This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 1664C

Scalable Triangle Counting ?_‘k

Seher Acer *

Abdurrahman Yasar 2
Sivasankaran Rajamanickam *
Jonathan Berry *

Michael Wolf *

Umit Catalyurek 2

+:Sandia National Labs 2 : Georgia Tech

2 | Qutline

Triangle Counting Problem

Proposed Hybrid-Parallel Algorithm
= Distributed-Memory Level with 2D Partitioning
= Shared-Memory Level with 1D Partitioning

Experimental Results

Conclusion

[1] S. Acer et al., “Scalable Triangle Counting on Distributed-Memory Systems”, IEEE HPEC 20179.

s 1 Triangle Counting Problem

What is the number of edge triplets
(v, v;); (v, vk); (v, v;)) i @ given graph?

Arises in

= spam detection
= link recommendation
= dense neighborhood graph discovery

An IEEE HPEC Graph Challenge problem
= https://graphchallenge.mit.edu/

Graph is undirected

+1 Triangle Counting Problem

= Problem formulation using linear algebra

SpGEMM: Sparse matrix-matrix multiplication

Various methods use

= adjacency matrix A
= lower and/or upper triangular matrices L and/or U

= incidence matrix [

We only use the lower-triangular matrix L asin [1]
._ 1 2 3 4

=1

1

L bd

1 11

Number of triangles =sum((L X L) .x L)

SPGEMM mask

[1] M. M. Wolf et al., “Fast linear algebra-based triangle counting with KokkosKernels”, IEEE HPEC 2017.

|
s 1 Triangle Counting

|
No need for intermediate matrices in sum((L X L) .x L) ‘
= Foreachrowi of L .E 1L 22 4
= Initializec; to O 21
3
= Create a hashmap H o 4011 1

= Foreachnonzerol; ;inrow i

= Insertjinto H

wedge = For each nonzero[; j inrow i
Py — W; — Vg . . | SpGEMM mask
. K = For each nonzero [; in row j

= If k existsin H
= Increment ¢;

(i>]>k)

)

(c;: the number of triangles in which v; is the largest indexed vertex)

¢« IProposed Hybrid-Parallel
Algorithm

= Distributed-memory level 0

= MPI

= 2D Cartesian partition of matrix L 6

= Each MPI rank gets one block of L 10

13

14

= Shared-memory level
= Cilk/OpenMP tasking
= 1D partition of the block

= Each thread gets a subset of
consecutive rows in the block

7 IProposed Hybrid-Parallel

Algorithm |
2D Cartesian partitioning [1] of L 0 ‘
« P=Q(Q + 1)/2 MPI ranks ; i :
= Balanced number of nonzeros in N . |
blocks
10 |11 |12 |13 |14

= avg = nnz(L)/P

= g™ row chunk has g blocks b

1,0]1,}

20200 22 |

= @' chunk has q - avg nonzeros

= Use the same chunks for columns |
3.013.1(3.213,3

= MPlrankat (q,r) owns L, ,

40|41(42]43 |44

[1] B. Hendrickson et al., “An efficient parallel algorithm for matrix-vector multiplication ”, IJHCS, 1995.

: ‘Proposed Hybrid-Parallel
Algorithm

MPI rank at (g, 1)

performs (Lq’,, X Cr) * Cy

= compute sum ((Lq,r X Ly) * Lq,k)

needs to receive nonzeros from L, ;. and /., ,

Number of messages per MPI rank = 0(Q) = 0(\/P)

5 |Prop<_)sed Hybrid-Parallel
é\laggdtlry‘e]r%ry level [1]:

= 1D row partitioning inside the block

Balanced number of nonzeros in stripes

#stripes = #threads X «

a denotes decomposition rate

= Empirically, « = 4 gives the best runtime

Each thread gets one stripe and computes:
N s P N s

L4,2 L21 | L4_1

[1] A. Yasar et al., “Fast Triangle Counting Using Cilk”, IEEE HPEC 2018.

o |lExperimental Results — Part |

Framework
= Vertices sorted in decreasing order of their degrees ‘
= C++ code with Intel compiler and OpenMPI |
= Tested on

= 28,36, 45,55, 66, 78,91, 105, 120, 136, 153, 171, 190 ranks

Cilk for shared-memory parallelism

Two clusters
= with Skylake nodes: 2 Intel Xeon Platinum 8160 CPUs
(4x12): 4 MPI ranks per node, 12 threads per MPI rank

