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Polynomial Preconditioning: B

Solving Polynomial Preconditioned System: Ax = b
becomes
Ap(A)y = b,
x =p(A)y.
where Ap(A) is a polynomial of degree d.

Choose p(A) to be the minimum residual polynomial from
GMRES.

Key fact: We are using the GMRES polynomial to precondition
GMRES.
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Trilinos e

FRi.INOS

Belos: Iterative Linear Solvers Package: CG, GMRES, Block
Krylov methods, BiCGStab

Other Capabilities: Algebraic preconditioners (IFPACK), load
partitioning (Zoltan), Direct Solvers (Amesos), Multigrid
(Muelu), Eigensolvers (Anasazi), and more.

Application Areas: Circuit simulation, Ice sheet modeling,
hydrodynamics, geophysics, etc.

GMRES polynomial can precondition any solver in Belos!




Why precondition with the GMRES polynomial?? [ .

m Reduces number of GMRES iterations (and often
matrix-vector products).

m More work done between orthogonalization steps; avoid
global synchronizations and communication.

m It’s available in Trilinos! (Belos linear solvers package)
m General-purpose preconditioner.

m Matrix-free implementation.

m Can be composed with other preconditioners!

m Stability for high degrees with root-adding




Re-Mapping Eigenvalues =

(b) deg(Ap(A)) =8

Xx-axis: interval containing spectrum of A
y-axis: interval containing spectrum of Ap(A)
Black dots indicate eigenvalues of A being mapped by the
polynomial to eigenvalues of Ap(A).




Re-Mapping Eigenvalues
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Obtaining the polynomial: =

To find the polynomial p(A) of degree d — 1:

1. Run d steps of GMRES on the matrix A, using a random
right-hand side.
(To combine with another preconditioner M, run d steps of
GMRES on AM.)

2. Use the resulting matrices to compute the harmonic Ritz
values 0; of A. (or AM.)

3. Order the 6;’s using a Modified Leja ordering. (Bai, Hu,
Reichel)

4. Use the 6;’s to apply the polynomial as a preconditioner.

(Also options for root-adding or damping if needed for stability.)
[See Embree, Loe, Morgan 2018]




Polynomial Preconditioning: Implementation

Option 1: Use both formulas.

Ap(A)y = b,
=p(A)y.
d
Ap(A) =] (/— ;—iA) (1)

i=1

Sk (1) (3 (et e

Advantage: Simpler formula. Less vector additions.
Disadvantage: Possible stability issues applying different
operator.
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Polynomial Preconditioning: Implementation =

Option 2: Use one formula. (Implemented in Trilinos.)

Ap(A)y = b,
= p(A)y.

Ap(A) = | - A (1)

:i(;_k (/_—A> </—9le> (/—6:—1A) (2)

Advantage: Applying a consistent operator.
Disadvantage: Up to 2x as many vector additions.




A Small CFD example: [ ==

Matrix cfd2, Ais SPD, n = 123440. GMRES(50) with b
random. (32 MPI processes over 1 node)
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A Small CFD example: —
Scaled solve time distribution per polynomial degree:
1 . . . .
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High Degrees can be Worth it! -

Matrix ML_Geer (Janna collection), poroelastic structure
problem, n = 1,504,002, nonsymmetric, GMRES(100), rtol =
1x10°8

SPMVs Time Iters Add roots

Deg 20 260500 3214 12897 0
Deg40 61580 731.5 1487 1
Deg 60 29570 346.7 472 2
Deg80 16970 197 200 4

(Using 32 MPI processes over 1 node.)
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Composing with other Preconditioners e

Poly preconditioning alone:

Ap(A)y = b,
x =p(A)y.

With other preconditioners (e.g. ILU, Block Jacobi, ....) :

AMp(AM)y = b,
X = p(AM)y.

No extra work to code this in your Trilinos solver!
Just pass your preconditioner M to the linear problem like usual.




