
Rendezvous algorithms for
large-scale particle simulations

Steve Plimpton (SNL) and Chris Knight (ANL)

Sandia
National
Laboratories

SIAM Conference on Parallel Processing
for Scientific Computing (PP20)

Seattle - Feb 2020

•CCR••
Center tor Computing Research

Sandia National Laboratories is a multi-rnission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of /V.
Floneywell International, inc., for the U.S. Department of Energys National Nuclear Security V A kaA-4

NrIena Iataar Itserli,••••••••••••
Administration under contract DE-NA0003525. Presentation: SAND2019-3057C

SAND2020-1688C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Communication patterns

(1) Regular, often structured

• Procs know who to send to,

and who to receive from

• Domain decomp,

halo of ghost cells or particles

o Exchange with

4 or 8 procs in 2d, 6 or 26 in 3d

• MPI:
Send(), Recv(), lrecv(), Sendrecv()

-OF

■

Communication patterns

(2) Irregular, often unstructured

Communication patterns

(2) Irregular, often unstructured

Communication patterns

(2) Irregular, often unstructured

o Procs know who to send to, but not who to receive from

o Load rebalance: send my data to new owning procs
o Comm with small, but arbitrary # of other procs
o MPI: Reduce_scatter(), then Send(), Recv(), lrecv()

Communication patterns

(2) Irregular, often unstructured

o Procs know who to send to, but not who to receive from

o Load rebalance: send my data to new owning procs
• Comm with small, but arbitrary # of other procs
o MPI: Reduce_scatter(), then Send(), Recv(), lrecv()

P-length vectors

1: 0 1 0 1 1 0 0 0 • • •

2: •• •
Reduce1 0 0 1 0 0 0 0 5
Scatter

Proc
•
•
•

17

P: 0 1 1 0 0 1 1 0 • • 0

Communication patterns

(2) Irregular, often unstructured

o Procs know who to send to, but not who to receive from

o Load rebalance: send my data to new owning procs
o Comm with small, but arbitrary # of other procs
o MPI: Reduce_scatter(), then Send(), Recv(), lrecv()

P-length vectors

1: 0 1 0 1 1 0 0 0 • • •

2: •• •
Reduce1 0 0 1 0 0 0 0 5
Scatter

Proc
•
• 17
•

P: 0 1 1 0 0 1 1 0 • •

co Trilinos and Zoltan packages use this pattern

Another communication pattern

(3) Rendezvous

✓ Procs don't know who to send to, nor who to receive from

✓ Key idea: create an intermediate decomposition

o Procs know who to send to (in Rvous decomp)

✓ Procs know who to receive from (sent from Rvous decomp)

o Often random comm with a few or nearly all procs

e Randomization load balances the comm and comp

o MPI: Reduce_scatter() or A112a110

Another communication pattern

(3) Rendezvous

✓ Procs don't know who to send to, nor who to receive from

✓ Key idea: create an intermediate decomposition

o Procs know who to send to (in Rvous decomp)

✓ Procs know who to receive from (sent from Rvous decomp)

o Often random comm with a few or nearly all procs

fa Randomization load balances the comm and comp

co MPI: Reduce_scatter() or A112a110

Why call it a rendezvous algorithm?

Because datums from different procs rendezvous at a single proc,
so that proc can perform a computation that needs all the datums

Rendezvous algorithm for grid transfer operation

Plimpton, Hendrickson, Stewart, 'A Parallel Rendezvous Algorithm for lnterpolation

Between Multiple Grids", J Parallel and Distributed Computing, 64, 266-276 (2004).

thermal

Rendezvous algorithm for grid transfer operation

Plimpton, Hendrickson, Stewart, 'A Parallel Rendezvous Algorithm for lnterpolation

Between Multiple Grids", J Parallel and Distributed Computing, 64, 266-276 (2004).

WISUNizt-

IraleratIg%
IMAM
illitN•
liswVAT
allwap• .
NS /AI I 1 ikelitiPS1%;;ti WI;

-tACISritrAfill•tA .Wig

II II

thermal

o Two grids overlay same physical domain

• Refined & decomposed independently for physics & efficiency

o Each proc owns a random sub-domain in both decomps

co Interpolate between 2 grids, back-and-forth each timestep

• TS requires data from all T procs which overlap a S proc

• But procs know nothing about either global decomposition

Brute force solution

Ring communication:

17 sp

Ilt
..„

T1

s1

s3

T3

S2

./
[T2 1

• Circulate my S decomp grid cells
around ring to all procs

a Each receive: keep S cells
that overlap my T cells

a After P steps, each T proc can now
perform interpolation

• Comp scaling:
examine all N grid cells 0(N)

a Comm scaling:
P messages of size N/P 0(N)

