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2 | Qutline

Triangle Counting Problem

Proposed Hybrid-Parallel Algorithm
= Distributed-Memory Level with 2D Partitioning
= Shared-Memory Level with 1D Partitioning

Experimental Results

Conclusion

[1] S. Acer et al., “Scalable Triangle Counting on Distributed-Memory Systems”, IEEE HPEC 20179.



s 1 Triangle Counting Problem

What is the number of edge triplets
(v, v;); (v, vk ); (v, v;)) i @ given graph?

Arises in

= spam detection
= link recommendation
= dense neighborhood graph discovery

An IEEE HPEC Graph Challenge problem
= https://graphchallenge.mit.edu/

Graph is undirected



+1 Triangle Counting Problem

= Problem formulation using linear algebra

SpGEMM: Sparse matrix-matrix multiplication

Various methods use

= adjacency matrix A
= lower and/or upper triangular matrices L and/or U

= incidence matrix [

We only use the lower-triangular matrix L asin [1]
._ 1 2 3 4

=1

1

L bd

1 11

Number of triangles =sum( (L X L) .x L)

SPGEMM mask

[1] M. M. Wolf et al., “Fast linear algebra-based triangle counting with KokkosKernels”, IEEE HPEC 2017.



|
s 1 Triangle Counting

|
No need for intermediate matrices in sum((L X L) .x L) ‘
= Foreachrowi of L .E 1L 22 4
= Initializec; to O 21
3
= Create a hashmap H o 4011 1

= Foreachnonzerol; ;inrow i

= Insertjinto H

wedge =  For each nonzero[; j inrow i
Py — W; — Vg . . | SpGEMM mask
. K = For each nonzero [ ; in row j

= If k existsin H
= Increment ¢;

(i>]>k)

)

(c;: the number of triangles in which v; is the largest indexed vertex)



¢« IProposed Hybrid-Parallel
Algorithm

= Distributed-memory level 0

= MPI

= 2D Cartesian partition of matrix L 6

= Each MPI rank gets one block of L 10

13

14

= Shared-memory level
= Cilk/OpenMP tasking
= 1D partition of the block

= Each thread gets a subset of
consecutive rows in the block




7 IProposed Hybrid-Parallel

Algorithm |
2D Cartesian partitioning [1] of L 0 ‘
« P=Q(Q + 1)/2 MPI ranks ; i :
= Balanced number of nonzeros in N . |
blocks
10 |11 |12 |13 |14

= avg = nnz(L)/P

= g™ row chunk has g blocks b

1,0]1,}

20200 22 |

= @' chunk has q - avg nonzeros

= Use the same chunks for columns |
3.013.1(3.213,3

= MPlrankat (q,r) owns L, ,

40|41(42]43 |44

[1] B. Hendrickson et al., “An efficient parallel algorithm for matrix-vector multiplication ”, IJHCS, 1995.



: ‘Proposed Hybrid-Parallel
Algorithm

MPI rank at (g, 1)

performs (Lq’,, X Cr) * Cy

= compute sum ((Lq,r X Ly ) * Lq,k)

needs to receive nonzeros from L, ;. and /., ,

Number of messages per MPI rank = 0(Q) = 0(\/P)




5 |Prop<_)sed Hybrid-Parallel
é\laggdtlry‘e]r%ry level [1]:

= 1D row partitioning inside the block

Balanced number of nonzeros in stripes

#stripes = #threads X «

a denotes decomposition rate

=  Empirically, « = 4 gives the best runtime

Each thread gets one stripe and computes:
N s P N s

L4,2 L21 | L4_1

[1] A. Yasar et al., “Fast Triangle Counting Using Cilk”, IEEE HPEC 2018.




o |lExperimental Results — Part |

Framework
= Vertices sorted in decreasing order of their degrees ‘
= C++ code with Intel compiler and OpenMPI |
= Tested on

