This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 1689C

2D Block Cyclic
Partitioning for Sparse

Matrices

Seher Acer *
Erik G. Boman *
Cevdet Aykanat 24

+:Sandia National Labs 2 : Bilkent University

2 | Qutline

= 2D Block Cyclic Partitioning

= Extension to Rectangular Matrices

= Refinement Heuristic for Improving Load Balance
= Experimental Results

= Conclusion

; ‘ZD Block Cyclic Partitioning

[1] P P, P, P, P, P
_ _x

2-phase partitioning for SpMV y = Ax

g 15t phase: partitioning vectors x and y

A K-way graph/hypergraph partitioning

Vertex i =row i and entries x; and y;

x and y have the same partition: conformal

= 2nd phase: partitioning matrix A

. Determine K X K blocks in matrix 4

@ Assume virtual K = Q X R process layout

= Assign Q blocks to each of R processes
g Cycle along the row dimension ‘

[1] Boman et al., “Scalable matrix computations on large scale-free graphs using 2D graph partitioning”, SC’13.

4 ‘ZD Block Cyclic Partitioning

WL‘;I-Il it good? PP, PPy P P

= Communications occur only along

P, N 4
= The columns of the virtual mesh P
2
. At most) — 1 messages while expanding x entries P _
3

The rows of the virtual mesh

s At most R — 1 messages while folding y entries

Maximum message count = O(VK)

- Critical for scale-free graphs/matrices
y A
= Graph partitioning in the first phase

Addresses communication volume

Tries to balance computational workload

= Cheap compared to the checkerboard
hypergraph partitioning model [2] . .

[1] Boman et al., “Scalable matrix computations on large scale-free graphs using 2D graph partitioning”, SC’13.
[2] Catalyurek and Aykanat, “A hypergraph-partitioning approach for coarse-grain decomposition”, SC’01.

s 12D Block Cyclic Partitioning [1]

Extending the model to
nonconformal partitions
However... 1

. Only for conformal vector partitions
. There can be scale-free rectangular matrices!

- Graph partitioning in the first phase does
not correctly capture computational load

3

Proposing refinement heuristic to
reduce computational imbalance

(Communication volume was already
. Not expected to dominate the runtime
- Focus is scale-free graphs/matrices!

@ Not captured correctly due to using a graph
instead of a hypergraph [2])

[1] Boman et al., “Scalable matrix computations on large scale-free graphs using 2D graph partitioning”, SC’13.
[2] Catalyurek and Aykanat, “A hypergraph-partitioning approach for coarse-grain decomposition”, SC’01.

¢ | Extension to Nonconformal
Partitions X, X X Xy Xs X

[N B
How to find smart partitions for x and y? .
= Use a bipartite graph [1] in the first phase v

= rowi=row vertex v;

y

= column j = column vertex v}

s 2-constraint partitioning

= nonzero a; ; = edge between v; and vjc Y,
15t weight of v : number of nonzeros in row i
2" weight of vf: 1 Ye

= Partition on y = partition of row vertices

X
A
= Partition on x = partition of column vertices ‘ @ ‘

[1] Hendrickson and Kolda, “Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing”, SISC, 2000.

7 IProposed Refinement Heuristic
P P, P, P, P P
[T 7T T]

Formulation
load(a,) = number of nnzs assigned to py g
Consider load(1,2) in the figure
R, = parts assigned to row «
Cp = parts assigned to column 8

load(a, B) = nz(R,, Cp)
Cp

[l
RQQ‘T--*Q

—
N
<)
—

s |Proposed Refinement Heuristic

P, P, P, P, P P
N i —— -

Objective:

. minimize max load(a,)

)

Algorithm:
= start with an initial part-to-process mapping

= while not converged

g find a process py g with the maximum load

a let po g = map(Py)

. for each other part P, € R* (mapped to row a)
compute the gain of swapping Py, with P,

. for each other part P, € CB (mapped to column B) Rl
compute the gain of swapping Py, with P,

s perform a swap with the maximum gain

s |Proposed Refinement Heuristic

A horizontal swap of P, and P, ‘

Let po g = map(Px) and pg,y, = map(Py) Cp Cy
for each P; s.t. nz(Py, Py) # 0

Let P, € R

load(6,B) < load(S,B) — nz(P;, Py)

load(8,y) <« load(6,y) + nz(P;, Py,)
for each P; s.t. nz(Py, Pp) + 0

Let?tEng

l0ad(8, B) « load(8, B) + nz(Py, P) R, Q
()

load(8,y) < load(8,y) — nz(P,, P,)

Cost Analysis:
1) cost(swap) = O(M), where M is max part degree avg no of iterations = 10
2) cost(swap) = cost(computeGain)

