
Scalable Triangle Counting
on Distributed-Memory tAt„,„
Systems

Seher Acer

Abdurrahman Yasar
Sivasankaran Rajamanickam ♦
Jonathan Berry +

Michael Wolf +

Umit Catalyurek

♦: Sandia National Labs A : Georgia Tech
MEW riign
Sandia Nahonal Laboratories is a rnulUrnission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia.
LLC, a wholly owned subsidiary of Honeywell

International lnc., for the U.S. Department of
Energy's National Nuclear Security Administration

under contract DE-NA0003S2S.

SAND2020-1664C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2 lOutline

Triangle Counting Problem

Proposed Hybrid-Parallel Algorithm

Distributed-Memory Level with 2D Partitioning

Shared-Memory Level with 1D Partitioning

Experimental Results

Conclusion

[1] S. Acer et al., "Scalable Triangle Counting on Distributed-Memory Systems", IEEE HPEC 2019.



3 1Triangle Counting Problem

What is the number of edge triplets
((vi, vj); (vj, vk); (vk, vi)) in a given graph?

Arises in

spam detection

link recommendation

dense neighborhood graph discovery

- An IEEE HPEC Graph Challenge problem

• https://graphchallenge.mit.edu/ 

Graph is undirected



4 1Triangle Counting Problem

Problem formulation using linear algebra

SpGEMM: Sparse matrix-matrix multiplication

Various methods use

adjacency matrix A

lower and/or upper triangular matrices L and/or U

incidence matrix I

We only use the lower-triangular matrix L as in [1]
2 3 4

1

1 1 1

Number of triangles = sum( (, x L) .* L)
SpGEMM mask

[1] M. M. Wolf et al., "Fast linear algebra-based triangle counting with KokkosKernels", IEEE HPEC 2017. 



5 1 Triangle Counting

No need for intermediate matrices in sum((

For each row i of L

Initialize ci to 0 2

3

Create a hashmap 4

For each nonzero in row i

Insert j into H

wedge • For each nonzero j in row i
— —j

( 
• For each nonzero in row j

i >j>k) 

If k exists in r

Increment ci

(ci: the number of triangles in which vi is the largest indexed vertex)



6 Proposed Hybrid-Parallel
Algorithm

Distributed-memory level

MPI

2D Cartesian partition of matrix L

Each MPI rank gets one block of L

Shared-memory level

Cilk/OpenMP tasking

1D partition of the block

Each thread gets a subset of
consecutive rows in the block

o

1
3 4

6 7 8 9

10 11 12 13 14

1
3 4

6 7

10 11

8 19

13 14 \



7 I Proposed Hybrid-Parallel

Algorithm

2D Cartesian partitioning [1] of L

P = Q(Q + 1)/2 MPI ranks

Balanced number of nonzeros in
blocks

avg = nnz (L) / P

qui row chunk has q blocks

qui chunk has q • avg nonzeros

Use the same chunks for columns

MPI rank at (q, r) owns Lq,r

o
1 2

3 4 5

6 7 8 9

1(1 1 1 12 13 14

,

3,0 3,1 3,2 3,3

4,0 4J 4,2 4,3 4,4

[1] B. Hendrickson et al., 'An efficient parallel algorithm for matrix-vector multiplication ", IJHCS, 1995.



8 Proposed Hybrid-Parallel
Algorithm

MPI rank at (q,r)

performs (1,q,r x Cr) .* Cq

L2.1

L4,0 4,l

For k = 0 to r

compute sum ((I, q

IC4

L42

X 1,, ,k) .* L q ,k)

needs to receive nonzeros from Lr,k and

[Number of messages per MPI rank = 0 (Q) = 0(VT')



9 I Proposed Hybrid-Parallel
Alaorithm
marea-memory level [1]:

1D row partitioning inside the block

Balanced number of nonzeros in stripes

#stripes = #threads x a

a denotes decomposition rate

Empirically, a = 4 gives the best runtime

Each thread gets one stripe and computes:

( L4,2

MM

X
L2,1 )•

*

[1] A. Yasar et al., "Fast Triangle Counting Using Cilk", IEEE HPEC 2018.