= 28,36, 45,55, 66, 78,91, 105, 120, 136, 153, 171, 190 ranks

Cilk for shared-memory parallelism

Two clusters
= with Skylake nodes: 2 Intel Xeon Platinum 8160 CPUs
(4x12): 4 MPI ranks per node, 12 threads per MPI rank

= with Broadwell nodes: 2 Intel Xeon E5-2695 CPUs
(2x18): 2 MPI ranks per node, 18 threads per MPI rank



i IlExperimental Results - Part |

Dataset — Part |

graph #vertices H#edges #triangles
it-2004 [1] 41,291,594 1,027,474,947 | 48,374,551,054
twitter [1] 61,578,414 1,202,513,046 | 34,824,916,864
Twitter2 [2] 103,809,266 3,107,433,379 | 151,582,758,659
Friendster [1] 65,608,366 1,806,067,135 4,173,724,142
Friendster2 [2] 131,216,732 3,604,811,068 | 16,803,555,478
uk-2007 [3] 105,896,555 3,301,876,564 | 286,701,284,103

[1] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection”, ACM TOM.S, 2011.

[2] G. Slota et al., “Scalable Generation of Graphs for Benchmarking HPC Community-Detection Algorithms”, SC79.

[3] P. Boldi and S. Vigna, “WebGraph Datasets: Laboratory for algorithmics”, 2018.



2 |Experimental Results — Part |
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3 |Experimental Results — Part |

Comparison against other MPI and Cilk-based approaches

GC'17 GC’18
Champion Champion
Our method | Pearce [1] | Yasar et al [2] | Tom&Karypis [3]
MPI+Cilk MPI Cilk MPI
X2.6

fwitter 3.21s. 8.52s. 28,3555 18.52's, *>°

1092 cores | 6144 cores | 48 cores +2HT 169 cores
friandster | 4.95's. _ 18,55 5 597 27.51 5,72

3420 cores 48 cores +2HT 169 cores

[1] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed memory”, IEEE HPEC 2017.
[2] A. Yasar et al., “Fast triangle counting using Cilk”, IEEE HPEC 2018.

[3] A. S. Tom and G. Karypis, “A 2D Parallel Triangle Counting Algorithm for Distributed-Memory Architectures”, ICPP, 2079.



+ | Experimental Results — Part |

= Largest public graph: WDC [1]
= 3.5B vertices, 112B edges, 9.6T triangles ‘

= Tested on |
= 105, 136, and 171 MPI ranks

= Shared-memory parallelism
= Cilk |
= OpenMP

= The cluster with Broadwell nodes
= (1x36): 1 MPI rank per node, 36 threads per MPI rank |

[1] Web Data Commons webgraph. http://webdatacommons.org, 2012.



s |Experimental Results — Part |

= For small graphs

|

L4,2

Lyo

Ly,

&

1. computation starts after receiving C,. and

2. use dense hashmap (the fastest)

= For the large graph, memory is a problem

1. interleaved computation & communication

= Fork=0tor

= allocate memory and receive L, ; and

)

= compute sum ((Q X Lr,k) K

= deallocate memory used for L, ;, and

2. use sparse hashmap (the most memory-efficient)




s |Experimental Results — Part |

= Largest public graph WDC
= Baseline algorithm [1]: 808 s. on 256 (x24) nodes

Runtime (s)
#MPI ranks
OpenMP Cilk
105 582 559
136 522 492
171 497 481

= %40 faster using almost same number of cores
= 256x24=6144 vs 171x36=6156

[1] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed memory”, IEEE HPEC 2017.



7 lConclusion

= A hybrid-parallel algorithm for triangle counting

2D Cartesian partitioning among MPI ranks

1D row partitioning among Cilk/OpenMP threads

Fastest known runtime on twitter: 3.21 seconds

= 2.6x faster than the baseline algorithm

Fastest known runtime on WDC: 481 seconds

= %40 faster than the baseline algorithm
v 2D Cartesian partitioning + hybrid approach