3) cost(iteration) = cost(findMax) + VK cost(swap) = O(K + MK)

o lProposed Refinement Heuristic

Swap example:

map map

@»@®
: ?l and T:;

®@®
® — @06

q)l ?2 ?3 ?4 TS ?6 ?3 q)2 g)1 ‘1)4 TS g)6
[[T 7 T

1 2 3 1 2 3

i IExperiments

Datasets

= Scale-free matrices from the SuiteSparse matrix collection [1]
= Scale-free: at least one dense row/column in the matrix

= Dense: at least 1% of entries are nonzero

= Three datasets
= sym: 34 symmetric matrices
= squ: 77 square but not symmetric matrices

= rec: 32 rectangular matrices

[1] Davis and Hu, “The University of Florida sparse matrix collection”, ACM TOMS, 2011.

2 |Experiments

2D block cyclic partitioning with nonconformal vector partitions

= Baseline: 1D bipartite graph partitioning [1]

|

Proposed: uses the baseline model in its first phase

Normalized results w.r.t. the baseline model [1]

communication volume

number of messages

dataset K maximum

computation | maximum average maximum average

64 0.93 1.75 1.28 0.31 0.43

256 0.76 1.89 1.26 0.20 0.45

> 1024 0.54 1.44 1.21 0.14 0.58

4096 0.33 0.68 1.16 0.10 0.77

64 1.19 1.68 1.67 0.25 0.35

rec 256 1.20 1.18 1.43 0.16 0.36

1024 1.08 0.85 1.25 0.13 0.50

[1] Hendrickson and Kolda, “Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing”, SISC, 2000.

E |Experiments

Refinement heuristic on
= Baseline: 2D block cyclic (2DBC) partitioning with conformal partitions

= with standard graph partitioning in the first phase

Normalized results w.r.t. the baseline 2DBC
maximum communication volume number of messages
dataset K :
computation | maximum average maximum average
64 0.91 1.03 1.02 1.00 1.01
256 0.83 1.03 1.02 1.01 1.01
sym
1024 0.80 1.05 1.03 1.01 1.02
4096 0.75 1.05 1.03 1.00 1.03
64 0.92 1.04 1.05 1.01 1.03
256 0.88 1.08 1.05 1.02 1.02
squ
1024 0.81 1.07 1.04 1.01 1.02
4096 0.83 1.05 1.02 1.00 1.01

4 | Experiments

Refinement heuristic on

Baseline: 2DBC partitioning with nonconformal vector partitions

with bipartite graph partitioning model in the first phase

Normalized results w.r.t. the baseline 2DBC

dataset) maximum communication volume number of messages
computation | maximum average maximum average
64 0.89 1.65 1.22 1.01 1.03
256 0.88 1.28 1.07 1.01 1.01
¥ 1024 0.87 1.09 1.02 1.01 1.01
4096 0.85 1.05 1.01 1.00 1.00
64 0.90 1.60 1.24 1.00 1.02
squ 256 0.87 1.27 1.07 1.01 1.02
1024 0.86 1.04 1.02 1.00 1.01

E |Experiments

Running time of the refinement heuristic:

Heuristic runtime normalized w.r.t. the graph

partitioning runtime

conformal partitions
(standard graph model)

nonconformal partitions
(bipartite graph model)

K
sym squ squ rec
64 0.8% 0.8% 0.3% 0.3%
256 0.8% 0.7% 0.4% 0.4%
1024 1.6% 1.3% 0.7% 1.2%
4096 9.9% 6.1% 3.3% -

6 | Experiments

ASIC 320k

runtime (in ms)

23

22

runtime (in ms)

runtime (in ms)

64

i
256
number of processors

1024 4096

circuitbM

i
256

; !
1024 4096

number of processors

rajat2l

i
256
number of processors

i N
1024 4096

N

runtime (in ms)

runtime (in ms)

runtime (in ms)

2—2

W

barrier2-2

I I 1
64 256 1024 4096
number of processors

64 256 1024 4096

number of processors

Stanford Berkeley

1 Y 1
64 256 1024 4096
number of processors

runtime (in ms)

runtime (in ms)

runtime (in ms)

; - ;
64 256 1024 4096

number of processors

| ; :
64 256 1024 4096

number of processors

transient

1 Y 1
64 256 1024 4096
number of processors

runtime (in ms)

runtime (in ms)

runtime (in ms)

64

I i i
256 1024 4096
number of processors

24 [

matrix 9

i]
256 1024 4096
number of processors

uk-2005

i i |
256 1024 4096
number of processors

7 lConclusion

= 2D block cyclic partitioning method
= Extended it to nonconformal vector partitions

= Up to 90% improvement in maximum message count
= Proposed a refinement heuristic to improve balance

= Up to 25% improvement in computational imbalance

