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3 1 Abstract h

Quantifying in-situ subsurface stresses and predicting fracture development are critical to reducing
risks of induced seismicity and improving modern energy activities in the subsurface. In this work,
we developed a novel integration of controlled mechanical failure experiments coupled with
microCT imaging, acoustic sensing, modeling of fracture initiation and propagation, and machine
learning for event detections and waveform characterization. Through additive manufacturing (3D
printing), we were able to produce bassanite-gypsum rock samples with repeatable physical,
geochemical and structural properties. With these “geo-architected” rock, we provided the role of
mineral texture orientation on fracture surface roughness. The impact of poroelastic coupling on
induced seismicity has been systematically investigated to improve mechanistic understanding of
post shut-in surge of induced seismicity. This research will set the groundwork for characterizing
seismic waveforms by using multiphysics and machine learning approaches and improve the
detection of low-magnitude seismic events leading to the discovery of hidden fault/fracture
systems.
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Motivations
Mechanical testing of Geo-architected rocks

Machine learning applications at laboratory scale

Machine learning applications at field scale
Geological CO, storage

Unconventional resources & recovery




7 | Background & Motivations
Induced (human-caused) seismicity

Changes in solid stress

‘ MOthB.thﬂS due to fluid extraction or injection
(poro-thermoelastic effects,
. 5 e 3 s 3 s 5 Di fluid changes in gravitational loading)
e Fluid injection or withdrawal causes changes in pore pressure, resulting in attectn or jectioh PAAy

(fluid pressure

induced seismicity during subsurface energy activities difusion) NN ot
. . . s = . e s U U o

e Reduce risks of induced seismicity and improve subsurface energy activities

(unconventional resource recovery, geological carbon storage, geothermal

Cnergy reCOVery> : ™ | Increase in pore

pressure along

fault (requires Change in loading
Permeable high-permeability conditions on fault

reservoir/ pathway) (no direct hydrologic
aquifer connection required)

¢ Goals

USGS: http://earthquake.usgs.gov/Research/induced/modeling.php ‘

(1) Delineate fracture and failure mechanisms using well-controlled experiments
(2) Determine poro-elastic coupling mechanisms that lead to induced seismicity
during fluid injection into subsurface (Chang et al., 2018; Chang and Yoon (2018))
(3) Develop/apply machine-learning techniques for seismic wave data analysis and event detection

¢ Approaches

An ambitious integration of controlled mechanical failure experiments coupled with micro-
CT imaging, acoustic sensing, modeling of fracture initiation and propagation, and machine
learning for event detections and waveform characterization
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Linkage between geomechanical and geophysical processes in mechanical

discontinuities

Precursor(s) to the induced seismicity from existing
fault/fracture systems is key

Changes in the spectral contents of waveforms are likely due to
wave propagation + faulting processes - initiation, propagation
and coalescence of pre-existing discontinuities loaded in mixed
mode I-1I-1ll (Damage Mechanics Challenge, AGU 2019 session)

Mode | Mode 11 Meode Il

Contact

Area

Fluid Flow
3

Aperture

e

Fracture Stiffness

3

J

Seismic Attenuation

& Velocity

Courtesy from Pyrak-Nolte

Fracture
mechanisms

in geothermal
reservoirs

Holtzman et al. Sci Adv 2018
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Precursors to Slip along a Mechanical Discontinuity
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» Increase in transmitted shear wave amplitude prior to

achieving the peak shear stress

» Post pre-peak seismic response depends on the
frictional characteristics of the interface

Need to determine how these results apply in a more realistic setting with spatial and temporal
variations in pre-existing discontinuities, stress and pressure fields, fluid migration and rock types
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Motivations

Mechanical testing of Geo-architected rocks
Machine learning applications at laboratory scale
Machine learning applications at field scale
Geological CO, storage

Unconventional resources & recovery




11 | Integrated approach for geomechanical and geophysical measurements

3PB experiments and simulations
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12 | Powder Based 3D Printing Process

CaS0.-0.5H,0 + 1.5H,0 = CaSO, -2H,0
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Geo-architected Rock

A geo-architected rock is a rock analog that is fabricated and structured
using conventional or unconventional methods to develop controlled
features in specimens that promote repeatable experimental behavior.