• If occasional, simple and
actually OK for modest N and P

• But not for huge N or P or every step

Rendezvous solution

••••immwommiliklali••••••rnigthouvk___
mmotIEÐinpmilkiemm
MOM PFOrIrir

• e•.-
111113PktAtna w1P140.1vArgoo.Numb
MEV .40111/11m0Ataami
miladt16.41110•1111issm•

o Create a geometrically-based rendezvous decomp R

o Regular grid of procs, or RCB (for load balancing)

o Important: all procs are part of all 3 decomps: S,T,R

o T procs: send info for each grid cell to owning R proc

o S procs: ditto (at same time)

o R procs: find cell/cell overlaps, perform interpolation

o R procs: send final results to S or T procs

Rendezvous solution

MENEMOM,0111.11111114111MMEFIRAWAVIIII4/44,__
MNIMENIMIOPME\PAIWNE
..1111Mraprir

MI
111111ktAt ArMiglir .•' a _ Filler.E-...,,,

VFWvg".10.

re i'• • Alai ill 1 I OiEla 1 11
WIRMAradtikaladillindllaNME

o Create a geometrically-based rendezvous decomp R

• Regular grid of procs, or RCB (for load balancing)

o Important: all procs are part of all 3 decomps: S,T,R

• T procs: send info for each grid cell to owning R proc

• S procs: ditto (at same time)

• R procs: find cell/cell overlaps, perform interpolation

• R procs: send final results to S or T procs

JPDC paper showed rendezvous comm can be quite fast

Rigid body setup in LAMMPS

Identify central particle per body, bcast ID to other particles

•
• •

*
•

• 0 • •

•
• •

Rigid body setup in LAMMPS

Identify central particle per body, bcast ID to other particles

•
• e

s

• •••••

•
• •

•

Rendezvous algorithm:

a Rvous decomp: each proc owns random subset of body IDs

a Send one datum per particle: particle ID, coords, proc ID

a Rvous proc receives all particles in body, computes info

a Send one datum per particle: particle ID, center particle ID

Weak scaling results for rigid body setup

Mira BG/Q at ALCF: 1 node to 48K nodes, upto 9B particles

Nodes 1 64 256 1K 4K 16K 48K
MPI 16 1K 4K 16K 64K 256K 768K
Bodies 5K 336K 1.3M 5.4M 22M 86M 258M
Atoms 184K 12M 47M 188M 752M 3.0B 9.0B

Ring 0.121 7.56 31.0 127 497 *2000 *6000
Rvous 0.027 0.028 0.033 0.066 0.27 1.2 3.5

o Ring: each proc scans all the datums

a Rvous: each proc receives exactly the N/P data it needs

a Asterisk timings are estimates

a 4x to 1700x advantage for rendezvous algorithm

o Don't care on 256 nodes with 47M atoms, but do at scale

Bond walking setup in LAMMPS

Molecules as graphs: find lst, 2nd, 3rd, etc neighs of each atom

Bond walking setup in LAMMPS

Molecules as graphs: find lst, 2nd, 3rd, etc neighs of each atom

•-ii-Coc-• •ii-04
Rendezvous algorithm: once for each level of neighbors

Example: find 2nd neighs from 1st neighs

co Rvous decomp: each proc owns every Pth atom ID

a Send one datum (I, proc) per owned atom, to I owner

a Double loop over lst neighbors of each atom I:
• send two datums (J,K) to J owner and (K,J) to K owner
• only comm atom pairs with a ghost atom

a Rvous proc re-sends (J,K) datums to J owner

a 3rd neighs: double loop over lst neighs and 2nd neighs

Weak scaling results for bond walking setup

Mira BG/Q at ALCF: 64 nodes to 48K nodes, upto 37B atoms

Nodes 64 256 1K 4K 16K 32K 48K
MPI 1K 4K 16K 64K 256K 512K 768K
Atoms 48M 192M 768M 3.1B 12B 25B 37B

Ring 91.5 366 1465 *6120 *24500 *49000 *73500
Rvous 0.912 0.942 1.14 1.82 4.95 9.15 13.2

a Again, asterisk timings are estimates

o 100x to 5000x advantage for rendezvous algorithm

Surface element to grid cell mapping in SPARTA (DSMC)

Q Hierarchical grid, triangulated surfaces
o Each proc owns cluster of grid cells
Q Each grid cell needs list of intersecting surface elements

Surface element to grid cell mapping in SPARTA (DSMC)

o Hierarchical grid, triangulated surfaces
• Each proc owns cluster of grid cells
o Each grid cell needs list of intersecting surface elements
• For small triangle counts:

faster to let each grid cell check all surfs
o For huge triangle counts: faster to flip it

O each proc loops over N/P surfs
• for each surf, identify grid cells in bounding box
• create list of grid cells that intersect each surf
• But: results are stored opposite of how needed

