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Polynomial Preconditioning:

Solving Polynomial Preconditioned System: Ax = b
becomes

Ap(A)y = b,

x = p(A)y.

where Ap(A) is a polynomial of degree d.

Choose p(A) to be the minimum residual polynomial from
GMRES.

Key fact: We are using the GMRES polynomial to precondition
GMRES.



Trilinos
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Belos: Iterative Linear Solvers Package: CG, GMRES, Block
Krylov methods, BiCGStab
Other Capabilities: Algebraic preconditioners (IFPACK), load
partitioning (Zoltan), Direct Solvers (Amesos), Multigrid
(MueLu), Eigensolvers (Anasazi), and more.
Application Areas: Circuit simulation, Ice sheet modeling,
hydrodynamics, geophysics, etc.

GMRES polynomial can precondition any solver in Belos!



Why precondition with the GMRES polynomial?? ati-

• Reduces number of GMRES iterations (and often
matrix-vector products).

• More work done between orthogonalization steps; avoid
global synchronizations and communication.

• It's available in Trilinos! (Belos linear solvers package)

• General-purpose preconditioner.

• Matrix-free implementation.

• Can be composed with other preconditioners!

• Stability for high degrees with root-adding



Re-Mapping Eigenvalues
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Re-Mapping Eigenvalues
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Obtaining the polynomial: CI0.--s'""ones

To find the polynomial p(A) of degree d — 1:

1 Run d steps of GMRES on the matrix A, using a random
right-hand side.
(To combine with another preconditioner M, run d steps of
GMRES on AM.)

2. Use the resulting matrices to compute the harmonic Ritz
values Bi of A. (or AM.)

3. Order the 01's using a Modified Leja ordering. (Bai, Hu,
Reichel)

4. Use the 8,'s to apply the polynomial as a preconditioner.

(Also options for root-adding or damping if needed for stability.)
[See Embree, Loe, Morgan 2018]



Polynomial Preconditioning: Implementation

Option 1: Use both formulas.

Ap(A)y = b,

x = p(A)y.

d
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Advantage: Simpler formula. Less vector additions.
Disadvantage: Possible stability issues applying different
operator.



Polynomial

Option 2:

Preconditioning: Implementation

Use one formula. (Implemented in Trilinos.)

Ap(A)y = b,

x = p(A)y.
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Advantage: Applying a consistent operator.
Disadvantage: Up to 2x as many vector additions.



A Small CFD example:

Matrix cfd2, A is SPD, n = 123440. GMRES(50) with b
random. (32 MPI processes over 1 node)

—i-- Solve Time
SpMVs
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A Small CFD example:

Scaled solve time distribution per polynomial degree:
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a)

o
_ 0.6

o

"6 0.4

o

o

0

MI

SpMVs

I I InnerProd/Norm

I Updates
.

No Prec 10 20 30

Polynomial Degree

40

CI0.--s°"°...s



High Degrees can be Worth it!

Matrix ML_Geer (Janna collection), poroelastic structure
problem, n = 1,504,002, nonsymmetric, GMRES(100), rtol =
1 x 10-8

SPMVs Time Iters Add roots
Deg 20 260500 3214 12897 0
Deg 40 61580 731.5 1487 1
Deg 60 29570 346.7 472 2
Deg 80 16970 197 200 4

(Using 32 MPI processes over 1 node.)

CI Labor:Les



Composing with other Preconditioners

Poly preconditioning alone:

Ap(A)y = b,

x = p(A)y.

With other preconditioners (e.g. ILU, Block Jacobi, ....) :

AMp(AM)y = b,

x = p(AM)y.

No extra work to code this in your Trilinos solver!
Just pass your preconditioner M to the linear problem like usual.



Example with ILU:

• Matrix: Transport (From SuiteSparse Janna collection)

• Problem: 3D finite element flow and transport

• Size: n = 1,602.111, nonsymmetric, NNZ: 23.487,281

SPMVs Time lters Add roots
No Prec 40670 1042 40268
Deg 20 6048 26.16 285 1
Deg 40 3948 15.19 93 2
Deg 60 4032 14.51 63 3

ILU Only 1898 55.9 1879
ILU + Deg 5 1595 22.59 315 0
ILU + Deg 10 920 10.81 91 0
ILU + Deg 20 960 10.22 47 0

CI Labor:Les



Solve time Distribution with ILU
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Preconditioner Generation Time

TODO update ILU timings!!
Over 32 MPI processes.
(Solve time does not include preconditioner setup time.)

Prec Setup Time Solve Time
ILU 0.2157 36.05
ILU + Deg 10 0.3334 6.66
ILU + Deg 20 0.4922 6.58
ILU + Deg 40 0.8659 6.27
Deg 20 0.1754 26.16
Deg 40 0.4926 15.19
Deg 80 1.655 14.62

CI Labor:Les



What about Multigrid?

Can polynomial preconditioning help algebraic multigrid?

If it works well (e.g. GMRES converges in 4 iterations),
probably not.
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If multigrid struggles (convection-diffusion or Helmholtz?), then
possibly.



Potential for Combining with Multigrid

Matrix: 3D Laplacian from Galeri, n = 15,625,000

lters

Solve

Time

Poly

Create

Solve +Poly

Create

AMG only 42 13.95 13.95

AMG + Deg 2 26 9.71 0.29 10.00

AMG + Deg 3 19 8.55 0.44 8.99

AMG + Deg 5 12 7.78 0.75 8.53

AMG + Deg 7 9 7.90 1.10 9.00

AMG + Deg 10 6 7.62 1.69 9.31

AMG + Deg 12 4 7.75 2.14 9.89

CI0.--s°"°...s

Multigrid Smoothed aggregation (with Chebyshev smoothing)
over 5 levels on 32 MPI processes

(Thanks to Christian Glusa for help running MueLu code!)



Polynomial Degree Starting Suggestions:

■ Poly Prec alone: Degree > 40

■ With ILU, Block Jacobi, Factorization-based
preconditioning: Degree between 5 and 30

■ With Multigrid: Degree < 15



What about Chebyshev Polynomials?

cfd2, GMRES(50), rtol = 1 x 10-8, 32 MPI processes
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Caveat: lfpack's Chebyshev preconditioner includes diagonal
scaling. The GMRES polynomial does not.

Chebyshev: Min solve time: 7.21s, 1758 iterations, (deg=20)
GMRES: Min solve time: 2.65s, 225 iterations (deg=60)
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Scaling it up

3D Laplacian, n = 166 million, 1.1 billion nonzero elements
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Communication Avoiding S-Step GMRES

Delayed Orthogonalization:
Can avoid dot products in GMRES by orthogonalizing every s
steps:
E.g. s = 3:

JC = span{b, Ab, A2 b, A3 b, A4 b, A5 b, A6 b, . . . , Am-1 b}

Use TSQR to orthogonalize the blocks.

Matrix Powers Kernel:

■ Used for performing repeated matvecs with A.

■ Minimizes the number of reads from slow memory and
cache.

[Demmel, Hoemmen, et al.]



Combining with Communication-Avoiding MethodWEI-

1. Polynomial preconditioned standard GMRES.
• Use Matrix Powers Kernel (MPK) to evaluate the

polynomial.

2. Polynomial preconditioning within CA-GMRES.
• More SpMVs per orthogonalization.

3. Polynomial Preconditioning for Pipelined Methods
• Use polynomial to create longer pipeline length for better

stability.



Future Work:

• More applications

• Comparison/ combination with S-step GMRES?

• Larger-scale experiments: Lots of GPUs

• Use the polynomial as a smoother for multigrid?

CI0.--s'""ones
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