*Material Properties
*Unconfined Compressive Strength Test
*Ultrasonic Compressional & Shear Wave Measurements

*Tensile Failure of Geo-Architected Rock
(three point bending test)



14

Rock Variability: “Shale”

Clay minerals

® Radioactive waste storage
A CO2 storage

@ Hydrocarbon extraction

O Other

(Bourg et al., 2015)

Quartz




15 I Observations of Fracture Resistance in Layered Geological Media @
A. A thin section of Mancos shale B. Lateral strain based on digital  C. Phase field modeling results
after Indirect tensile testing image correlation measurements (crack initiation & propagation)

e
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Three Point Bending Experiments: Repeatability (@

Cast Gypsum 140 —orrr 3D PrintedRock
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Jiang et al. (Sci Rep 2020, In press)



17 I Observation of Seismic Anisotropy in 3D Printed Samples
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Gypsum

19 | Load-Displacement Behavior ‘
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20 I Fracture roughness and mineral texture
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Motivations

Mechanical testing of Geo-architected rocks
Machine learning applications at laboratory scale
Machine learning applications at field scale
Geological CO, storage

Unconventional resources & recovery
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Experimental Setup

Cast Sample
C22, C33, & C23

Ay
N

* Six sensors (Channels)
¢ 200-400 kHz filter to
get rid of noise

H Sample
dCH]1, dCH2, & dCH3
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Acoustic Data
Goal:

1. Apply machine learning features to find patterns in the data.

2. TFilter out noise to target significant events.

3. Identify precursors to failure.
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Simulations of crack initiation and acoustic emission

- 3 point bending with a central notch (2D, ABAQUS)

- Crack propagation and acoustic emission (XFEM)
- 6 sensor nodes sampling at 8 MHz

- 1-3 for training, 4-6 for testing

- Limestone material properties (homogeneous)

Acoustic state clustering by
slicing simulated data into 8
window sets containing pre-
crack (1), crack (2) and post
crack (3-8) waveforms

()

ML: fingerprint and K-means cluster
(Holtzman et al. 2018)

- Clustering: acoustic state & mechanical state

- Spectrogram (Short Time Fourier Transform)

- Non-negative Matrix Factorization

- Hidden Markov Model (S states)

- K-means cluster

Fingerprints (S;.1xS;) 2 K-means cluster

Waveform
spectrogram
(FxT

Time (blns

. Non-Negative Matrix Factorization (FxK &
L» Lm——

¥ Hidden Markov Model (SxT)




Freguency (Hz)

Machine Learning Applications
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27 I Machine Learning Applications for Waveform Analysis

10+

05 4

00 4

fingerprint

S 0 10 20 30 40 50 0

hidden state sequence

- Mechanical state clustering by comparing waveform evolution in the UCS test. :
- Waveforms correspond to 3 stages in the loading curve, namely
- A) initial loading slope, B) max load region, C) post-failure region. |
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Motivations

Mechanical testing of Geo-architected rocks
Machine learning applications at laboratory scale
Machine learning applications at field scale
Geological CO, storage

Unconventional resources & recovery




29 I Current Computational Approaches [DOE EFRC Project 2009-2018] )
e Various numerical methods (e.g. finite element, finite difference, lattice BligTh, B Eliyr Rot Sedle REACHRE. Teangpont
Boltzmann) and experimental methods have been used to study multiscale, EXPef‘memS il Madeliug

multiphysics processes (flow, reactive transport, mechanical deformation, etc) ‘ QOG- @@

£\ ‘P
N NaZl ok Bt e B

A
during carbon sequestration A
4 7T

#7 ret

e Next generation scientific computing (e.g. exascale high performance
computing) and new waves of machine learning and artificial intelligence change
the landscape for simulating complex, dynamic, and non-stationary processes

A XK K K ‘ | =
e Realtime forecasting of CO, flow, pressure propagation, and induced seismicity Yoon et al. (2012 WRR, 2015 RiMG, 2019 ES&T)
CO, gas phase flow in a water saturated sand box
Sand packing CO, gas saturation Sierra/Aria  PFLOTRAN MIP Coupled multiphase flow and mechanical deformation
g (Sierra/ Aria-Solid Mechanics, Martinez et al., 2017, Newell et al. 2017)
o L
EES » C D

Critical Shear

-1.13e+06
-5.81e+06




30 I Poroelastic coupling effect on injection-induced seismicity

» Poroelastic coupling A e
e Stress equilibrium equation 10" | Pohang Geothermal 16.0
” D2 155
G (x) g 107 flo .
V.[G(x)Vu] +|7[1 e )]V-u— a(x)Vpf=0 = P’ 150
AR S — - 145
— : € r m A |, '
e Inhomogeneous diffusion equation < #‘—q B
9 10!5 = . . " A A B 14.0
8 Ry % A 135
ap 1 0 B 104} o A
5(x) Frim- V- [k(x)Vp] =|—a(x) 3 (V-uw)+ Q(x, t) ®o |@ Duposn sty ||
r’ 10" A Wastewater - Previous | 1, o
©  Geothermal - Previous E
® @  HF - Previous
10'2 . . " a L 320

10° 10° 10* 10° 10° 107 10°

e Full poroelastic coupling is defined by VP in the equilibrium equation, acting
Net Injected Volume (m®)

as body forces in the stress equilibrium, and V - u in the diffusion equation.