= with Broadwell nodes: 2 Intel Xeon E5-2695 CPUs
(2x18): 2 MPI ranks per node, 18 threads per MPI rank

i IlExperimental Results - Part |

Dataset — Part |

graph #vertices H#edges #triangles
it-2004 [1] 41,291,594 1,027,474,947 | 48,374,551,054
twitter [1] 61,578,414 1,202,513,046 | 34,824,916,864
Twitter2 [2] 103,809,266 3,107,433,379 | 151,582,758,659
Friendster [1] 65,608,366 1,806,067,135 4,173,724,142
Friendster2 [2] 131,216,732 3,604,811,068 | 16,803,555,478
uk-2007 [3] 105,896,555 3,301,876,564 | 286,701,284,103

[1] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection”, ACM TOM.S, 2011.

[2] G. Slota et al., “Scalable Generation of Graphs for Benchmarking HPC Community-Detection Algorithms”, SC79.

[3] P. Boldi and S. Vigna, “WebGraph Datasets: Laboratory for algorithmics”, 2018.

2 |Experimental Results — Part |

running time (s)

running time (s)

twitter

T T
---{G—© Skylake {4x12)
G+ Broadwell (2x18)

40

Pi
100

number of MPI processes

fn end 5ter2

e 383 Skylake{4x12} 1
G+ Broadwell (2x18)

A
100
number of MPI processes

running time (s)

running time (s)

twitter2
P i [e—o skylake (4x12)
A ?f""?"'“{"ﬁ"a—a Brcadwe"{2x1&}+
o | A SN - - _
10}- :
gl _
8 L
100
number of MPI processes
uk 200?
i [e—o Skylake (4x12}
10}- i

-|E3—1 Broadwell (2x18)

i
100
number of MPI processes

running time (s)

running time (s)

fnendster

G0 Skylake (4x12)
E—+ Broadwell {(2x18)

P
100

number of MPI processes

!t 2004

oo Sky!ake (4:(12]

G+ Broadwell (2x18)

Pl
100
number of MPI processes

3 |Experimental Results — Part |

Comparison against other MPI and Cilk-based approaches

GC'17 GC’18
Champion Champion
Our method | Pearce [1] | Yasar et al [2] | Tom&Karypis [3]
MPI+Cilk MPI Cilk MPI
X2.6

fwitter 3.21s. 8.52s. 28,3555 18.52's, *>°

1092 cores | 6144 cores | 48 cores +2HT 169 cores
friandster | 4.95's. _ 18,55 5 597 27.51 5,72

3420 cores 48 cores +2HT 169 cores

[1] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed memory”, IEEE HPEC 2017.
[2] A. Yasar et al., “Fast triangle counting using Cilk”, IEEE HPEC 2018.

[3] A. S. Tom and G. Karypis, “A 2D Parallel Triangle Counting Algorithm for Distributed-Memory Architectures”, ICPP, 2079.

+ | Experimental Results — Part |

= Largest public graph: WDC [1]
= 3.5B vertices, 112B edges, 9.6T triangles ‘

= Tested on |
= 105, 136, and 171 MPI ranks

= Shared-memory parallelism
= Cilk |
= OpenMP

= The cluster with Broadwell nodes
= (1x36): 1 MPI rank per node, 36 threads per MPI rank |

[1] Web Data Commons webgraph. http://webdatacommons.org, 2012.

s |Experimental Results — Part |

= For small graphs

|

L4,2

Lyo

Ly,

&

1. computation starts after receiving C,. and

2. use dense hashmap (the fastest)

= For the large graph, memory is a problem

1. interleaved computation & communication

= Fork=0tor

= allocate memory and receive L, ; and

)

= compute sum ((Q X Lr,k) K

= deallocate memory used for L, ;, and

2. use sparse hashmap (the most memory-efficient)

s |Experimental Results — Part |

= Largest public graph WDC
= Baseline algorithm [1]: 808 s. on 256 (x24) nodes

Runtime (s)
#MPI ranks
OpenMP Cilk
105 582 559
136 522 492
171 497 481

= %40 faster using almost same number of cores
= 256x24=6144 vs 171x36=6156

[1] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed memory”, IEEE HPEC 2017.

7 lConclusion

= A hybrid-parallel algorithm for triangle counting

2D Cartesian partitioning among MPI ranks

1D row partitioning among Cilk/OpenMP threads

Fastest known runtime on twitter: 3.21 seconds

= 2.6x faster than the baseline algorithm

Fastest known runtime on WDC: 481 seconds

= %40 faster than the baseline algorithm
v 2D Cartesian partitioning + hybrid approach

