„, LI C.

t 
r•J:_

I 11.1 -oui

1141%811-
-2 0 2
min rCil rrtrn)

4

I (f) Short Traverse Valt

4 -2 0 2 4
Distame Irnrrl

Jiang et al. (Sci Rep 2020, In press)



21 1

■ Motivations

■ Mechanical testing of Geo-architected rocks

■ Machine learning applications at laboratory scale

■ Machine learning applications at field scale

■ Geological CO2 storage

■ Unconventional resources & recovery
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Experimental Setup

H 1

• Six sensors (Channels)

• 200-400 kHz filter to

get rid of noise

Cast Sample
C22, C33, & C23

H Sample
dCH1, dCH2, & dCH3



23 1

6 Samples
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24 1 Acoustic Data
Goal:
1. Apply machine learning features to find patterns in the data.
2. Filter out noise to target significant events.

3. Identify precursors to failure.
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25 Simulations of crack initiation and acoustic emission

- 3 point bending with a central notch (2D, ABAQUS)
- Crack propagation and acoustic emission (XFEM)
- 6 sensor nodes sampling at 8 MHz
- 1-3 for training, 4-6 for testing
- Limestone material properties (homogeneous)
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Acoustic state clustering by
slicing simulated data into 8
window sets containing pre-
crack (1), crack (2) and post
crack (3-8) waveforms

ML: fingerprint and K-means cluster
(Holtzman et al. 2018)

- Clustering: acoustic state Et mechanical state
- Spectrogram (Short Time Fourier Transform)
- Non-negative Matrix Factorization
- Hidden Markov Model (S states)
- K-means cluster
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26 Waveform Analysis for Machine Learning Applications
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27 Machine Learning Applications for Waveform Analysis
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- Mechanical state clustering by comparing waveform evolution in the UCS test.
- Waveforms correspond to 3 stages in the loading curve, namely
- A) initial loading slope, B) max load region, C) post-failure region.



28 1

■ Motivations

■ Mechanical testing of Geo-architected rocks

■ Machine learning applications at laboratory scale

■ Machine learning applications at field scale

■ Geological CO2 storage

■ Unconventional resources & recovery



29 Current Computational Approaches [DOE EFRC Project 2009-2018]

• Various numerical methods (e.g. finite element, finite difference, lattice
Boltzmann) and experimental methods have been used to study multiscale,
multiphysics processes (flow, reactive transport, mechanical deformation, etc)
during carbon sequestration
• Next generation scientific computing (e.g. exascale high performance
computing) and new waves of machine learning and artificial intelligence change
the landscape for simulating complex, dynamic, and non-stationary processes
• Realtime forecasting of CO2 flow, pressure propagation, and induced seismicity

CO2 gas phase flow in a water saturated sand box
Sand packing CO2 gas saturation Sierra/Aria PFLOTRAN MIP

°
0 5

II— 0 0

-MOP `.111=Er

High Fidelity Pore Scale Reactive Transport

Experiments and Modeling
la) Microscopy image at 24 hr during the dissolution phase

--(*)--•(Th

(c) PH distribution

ifiVV44")e'

Yoon et al. (2012 WRR, 2015 RiMG, 2019 ES&T)

(f) Calcite SR (ca 3)

00.5
Coupled multiphase flow and mechanical deformation
(Sierra/Aria-Solid Mechanics, Martinez et al., 2017, Newell et al. 2017)

Critical Shea

1.29e.
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11111111
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Fault
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30 I Poroelastic coupling effect on injection-induced seismicity

• Poroelastic coupling 1019

• Stress equilibrium equation lois

V • [G (x)Vu] + [ 
G (x) 

1-2v (x) V • u 1 
a (x)Vp I-F f =0

• Inhomogeneous diffusion equation

ap 1
S (x) — - - V • [k (x)V13] =at n

a
- a (x) —

at 
(v • u) Q (x , t)

• Full poroelastic coupling is defined by Vp in the equilibrium equation, acting
as body forces in the stress equilibrium, and V • u in the diffusion equation.
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Atkinson et al. (Seism. Res. Lett., 631-647, 2016)
where S, (Pa- i) is the specific storativity and Ai (Pa) and G,. (Pa) are the Larne elastic parameters, and ai(—) is the
Biot-Willis coefficient representing the ratio of changes in the fluid volume to the total bulk volume for deforrna-
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Chang, Yoon, Et Martinez (BSSA, 2018), Chang and Yoon (JGR, 2018), Change et al. (Sci. Rep., 2020)



