
2D Block Cyclic
Partitioning for Sparse
Matrices

Seher Acer

Erik G. Boman +

Cevdet Aykanat

♦: Sandia National Labs A : Bilkent University
enillir PM,

Sandia National Laboratories is a rnultimission
laboratory managed and operated by National

Technology & Engineering Soluhions of Sandia.
LLC, a wholly owned subsidiary of Honeywell

international lnc., for the U.S. Department of
Energy's National Nuclear Security Administration

under contract DE-NA0003S2S.

SAND2020-1689C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 lOutline

2D Block Cyclic Partitioning

Extension to Rectangular Matrices

Refinement Heuristic for Improving Load Balance

Experimental Results

I

Conclusion
I

3 2D Block Cyclic Partitioning
[1]
2-phase partitioning for SpMV y = Ax

1st phase: partitioning vectors x and y

A K-way graph/hypergraph partitioning

Vertex i = row i and entries xi and yi

x and y have the same partition: conformal

2nd phase: partitioning matrix A

Determine K x K blocks in matrix A

Assume virtual K=QxR process layout

Assign Q blocks to each of R processes

Cycle along the row dimension

P1

P2

P3

P4

P5

96

P2 P3 P4 P5 P6

A

P1 P3 P5

P2 P4 P6

[1] Boman et al., "Scalable matrix computations on large scale-free graphs using 2D graph partitioning", SC'13.

4 1 2 D Block Cyclic Partitioning
\A/0-il it good?

Communications occur only along

The columns of the virtual mesh

At most Q — 1 messages while expanding x entries

The rows of the virtual mesh

• At most R — 1 messages while folding y entries

• Maximum message count = ONTO

- Critical for scale-free graphs/matrices

. Graph partitioning in the first phase

• Addresses communication volume

• Tries to balance computational workload

• Cheal compared to the checkerboard
hypergraph partitioning model [2]

P4

P5

P6

1

Y

0

0

Pi P2 P3 P4 P5 P6
. I

V

I

I

T

I
i

T
I

1

I
i

i
1
T
1
1
1

If

/1

A

i i
Pi) 93 J:

92 94 P6

[1] Boman et al., "Scalable matrix computations on large scale-free graphs using 2D graph partitioning", SC'13.
[2] Catalyurek and Aykanat, 'A hypergraph-partitioning approach for coarse-grain decomposition", SC'01.

5 2D Block Cyclic Partitioning [1]
Extending the model to
nonconformal partitions

However...
i

• Only for conformal vector partitions

• There can be scale-free rectangular matrices!

• Graph partitioning in the first phase does
not correctly capture computational load

4

Proposing refinement heuristic to
reduce computational imbalance

(Communication volume was already

Not expected to dominate the runtime

Focus is scale-free graphs/matrices!

Not captured correctly due to using a graph
instead of a hypergraph [2])

9 1 92 93 9 4 9 5 9 6

EiD

P3

x

[1] Boman et al., "Scalable matrix computations on large scale-free graphs using 2D graph partitioning", SC'13.
[2] Catalyurek and Aykanat, 'A hypergraph-partitioning approach for coarse-grain decomposition", SC'01.

6 1 Extension to Nonconformal
Partitions
How to find smart partitions for x and y?

Use a bipartite graph [1] in the first phase

row i = row vertex vr

• column j = column vertex vy

• nonzero ai = edge between vr and vy

2-constraint partitioning

1st weight of vT: number of nonzeros in row i

2nd weight of 1

Partition on y = partition of row vertices

Partition on x = partition of column vertices

y2

Y3

Y4

Y5

Y6

.1;

X1 X2 X3 X4 X5 X6

A

0
0
0
0
0
0

coo
[1] Hendrickson and Kolda, "Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing", SISC, 2000.

7 Proposed Refinement Heuristic

Formulation

load(cr, f3) = number of nnzs assigned to pco

Consider load(1,2) in the figure

= parts assigned to row cr

• Cfl = parts assigned to column f3

load(cr, f3) = nz(Ra,

cfl

El
MIIME
(111E NI

MiiiiNEM
•ANALE
=I

P1

P2

P3

P4

P5

P6

1

P1 P2 P3 P4 P5 P6
■

C 2

~1 93 •

~P2 94

8 Proposed Refinement Heuristic

Objective:
1

minimize max load(cr, f3)
, 13 P2

Algorithm: P3

start with an initial part-to-process mapping p4

while not converged P5

find a process Pax with the maximum load p6

let Pax = map(Pk)

for each other part Te E Ra (mapped to row a)

• compute the gain of swapping Pk with Pf

• for each other part Pi) E CI? (mapped to column)6') gti
• compute the gain of swapping Pk with Pi)

• perform a swap with the maximum gain

P1 P2 P3 P4 P5 P6
■

C 2

93
•

~P2 94

9 Proposed Refinement Heuristic

A horizontal swap of Pk and 33'e

Let loco = map (Pk) and pa,y = map (Pe)

for each Pt s.t. nz (Pt, Pk) # 0

Let Pt E R8

load(6, fl) <— load(6, fl) — nz(3)03)k)

load(6,y) <— load(6,y) + nz(PoPk)

for each Pt s.t. nz (Pt, Pe) # 0

• Let Pt E R8

• load(6,)6') <— load(6,13) + nz(3)03)-e) R
• load(6,y) <— load(6,y) — nz(3)03)-e)

Cost Analysis:
1) cost(swap) = 0 (M), where M is max part degree
2) cost(swap) = cost(computeGain)

3) cost(iteration) = cost(findMax) + a cost(swap) = 0 (K + ma)