Rendezvous converts cells-per-surf to surfs-per-cell

co Rvous decomp: each proc owns random subset of grid IDs

a Send one datum per owned grid cell: grid ID, proc ID

a Send one datum per intersection: grid ID, triangle ID

o Rvous proc re-sends (grid,triangle) datums to grid owner

Rendezvous converts cells-per-surf to surfs-per-cell

o Rvous decomp: each proc owns random subset of grid IDs

a Send one datum per owned grid cell: grid ID, proc ID

a Send one datum per intersection: grid ID, triangle ID

o Rvous proc re-sends (grid,triangle) datums to grid owner

Nodes 64 64 256 256 1K 1K 4K 16K
MPI 1K 1K 4K 4K 16K 16K 64K 256K
Surfs 1.3M 1.3M 1.3M 1.3M 1.3M 2M 1.3M 1.3M
GCells 1M 8M 8M 64M 1M 128M 64M 256M

Old 105 813 204 1600 104 1260 104 105
Rvous 3.2 3.5 3.0 3.3 2.7 7.5 2.9 3.9

• 1.3M or 2M triangles, vary grid cells and nodes

a 33x to 170x advantage for new inverted algorithm

o Rendezvous comm itself is small fraction of total

Black-box implemention of rendezvous communication

rvous (N_in, indata, sendprocsl, callback0):

N_rvous = MPLAII2allv() of indata indata_rvous
callback(N_rvous,indata_rvous,outdata_rvous,sendprocs2)

N_out = MPLA112a110 of outdata_rvous outdata

return N_out, outdata

Black-box implemention of rendezvous communication

rvous (N_in, indata, sendprocsl, callback()):
N_rvous = MPLAII2allv() of indata indata_rvous

callback(N_rvous,indata_rvous,outdata_rvous,sendprocs2)
N_out = MPLAII2a110 of outdata_rvous outdata

return N_out, outdata

o 2 A112a11 comm ops, sandwiching a callback to process data

o Callback allows each proc to compute on Rvous data

• Can use irregular comm operation instead

• Irregular is faster if each proc sends to a few procs

• A112a11 is faster if each proc sends to (nearly) all procs

One more communication pattern

MapReduce - from Google and
Ohadoop

co MapReduce is not just for data, also for scientific computing

co A mapper reads/creates datums and sends them to reducers

One more communication pattern

MapReduce - from Google and
Ohadoop

co MapReduce is not just for data, also for scientific computing

co A mapper reads/creates datums and sends them to reducers

• Fundamental MapReduce communication operation:

o Hadoop calls it a shuffle
o conceptually identical to MPI_Al12a110

One more communication pattern

MapReduce - from Google and
Ohadoop

co MapReduce is not just for data, also for scientific computing

co A mapper reads/creates datums and sends them to reducers

• Fundamental MapReduce communication operation:

o Hadoop calls it a shuffle
o conceptually identical to MPI_Al12a110

• A rendezvous alg is a subset of more general MapReduce
• out-of-core, stream processing, Python wrappers, etc
• cute elephant swag

One more communication pattern

MapReduce - from Google and
Ohadoop

co MapReduce is not just for data, also for scientific computing

co A mapper reads/creates datums and sends them to reducers

• Fundamental MapReduce communication operation:

• Hadoop calls it a shuffle
o conceptually identical to MPI_Al12a110

co A rendezvous alg is a subset of more general MapReduce

O out-of-core, stream processing, Python wrappers, etc
• cute elephant swag

MapReduce lib on top of MPI: http://mapreduce.sandia.gov

We used it for graph algorithms: e.g. connected components

Conclusions

Attributes of rendezvous algorithms:

a Useful when don't know how to move data where needed

co Can auto-load-balance if randomly spread the data

o Leverages huge bisection message bandwidth of big computers

a Someone paid for it, why not use it !

Conclusions

Attributes of rendezvous algorithms:

a Useful when don't know how to move data where needed

co Can auto-load-balance if randomly spread the data

o Leverages huge bisection message bandwidth of big computers

a Someone paid for it, why not use it !

Lesson learned (for Nth time):

a Better to load balance individual stages of a computation

co Pay the extra cost for comm in between

a Rather than perform all stages with poor load-balancing

Conclusions

Attributes of rendezvous algorithms:

a Useful when don't know how to move data where needed

a Can auto-load-balance if randomly spread the data

o Leverages huge bisection message bandwidth of big computers

o Someone paid for it, why not use it !

Lesson learned (for Nth time):

o Better to load balance individual stages of a computation

o Pay the extra cost for comm in between

o Rather than perform all stages with poor load-balancing

What about GPUs ?

a There are no more machines with 1M+ MPI tasks

o Still useful at scale for ops that don't map to GPUs

a Occasional ops: setup, rebalance, grid-adaptation, etc