10 l Experimental Results Part I

Framework

Vertices sorted in decreasing order of their degrees

C++ code with Intel compiler and OpenMPl

Tested on

28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190 ranks

Cilk for shared-memory parallelism

Two clusters

with Skylake nodes: 2 Intel Xeon Platinum 8160 CPUs

(4x12): 4 MPI ranks per node, 12 threads per MPI rank

with Broadwell nodes: 2 Intel Xeon E5-2695 CPUs

(2x18): 2 MPI ranks per node, 18 threads per MPI rank



l Experimental Results - Part I

Dataset — Part I

graph #vertices #edges #triangles

it-2004 [1] 41,291,594 1,027,474,947 48,374,551,054

twitter [1] 61,578,414 1,202,513,046 34,824,916,864

Twitter2 [2] 103,809,266 3,107,433,379 151,582,758,659

Friendster [1] 65,608,366 1,806,067,135 4,173,724,142

Friendster2 [2] 131,216,732 3,604,811,068 16,803,555,478

uk-2007 [3] 105,896,555 3,301,876,564 286,701,284,103

[1] T. A. Davis and Y. Hu, "The University of Florida Sparse Matrix Collection", ACM TOMS, 2011 .
[2] G. Slota et al., "Scalable Generation of Graphs for Benchmarking HPC Community-Detection Algorithms", SC1 9.

[3] P. Boldi and S. Vigna, "WebGraph Datasets: Laboratory for algorithmics", 2018.

1



1 2 1 Experimental Results Part I
7

6

5

rn

'E 4

3

twitter

Skylake (4x12)

  Broadweff (2x18)

40

30

7' 20

k-

10
9

100
number of MPI processes

fri end ster2

0-0 Skylake (4x12)

0 0 Broadwell (2x18)

100

number of MPI processes

30

a, 20
E

ru
nn
in
g 
t
i
m
e
 (
s
)
 

10
9

8

10

9

a

7

6

5

twitter2

Skylake (4x12)

JD 0 Broadwell (2x18)

...

100
number of MPI processes

uk-2007

0-0 Skylake (4x12)

  Broadwell (23(18)

100

number of MPI processes

6

5

4

friendster

  Skylake (4x12)

EHEI Broadwell (2x18)

100

number of MPI processes

it-2004

o—o Skylake (4x12)
0 0 Broadwell (2x18)

100

number of MPI processes



I 3 1 Experimental Results Part I

Comparison against other MPI and Cilk-based approaches

Our method

MPI+Cilk

GC'/7

Champion

Pearce [1]

MPI

GC'18

Champion

Yasar et al [2]

Cilk

Tom&Karypis [3]

MPI

twitter 3.21 s.

1092 cores

x2.6
8.52 s.

6144 cores

28.35 s.
x8.8

48 cores +2HT

18.52 s. 
x5.8

169 cores

friendster 4.95 s.

3420 cores

_ 18.55 s. 
x3.7

48 cores +2HT

27.51 s. 
x5.5

169 cores

[1] R. Pearce, "Triangle counting for scale-free graphs at scale in distributed memory", IEEE HPEC 2017.

[2] A. Yasar et al., "Fast triangle counting using Cilk", IEEE HPEC 2018.

[3] A. S. Tom and G. Karypis, 'A 2D Parallel Triangle Counting Algorithm for Distributed-Memory Architectures", ICPP, 2019.



1 4 l Experimental Results Part 11

Largest public graph: WDC [1]

3.5B vertices, 112B edges, 9.6T triangles

Tested on

105, 136, and 171 MPI ranks

Shared-memory parallelism

Cilk

OpenMP

The cluster with Broadwell nodes

(1x36): 1 MPI rank per node, 36 threads per MPI rank

[1] Web Data Commons webgraph. http://webdatacommons.org, 2012.



I 5 l Experimental Results
• For small graphs

Part 11

L2,0 L2,1

ea
computation starts after receiving - and Cq

2 use dense hashmap (the fastest)

For the large graph, memory is a problem

interleaved computation & communication

For k = 0 to r

allocate memory and receive Lr,k and Lq,k

co m pute sum ((liq,r X

deallocate memory used for Lr,k and T.,q,k

2 use sparse hashmap (the most memory-efficient)

L40 L4,1 L4.2

e4



16 lExperimental Results Part 11

Largest public graph WDC

Baseline algorithm [1]: 808 s. on 256 (x24) nodes

#MPI ranks
Runtime (s)

OpenMP Cilk

105 582 559

136 522 492

171 497 481

%40 faster using almost same number of cores

256x24=6144 vs 171x36=6156

[1] R. Pearce, "Triangle counting for scale-free graphs at scale in distributed memory", IEEE HPEC 2017.



I 7 1 Conclusion
A hybrid-parallel algorithm for triangle counting

2D Cartesian partitioning among MPI ranks

1D row partitioning among Cilk/OpenMP threads I

Fastest known runtime on twitter: 3.21 seconds

2.6x faster than the baseline algorithm

Fastest known runtime on WDC: 481 seconds
1

%40 faster than the baseline algorithm

2D Cartesian partitioning + hybrid approach


