

Scalable Triangle Counting on Distributed-Memory Systems

Seher Acer ♦

Abdurrahman Yasar △

Sivasankaran Rajamanickam ♦

Jonathan Berry ♦

Michael Wolf ♦

Umit Catalyurek △

♦ : Sandia National Labs △ : Georgia Tech

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

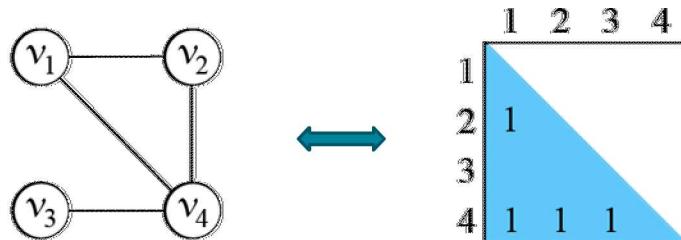
- Triangle Counting Problem
- Proposed Hybrid-Parallel Algorithm
 - Distributed-Memory Level with 2D Partitioning
 - Shared-Memory Level with 1D Partitioning
- Experimental Results
- Conclusion

Triangle Counting Problem

- What is the number of edge triplets $\langle(v_i, v_j); (v_j, v_k); (v_k, v_i)\rangle$ in a given graph?
- Arises in
 - spam detection
 - link recommendation
 - dense neighborhood graph discovery
- An IEEE HPEC Graph Challenge problem
 - <https://graphchallenge.mit.edu/>
- Graph is undirected

Triangle Counting Problem

- Problem formulation using linear algebra
- SpGEMM: Sparse matrix-matrix multiplication
- Various methods use
 - adjacency matrix A
 - lower and/or upper triangular matrices L and/or U
 - incidence matrix I
- We only use the **lower-triangular matrix L** as in [1]



- Number of triangles = $\text{sum}((L \times L) .* L)$

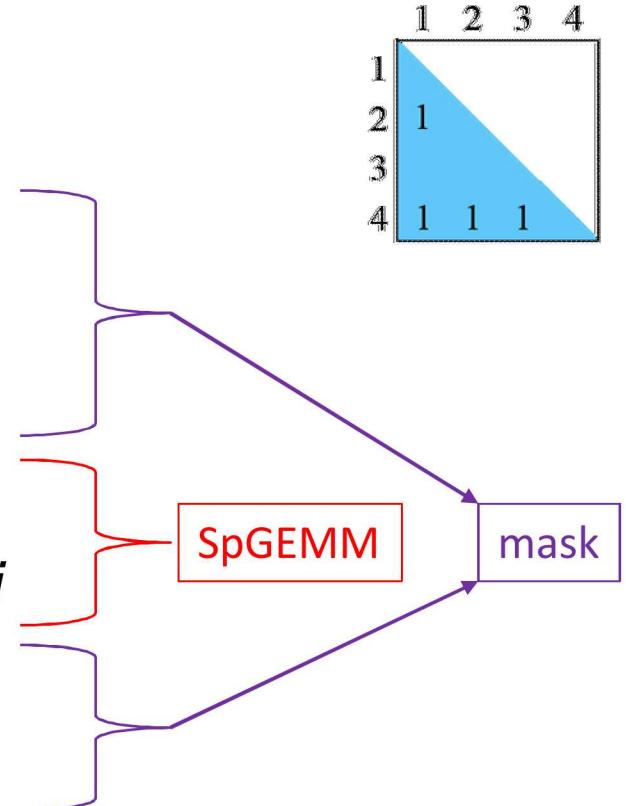
SpGEMM

mask

Triangle Counting

No need for intermediate matrices in $\text{sum}((L \times L) .* L)$

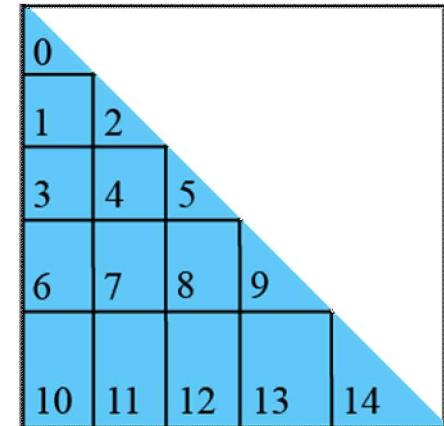
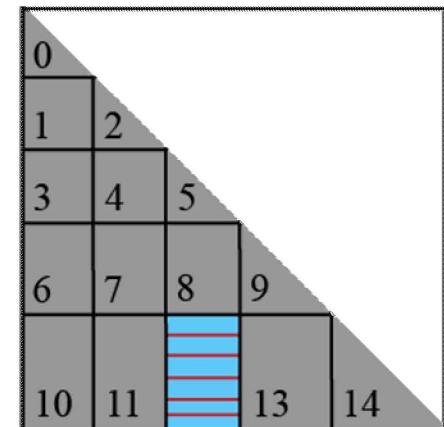
- For each row i of L
 - Initialize c_i to 0
 - Create a hashmap H
 - For each nonzero $l_{i,j}$ in row i
 - Insert j into H
- wedge** $v_i - v_j - v_k$ $(i > j > k)$
 - For each nonzero $l_{i,j}$ in row i
 - For each nonzero $l_{j,k}$ in row j
 - If k exists in H
 - Increment c_i



