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» I Charon Basics & Mission

- Charon is a technology computer aided design (TCAD) code
> Solve partial differential equations to predict carrier transport of semiconductor devices
> Include the effects of radiation on carrier transport and device performance

- Charon strategy is to engage the national defense community for existing and future
technologies

> Advocate Charon for sensitive radiation effects modeling and massively parallel over commercial alternatives
- Develop capabilities according to customers’ modeling needs
- Target capability development for future technologies: what will be important in 5 years, 10 years, etc.?

- Support all mission applications at Sandia
> Nuclear Deterrence, Satellites, TRUST, Beyond-Moore Computing

- Support other national interests through other defense contractors
> Atomic Weapons Establishment

o Air Force Research Laboratory

01100101

o Air Force Institute of Technology

Digital/

- Naval Surface Warfare Center mixea-signa GRS
@ Draper labs Simulation |

o Open. source release ) W Analog (ODE) ‘
> Spring 2020 ‘ Simulation /

- Engage larger community through technical interchange meetings {
& conferences ‘ Device-Scale(PDE) ‘

AR Simulation

o HEART, SISPAD, NSREC, RADECS
- Charon is the starting point for developing Strategically
Radiation Hardened (SRH) electronic products



What does Charon do?

* Drift-Diffusion PDE solver for modeling charge carrier flow
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Capabilities Provided by Charon

Two & three dimensional + parallel capability

General code models most common devices

. Diodes
. Bipolar junction transistors
. Field effect transistors

Models the effects of common radiation environments

. lonizing radiation (X-ray,y-ray)
. Total ionizing dose radiation
. Neutron irradiation

Some capability to model emerging devices and materials

. APAM devbices
. Memristors
. [1I-V materials
. Gallium Nitride
. Gallium Arsende
. Indium Gallium Phosphide

Production quality code using current best practices for software development
*  Adheres to formal SQE practices

. Incorporating agile development methods (scrum-ban)

Utilizes latest computational technology

. Solvers in Sandia’s Trilinos toolkit

. Galerkin and Scharfetter-Gummel discretizations

. Steady-state, time and frequency domain calculations

. Next Generation Platforms (in process)



Nominal Devices

* Three devices selected for this presentation
* Each is nominal
* Not based on any real commercial or Sandia device
 Each is commonly modeled by Sandia analysts
 Each is designed to be less numerically complicated than
devices often are
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In these simulations...

* Discretization
« SUPG-stabilized Galerkin finite element method
 EFFPG finite element method
* Scharfetter-Gummel finite volume method

« Matrix solution method
« AztecOO GMRES with Ifpack ILU preconditioner
» Belos GMRES with ML preconditioner
* Currently in Trilinos/Epetra
» Transitioning to Trilinos/Tpetra/Kokkos
« Timings
» Averaged to the cost of a single Newton iteration

» Regardless of discretization type, drift-diffusion equations exhibit strong mesh dependency
» Linear solver iteration count can vary widely even during a single simulation

 All calculations done on SNL’s Skybridge capacity cluster
* 1,848 nodes

* 16 cores per node
« 2.6 GHz Intel Sandy Bridge



TCAD Junctions & Diode
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Diode Mesh Setup

 pndiodeisa 1D device

2010 e Typically solved as quasi-1D
* Three types of meshes used for diode
e All hex or quad meshing
* 2D/1D-refined in flow direction only
2D/2D e 2D/2D-refined in flow and lateral directions

e 3D-uniformly refined in 3D

* |n this study, model is over-resolved

 Wanted to see scaling in simplest possible

configuration




Diode Strong Scaling

* |In General, 2D simulations
scaled poorly
* On node, no switch
e 1D shares only 2 nodes at

processor boundaries
* 3D simulations scale well

* Resolved well beyond
necessary
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Diode Weak Scaling

3D 100 o

* 3D scaling starts from memory
limit of a node—80k
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Bipolar Junction Transistor Setup

eb junction = Simple example of “made up” BJT under

dose rate radiation
= Electron-hole pairs produced in large

Emitter

Pulse |

Base s
guantities
bc junction = Gain (I/1,) evolves with carrier
transport
= Gain changes dramatically and returns to
| Collector normal after excess carriers dissipate
npn Bipolar Junction Transistor
o000+ T~ 600
* Three terminal device B o]
« Emitter, base, collector =
] ] -0.00015—\/ % Gain
* Common component of circuits & 20- |
Time (s) 1
* Used for switching or amplification 0 m
e Historically, most studied with Charon 200
e Neutron irradiation 1E-9 e 1E7

e Some dose rate (x-ray, y-ray) radiation



Automated Mesh Refinement

Successive mesh refinement
—

* Meshes for doping more complex than
a diode problems must be refined
around junctions

* Native Cubit was unable to produce
meshes for complex-shaped junctions

e Charon pyMesh was created to address
TCAD meshing needs

* Python based tool reads standard Cubit
journal files plus special refinement
directives.

* Tool creates a base mesh from
Pythonized Cubit and then instructs
Cubit which cells to refine.

= e




BJT Meshes

* Hexahedral meshes are

uniform (almost)
 Conform to boundaries and
contacts
* Must be excessively refined to
resolve of junctions

Conformal to boundaries and contacts
Base mesh of 1.5nm

Recursed 3 times to 1M DoFs
Recursed 4 times to 6M DoFs
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BJT Strong Scaling

e Strong scaling of three different
meshes—uniform, two recursively
refined

e Starting point is near node
memory limit

* All three performed about the
same in terms of speedup relative
to the fewest processors

e ~5x speedup with an ideal of 8x
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BJT Weak Scaling

* Weak scaling performed across
two meshing strategies

* Uniform meshes were uniformly
refined

e Automated meshes start from
different base meshes

* Recursive refinement was held fixed
across scaling

e Uniform meshes weak scale
poorly

e Recursive meshes preform better
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BJT Grind Time

* Grind time examined across
same weak scaling range

* Assembly time for hex meshes
about 10% of overall solution
time

* Node/cell ratio nearly 1:1
e Matrix condition number O(108)

* Assembly time for tet meshes
20%-25% of overall solution
* Node/cell ratio 1:5
e Matrix condition number O(10°)
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M OS F ET Set U p * Four terminal field effect transistor

* Biasis applied across source & drain
* No current flows until gate voltage increases above
Source .
threshold—switching
* Total lonizing Dose (TID) radiation is a chief concern

e (Causes charge buildup between gate oxide &
semiconductor

 Modifies threshold voltage

* Enough radiation can leave device on
permanently
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MOSFET Meshe

weak

Recursive Refinement




MOSFET Scaling

Strong scaling across 2 & 3

recursions

Speedup relative to starting
point 32 & 128 respectively
Recursion 2 achieved speedup
of 3.5 with ideal of 8
Recursion 3 achieved speedup
of 5 with ideal of 8

Weak scaling across 1,2 & 3

recursions

Recursions held fixed with
different base meshes
Scaling improves with higher
levels of recursive refinement
Lower end performance
poor—probably started too
coarse
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Wrap up

e Strong & weak scaling studies were done for three common devices
Charon simulates

* Grind time examined across the week scaling spectrum for bipolar
junction transistor

* Over-refinement in “quiescent” regions appears to hinder weak
scaling—matrix condition numbers are consistently higher

* These will serve as benchmark as Charon transitions from Epetra to
Tpetra/Kokkos