31 I Poroelastic coupling effect on injection-induced seismicity

► Strike-slip fault(s) are modeled in a 2-D horizontal domain
► Injection for 5 days with the rate of 0.1 [kg/m/s] and then shut in to evaluate post

shut-in behaviors
► Coulomb stress change (AT = fAp+(ATs+fAan)) from the initial stress state is obtained
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= Rt. io

ta = characteristic decaying time

• R is the seismicity rate relative to an assumed
prior steady-state seismicity rate at a
background stressing rate

1



32 I Integration of Machine Learning with Fundamental Studies and Field Scale Data
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33 I Realtime Forecasting of CO2 Storage with Realtime Data Integration

DOE SMART Initiative:
Science-informed Machine Learning to Accelerate Rea I Time (SMART) Decisions in Subsurface Applications
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Tavakoli & Yoon (2013, WRR), Synthetic case based on an actual CO2

injection pilot test in Cranfield, MS

• Accurate prediction of CO2 saturation at a monitoring well
• All algorithms are unable to correct the structural orientation
of the permeability field using only the sparse dynamic data
from wells, suggesting that structural uncertainty should be
incorporated into prior information

Concentration
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Yoon et al. (2008, 2013, WRR)
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Lee, Yoon et al. (2016, WRR), 3D MRI Continuous spatial-

temporal tracer experimental data (>2 million concentration

data). Scalable subsurface inverse modeling of "big" dataset

using "Jacobian-free" geostatistical inversion method

Sandia ML task for the SMART Initiative:
• Large-scale hierarchical Bayesian inversion coupled with ML
classifiers (e.g., fuzzy logic or random forests) or high-
dimensional input-output relationships with deep-learning neural
networks (e.g., convolutional neural networks, recursive neural
networks)
• Data-driven modeling of CO2 flow and pressure prediction with
realtime data integration
• Virtual learning tool development



Machine learning applications for fault detection and the presence of hidden
34 faults/fracture networks (in collaboration with ISGS and MIT)

• Improve the detection of low-magnitude,
unidentified events & locations to discover
undetected/hidden fault/fracture systems
• Rapid recognition of the presence of
faults/fault interactions
• Characterize microseismic waveforms, the
relations among the events, and reliable
identification of microseismic sources
integrated with forward/inverse modeling

Target clusters 2 & 4
Two 2-months data Illinois Basin Decatur Project

Microseismic Locations

• Velocity Model: Model 1
Velocity Model Model 2

• Velocity Model: ccsl_v10
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Will et al. (IJGGC 2016)

• Raw continuous data (100's TBs) - lOs windows
• Detected event data (-19K data) - 2s windows

.1, manual selection
• Located event data (-5K data) - 2s windows



35 I Various machine/deep learning approaches for microseismic data

• Supervised ML: Convolutional neural network (CNN) for event
detection and location

Open source ConvNetQuake (Perol et al., 2018)
• Processed data from ISGS will be used to train models
• Trained model will be used to validate again the remaining dataset to

develop real-time recognition of events and locations

• Unsupervised ML: Waveform similarity-based event detection
methods Et Hidden Markov Model a clustering

Fingerprint and Similarity Thresholding (FAST, Stanford FAST group)
• FAST shows the increase in event detection of low magnitude seismicity

by > a factor of 10
• High efficiency in big data processing time

Dimension reduction (Non-negative matrix factorization), Hidden Markov
model, Et clustering
• Distinctive waveform pattern in spectral domain

• Template matching (EQcorrscan)
- This is a refence case whose results will be compared with ConvNetQuake and

FAST for efficiency and interpretability

• Characterization of Microseismic events
- Spectral clustering and regression-based machine learning analysis (e.g.

random forest)
• Identify seismic phases from successive slip or fracturing stage events

and their constitutive wave patterns
• Extract the salient features present in the data set, such as individual

wave types, spectral content, p-s converted waves, and local energy
decay

• Link microseismic data to other measured/simulated quantities (e.g.,
pressure and stress field)
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Thank You!


