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[1] S. Acer et al., "Scalable Triangle Counting on Distributed-Memory Systems", IEEE HPEC 2019.



3 1Triangle Counting Problem

What is the number of edge triplets
((vi, vj); (vj, vk); (vk, vi)) in a given graph?

Arises in

spam detection

link recommendation

dense neighborhood graph discovery

- An IEEE HPEC Graph Challenge problem

• https://graphchallenge.mit.edu/ 

Graph is undirected



4 1Triangle Counting Problem

Problem formulation using linear algebra

SpGEMM: Sparse matrix-matrix multiplication

Various methods use

adjacency matrix A

lower and/or upper triangular matrices L and/or U

incidence matrix I

We only use the lower-triangular matrix L as in [1]
2 3 4

1

1 1 1

Number of triangles = sum( (, x L) .* L)
SpGEMM mask

[1] M. M. Wolf et al., "Fast linear algebra-based triangle counting with KokkosKernels", IEEE HPEC 2017. 



5 1 Triangle Counting

No need for intermediate matrices in sum((

For each row i of L

Initialize ci to 0 2

3

Create a hashmap 4

For each nonzero in row i

Insert j into H

wedge • For each nonzero j in row i
— —j

( 
• For each nonzero in row j

i >j>k) 

If k exists in r

Increment ci

(ci: the number of triangles in which vi is the largest indexed vertex)



6 Proposed Hybrid-Parallel
Algorithm

Distributed-memory level

MPI

2D Cartesian partition of matrix L

Each MPI rank gets one block of L

Shared-memory level

Cilk/OpenMP tasking

1D partition of the block

Each thread gets a subset of
consecutive rows in the block

o

1
3 4

6 7 8 9

10 11 12 13 14

1
3 4

6 7

10 11

8 19

13 14 \



7 I Proposed Hybrid-Parallel

Algorithm

2D Cartesian partitioning [1] of L

P = Q(Q + 1)/2 MPI ranks

Balanced number of nonzeros in
blocks

avg = nnz (L) / P

qui row chunk has q blocks

qui chunk has q • avg nonzeros

Use the same chunks for columns

MPI rank at (q, r) owns Lq,r

o
1 2

3 4 5

6 7 8 9

1(1 1 1 12 13 14

,

3,0 3,1 3,2 3,3

4,0 4J 4,2 4,3 4,4

[1] B. Hendrickson et al., 'An efficient parallel algorithm for matrix-vector multiplication ", IJHCS, 1995.



8 Proposed Hybrid-Parallel
Algorithm

MPI rank at (q,r)

performs (1,q,r x Cr) .* Cq

L2.1

L4,0 4,l

For k = 0 to r

compute sum ((I, q

IC4

L42

X 1,, ,k) .* L q ,k)

needs to receive nonzeros from Lr,k and

[Number of messages per MPI rank = 0 (Q) = 0(VT')



9 I Proposed Hybrid-Parallel
Alaorithm
marea-memory level [1]:

1D row partitioning inside the block

Balanced number of nonzeros in stripes

#stripes = #threads x a

a denotes decomposition rate

Empirically, a = 4 gives the best runtime

Each thread gets one stripe and computes:

( L4,2

MM

X
L2,1 )•

*

[1] A. Yasar et al., "Fast Triangle Counting Using Cilk", IEEE HPEC 2018.
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Framework

Vertices sorted in decreasing order of their degrees

C++ code with Intel compiler and OpenMPl

Tested on

28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190 ranks

Cilk for shared-memory parallelism

Two clusters

with Skylake nodes: 2 Intel Xeon Platinum 8160 CPUs

(4x12): 4 MPI ranks per node, 12 threads per MPI rank

with Broadwell nodes: 2 Intel Xeon E5-2695 CPUs

(2x18): 2 MPI ranks per node, 18 threads per MPI rank



l Experimental Results - Part I

Dataset — Part I

graph #vertices #edges #triangles

it-2004 [1] 41,291,594 1,027,474,947 48,374,551,054

twitter [1] 61,578,414 1,202,513,046 34,824,916,864

Twitter2 [2] 103,809,266 3,107,433,379 151,582,758,659

Friendster [1] 65,608,366 1,806,067,135 4,173,724,142

Friendster2 [2] 131,216,732 3,604,811,068 16,803,555,478

uk-2007 [3] 105,896,555 3,301,876,564 286,701,284,103

[1] T. A. Davis and Y. Hu, "The University of Florida Sparse Matrix Collection", ACM TOMS, 2011 .
[2] G. Slota et al., "Scalable Generation of Graphs for Benchmarking HPC Community-Detection Algorithms", SC1 9.

[3] P. Boldi and S. Vigna, "WebGraph Datasets: Laboratory for algorithmics", 2018.
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Comparison against other MPI and Cilk-based approaches

Our method

MPI+Cilk

GC'/7

Champion

Pearce [1]

MPI

GC'18

Champion

Yasar et al [2]

Cilk

Tom&Karypis [3]

MPI

twitter 3.21 s.

1092 cores

x2.6
8.52 s.

6144 cores

28.35 s.
x8.8

48 cores +2HT

18.52 s. 
x5.8

169 cores

friendster 4.95 s.

3420 cores

_ 18.55 s. 
x3.7

48 cores +2HT

27.51 s. 
x5.5

169 cores

[1] R. Pearce, "Triangle counting for scale-free graphs at scale in distributed memory", IEEE HPEC 2017.

[2] A. Yasar et al., "Fast triangle counting using Cilk", IEEE HPEC 2018.

[3] A. S. Tom and G. Karypis, 'A 2D Parallel Triangle Counting Algorithm for Distributed-Memory Architectures", ICPP, 2019.
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Largest public graph: WDC [1]

3.5B vertices, 112B edges, 9.6T triangles

Tested on

105, 136, and 171 MPI ranks

Shared-memory parallelism

Cilk

OpenMP

The cluster with Broadwell nodes

(1x36): 1 MPI rank per node, 36 threads per MPI rank

[1] Web Data Commons webgraph. http://webdatacommons.org, 2012.
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• For small graphs

Part 11

L2,0 L2,1

ea
computation starts after receiving - and Cq

2 use dense hashmap (the fastest)

For the large graph, memory is a problem

interleaved computation & communication

For k = 0 to r

allocate memory and receive Lr,k and Lq,k

co m pute sum ((liq,r X

deallocate memory used for Lr,k and T.,q,k

2 use sparse hashmap (the most memory-efficient)

L40 L4,1 L4.2

e4
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Largest public graph WDC

Baseline algorithm [1]: 808 s. on 256 (x24) nodes

#MPI ranks
Runtime (s)

OpenMP Cilk

105 582 559

136 522 492

171 497 481

%40 faster using almost same number of cores

256x24=6144 vs 171x36=6156

[1] R. Pearce, "Triangle counting for scale-free graphs at scale in distributed memory", IEEE HPEC 2017.



I 7 1 Conclusion
A hybrid-parallel algorithm for triangle counting

2D Cartesian partitioning among MPI ranks

1D row partitioning among Cilk/OpenMP threads I

Fastest known runtime on twitter: 3.21 seconds

2.6x faster than the baseline algorithm

Fastest known runtime on WDC: 481 seconds
1

%40 faster than the baseline algorithm

2D Cartesian partitioning + hybrid approach