Atkinson et al. (Seism. Res. Lett., 631-647, 2016)
where S; (Pa™!) is the specific storativity and A, (Pa) and G, (Pa) are the Lamé elastic parameters, and «v; (—) is the
Biot-Willis coefficient representing the ratio of changes in the fluid volume to the total bulk volume for deforma-
tion at constant pore pressure. \; = &,/ is the flow mobility, where «, (m?) is permeability and 5 (Pas) is fluid

Chang, Yoon, & Martinez (BSSA, 2018), Chang and Yoon (JGR, 2018), Change et al. (Sci. Rep., 2020)

Moment Magnitude (M)
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Poroelastic coupling effect on injection-induced seismicity

P Strike-slip fault(s) are modeled in a 2-D horizontal domain
» Injection for 5 days with the rate of 0.1 [kg/m/s] and then shut in to evaluate post

shut-in behaviors

P Coulomb stress change (At = fAp+(At +fAc,)) from the initial stress state is obtained
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The moderately high-permeable fault
(green) experiences significant increases
in the seismicity rate (R) after shut-in
because of combining effect of pore-
pressure diffusion and poroelastic
stressing.

i)

Coulomb stress change
At = (Ats + fAoy,) + fAp
L )

Y 1
Poroelastic Pore
stress pressure

Aty = shear stress change
Aoy, = normal stress change
Ap = pore pressure change

f = failure friction coefficient

e (+) values of each quantity imply that the fault
plane is moved closer to failure

Seismicity rate estimate

dR_R T R
dt  t, \ T,

t, = characteristic decaying time

e R is the seismicity rate relative to an assumed
prior steady-state seismicity rate at a
background stressing rate




32 I Integration of Machine Learning with Fundamental Studies and Field Scale Data

MicroCT imaging and flow and mechanical simulations of CO, flow
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33 | Realtime Forecasting of CO, Storage with Realtime Data Integration @)

DOE SMART Initiative:

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

True ln K ﬁeld
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Tavakoli & Yoon (2013, WRR), Synthetlc case based on an actual CO2
injection pilot test in Cranfield, MS

e Accurate prediction of CO, saturation at a monitoring well

e All algorithms are unable to correct the structural orientation
of the permeability field using only the sparse dynamic data
from wells, suggesting that structural uncertainty should be
incorporated into prior information

Concentration
. N 2™ jayer 5" layer 7™ layer

02030405060.708039
< ﬂ “ E
= éér 8735
£ o i
2
N

Lee, Yoon et al. (2016, WRR), 3D MRI Continuous spatial-
temporal tracer experimental data (>2 million concentration
data). Scalable subsurface inverse modeling of “big” dataset

(b)

using “Jacobian-free” geostatistical inversion method

Yoon et al. (2008, 2013, WRR)

Sandia ML task for the SMART Initiative:

e Large-scale hierarchical Bayesian inversion coupled with ML
classifiers (e.g., fuzzy logic or random forests) or high-
dimensional input-output relationships with deep-learning neural
networks (e.g., convolutional neural networks, recursive neural
networks)

e Data-driven modeling of CO, flow and pressure prediction with
realtime data integration

e Virtual learning tool development
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Machine learning applications for fault detection and the presence of hidden
34 | faults/fracture networks (in collaboration with ISGS and MIT)

e Improve the detection of low-magnitude,
unidentified events & locations to discover
undetected/hidden fault/fracture systems

e Rapid recognition of the presence of
faults/fault interactions

e Characterize microseismic waveforms, the
relations among the events, and reliable
identification of microseismic sources
integrated with forward/inverse modeling
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Target clusters 2 & 4

Two 2-months data Illinois Basin Decatur Project
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Various machine/deep learning approaches for microseismic data

Supervised ML: Convolutional neural network (CNN) for event
detection and location
- Open source ConvNetQuake (Perol et al., 2018)
» Processed data from ISGS will be used to train models
« Trained model will be used to validate again the remaining dataset to
develop real-time recognition of events and locations
Unsupervised ML: Waveform similarity-based event detection
methods & Hidden Markov Model & clustering
- Fingerprint and Similarity Thresholding (FAST, Stanford FAST group)

« FAST shows the increase in event detection of low magnitude seismicity
by > a factor of 10

» High efficiency in big data processing time
- Dimension reduction (Non-negative matrix factorization), Hidden Markov
model, & clustering
» Distinctive waveform pattern in spectral domain

Template matching (EQcorrscan)
- This is a refence case whose results will be compared with ConvNetQuake and
FAST for efficiency and interpretability
Characterization of Microseismic events

- Spectral clustering and regression-based machine learning analysis (e.g.
random forest)

« Identify seismic phases from successive slip or fracturing stage events
and their constitutive wave patterns

« Extract the salient features present in the data set, such as individual
wave types, spectral content, p-s converted waves, and local energy
decay

« Link microseismic data to other measured/simulated quantities (e.g.,
pressure and stress field)
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ConvNetQuake CNN Architecture
Perol et al. (2018, SciAdv 2018)
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Earthquake detection methods from
C.E. Yoon et al. (SciAdv 2015)

Holtzman et al. (2018, SciAdv)
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Thank You!