R6

a

cfl Cy

0000 0
1CD 10,01C1

!CIO

avg no of iterations = 10

io I Proposed Refinement Heuristic

Swap example:

P1

P2

P3

P4

P5

P6

rnap
(r)
x 1

..)
x 3

rn
X 5

93'2 P4 9C)61y

P1 P2 P3 P4 P5 P6

10 0 0 6 0 6

0 12 0 0 0 2

3 0 15 4 0 0

0 1 2 12 2 0

0 2 5 0 13 0 il

3...mii fi r,13

load

1
2

15 30 19

18 18 17

swap
Pl and P3

P3

P2

P1

P4

Ps

P6

•

map

P3 P1 P5

0 P4 P6

P3 P2 P1 P4 P5 P6

15 0 3 4 0 0

0 12 0 0 0 2

0 0 10 6 0 6

2 1 0 12 2 0

5 2 0 0 13 0

0 2 3 4 jiimh.1.3

load'

1

2

22 23 19

17 19 17
1 2 3 1 2 3

I Experiments
Datasets

Scale-free matrices from the SuiteSparse matrix collection [1]

Scale-free: at least one dense row/column in the matrix

• Dense: at least 1% of entries are nonzero

Three datasets

: 34 symmetric matrices

• sql : 77 square but not symmetric matrices

• rec : 32 rectangular matrices

[1] Davis and Hu, "The University of Florida sparse matrix collection", ACM TOMS, 2011.

12 I Experiments
2D block cyclic partitioning with nonconformal vector partitions

Baseline: 1D bipartite graph partitioning [1]

Proposed: uses the baseline model in its first phase

Normalized results w.r.t. the baseline model [1]

dataset K
maximum

computation

communication volume number of messages

maximum average maximum average

squ

64 0.93 1.75 1.28 0.31 0.43

256 0.76 1.89 1.26 0.20 0.45

1024 0.54 1.44 1.21 0.14 0.58

4096 0.33 0.68 1.16 0.10 0.77

rec

64 1.19 1.68 1.67 0.25 0.35

256 1.20 1.18 1.43 0.16 0.36

1024 1.08 0.85 1.25 0.13 0.50

[11 Hendrickson and Kolda, "Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing", SISC, 2000.

13 I Experiments

Refinement heuristic on

Baseline: 2D block cyclic (2DBC) partitioning with conformal partitions

with standard graph partitioning in the first phase

Normalized results w.r.t. the baseline 2DBC

dataset K
maximum

computation

communication volume number of messages

maximum average maximum average

sym

64 0.91 1.03 1.02 1.00 1.01

256 0.83 1.03 1.02 1.01 1.01

1024 0.80 1.05 1.03 1.01 1.02

4096 0.75 1.05 1.03 1.00 1.03

squ

64 0.92 1.04 1.05 1.01 1.03

256 0.88 1.08 1.05 1.02 1.02

1024 0.81 1.07 1.04 1.01 1.02

4096 0.83 1.05 1.02 1.00 1.01

14 I Experiments

Refinement heuristic on

Baseline: 2DBC partitioning with nonconformal vector partitions

with bipartite graph partitioning model in the first phase

Normalized results w.r.t. the baseline 2DBC

dataset K
maximum

computation

communication volume number of messages

maximum average maximum average

sym

64 0.89 1.65 1.22 1.01 1.03

256 0.88 1.28 1.07 1.01 1.01

1024 0.87 1.09 1.02 1.01 1.01

4096 0.85 1.05 1.01 1.00 1.00

squ

64 0.90 1.60 1.24 1.00 1.02

256 0.87 1.27 1.07 1.01 1.02

1024 0.86 1.04 1.02 1.00 1.01

15 I Experiments

Running time of the refinement heuristic:

Heuristic runtime normalized w.r.t. the graph

partitioning runtime

K

conformal partitions

(standard graph model)

nonconformal partitions

(bipartite graph model)

sym squ squ rec

64 0.8% 0.8% 0.3% 0.3%

256 0.8% 0.7% 0.4% 0.4%

1024 1.6% 1.3% 0.7% 1.2%

4096 9.9% 6.1% 3.3%

16 I Experiments

E

.E 2-2

E

2

E
E 22

E

2-2

E

2

2-3

ASIC 320k

64 256 1024

number of processors

circuit5M

barrier2 —2

7, 23

u

E

4096 64 256 1024
number of processors

64 256 1024

number of processors

rajat2l

E

2-2

dc2

boyd2

o 0 2D
 2D-R

E
.E 2-2

E

2

4096 64 256 1024

number of processors

 2D

7 7 2D R

4096 64 256 1024
number of processors

r
u
n
t
i
m
e
 (
in

 m
s
)

2

2 2

Stanford Berkeley

2-1

r
u
n
t
i
m
e
 (
in

 m
s
)

ipl

c—big

4096 64 256 1024

number of processors

o o 2D

 2D-R

4096 64 256 1024

number of processors

o o 2D

2D-R

E

E
Ea.' 2-3

transient

matrix 9

E

E

2

2-4

4096 64 256 1024

number of processors

o o 2D

7—V 2D-R 2

E
.E 24

E

2

22

uk-2005

4096

4096

o o 2D

7 2D-Rf

64 256 1024

number of processors
4096 64 256 1024

number of processors
4096 64 256 1024

number of processors
4096 64 256 1024

number of processors
4096

17 1 Conclusion

2D block cyclic partitioning method

Extended it to nonconformal vector partitions

Up to 90% improvement in maximum message count

Proposed a refinement heuristic to improve balance

Up to 25% improvement in computational imbalance