Example with ILU: B

m Matrix: Transport (From SuiteSparse Janna collection)
m Problem: 3D finite element flow and transport
m Size: n=1,602,111, nonsymmetric, NNZ: 23,487,281

SPMVs Time Iters Add roots

No Prec 40670 1042 40268

Deg 20 6048 26.16 285 1
Deg 40 3948 15.19 93 2
Deg 60 4032 14.51 63 3
ILU Only 1898 559 1879

ILU + Deg 5 1595 22.59 315 0
ILU + Deg 10 920 10.81 91 0
ILU + Deg 20 960 10.22 47 0




Solve time Distribution with ILU (D]=W

[ | i
I SpMVs
[ InnerProd/Norm
[ Updates
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Fraction of Total Solve Time
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ILU ILU + Deg 5 ILU + Deg 10 ILU + Deg 20
Polynomial Degree

(32 MPI processes over 1 node)
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Preconditioner Generation Time e

TODO update ILU timings!!
Over 32 MPI processes.
(Solve time does not include preconditioner setup time.)

Prec Setup Time | Solve Time
ILU 0.2157 36.05
ILU + Deg 10 | 0.3334 6.66
ILU + Deg 20 | 0.4922 6.58
ILU + Deg 40 | 0.8659 6.27
Deg 20 0.1754 26.16
Deg 40 0.4926 15.19
Deg 80 1.655 14.62




What about Multigrid? ) &=

Can polynomial preconditioning help algebraic multigrid?

If it works well (e.g. GMRES converges in 4 iterations),
probably not.

If multigrid struggles (convection-diffusion or Helmholtz?), then
possibly.




Potential for Combining with Multigrid B
Matrix: 3D Laplacian from Galeri, n = 15,625,000

Solve Poly |Solve +Poly
Iters| Time | Create Create

AMG only 42| 13.95 13.95
AMG +Deg 2 26 9.71 0.29 10.00
AMG +Deg3 19 8.55 0.44 8.99
AMG +Deg5 12 7.78 0.75 8.53
AMG +Deg 7 9 7.90 1.10 9.00
AMG +Deg 10 6 7.62 1.69 9.31
AMG +Deg 12 4 7.75 2.14 9.89

Multigrid: Smoothed aggregation (with Chebyshev smoothing)
over 5 levels on 32 MPI processes

(Thanks to Christian Glusa for help running MueLu code!)
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Polynomial Degree Starting Suggestions: s

m Poly Prec alone: Degree > 40

m With ILU, Block Jacobi, Factorization-based
preconditioning: Degree between 5 and 30

m With Multigrid: Degree < 15
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What about Chebyshev Polynomials? e
cfd2, GMRES(50), rtol = 1 x 10~8, 32 MPI processes
40 : ; : :
\ ==== GMRES Poly
qE) 30 r \ —#— Cheby Poly
= \
g 20 \‘\
S .
Dot \l\
. | I e e ——
0 10 20 30 40 50 60

Polynomial Degree
Caveat: Ifpack’s Chebyshev preconditioner includes diagonal
scaling. The GMRES polynomial does not.
Chebyshev: Min solve time: 7.21s, 1758 iterations, (deg=20)
GMRES: Min solve time: 2.65s, 225 iterations (deg=60)




Scaling it up [ &=,

3D Laplacian, n = 166 million, 1.1 billion nonzero elements

450 ¢ T T T
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Communication Avoiding S-Step GMRES b

Delayed Orthogonalization:

Can avoid dot products in GMRES by orthogonalizing every s
steps:

Eg. 5=3:

K = span{b, Ab, A2b, A®b, A*b, A°b, A°b, ..., A"~ b}

Use TSQR to orthogonalize the blocks.

Matrix Powers Kernel:
m Used for performing repeated matvecs with A.

m Minimizes the number of reads from slow memory and
cache.

[Demmel, Hoemmen, et al.]




Combining with Communication-Avoiding Method & .

1. Polynomial preconditioned standard GMRES.

m Use Matrix Powers Kernel (MPK) to evaluate the
polynomial.

2. Polynomial preconditioning within CA-GMRES.
m More SpMVs per orthogonalization.
3. Polynomial Preconditioning for Pipelined Methods

m Use polynomial to create longer pipeline length for better
stability.




Future Work: =

m More applications

m Comparison/ combination with S-step GMRES?
m Larger-scale experiments: Lots of GPUs

m Use the polynomial as a smoother for multigrid?




Thank you! .
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