(c_i : the number of triangles in which v_i is the largest indexed vertex)

Proposed Hybrid-Parallel Algorithm

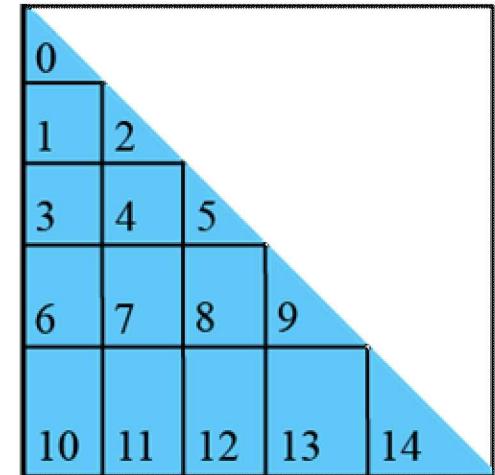
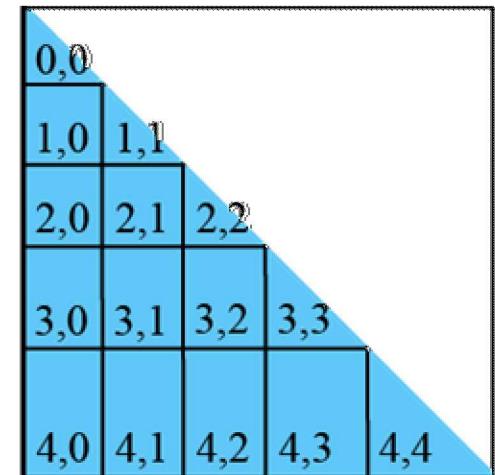
- Distributed-memory level
 - MPI
 - 2D Cartesian partition of matrix L
 - Each MPI rank gets one block of L
- Shared-memory level
 - Cilk/OpenMP tasking
 - 1D partition of the block
 - Each thread gets a subset of consecutive rows in the block



Proposed Hybrid-Parallel Algorithm

2D Cartesian partitioning [1] of L

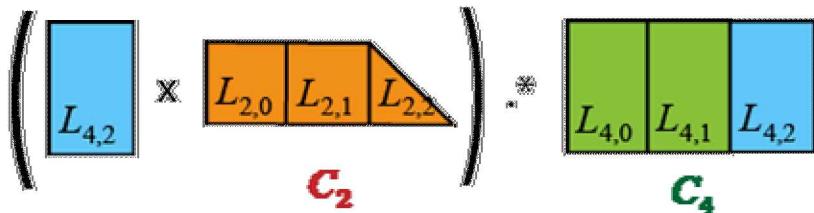
- $P = Q(Q + 1)/2$ MPI ranks
- Balanced number of nonzeros in blocks
 - $avg = nnz(L)/P$
 - q^{th} row chunk has q blocks
 - q^{th} chunk has $q \cdot avg$ nonzeros
 - Use the same chunks for columns
 - MPI rank at (q, r) owns $L_{q,r}$



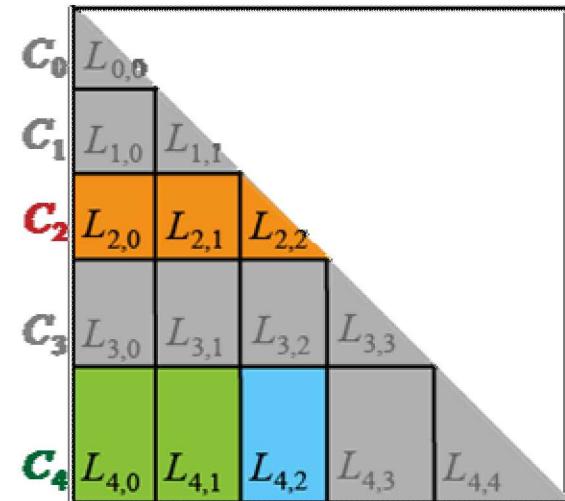
Proposed Hybrid-Parallel Algorithm

MPI rank at (q, r)

- performs $(L_{q,r} \times C_r) .\ast C_q$



- For $k = 0$ to r
 - compute sum $((L_{q,r} \times L_{r,k}) .\ast L_{q,k})$
 - needs to receive nonzeros from $L_{r,k}$ and $L_{q,k}$

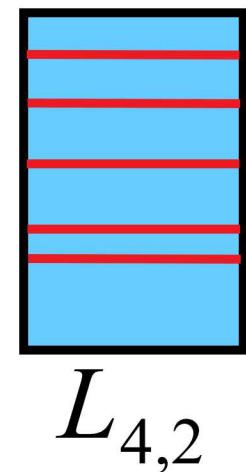
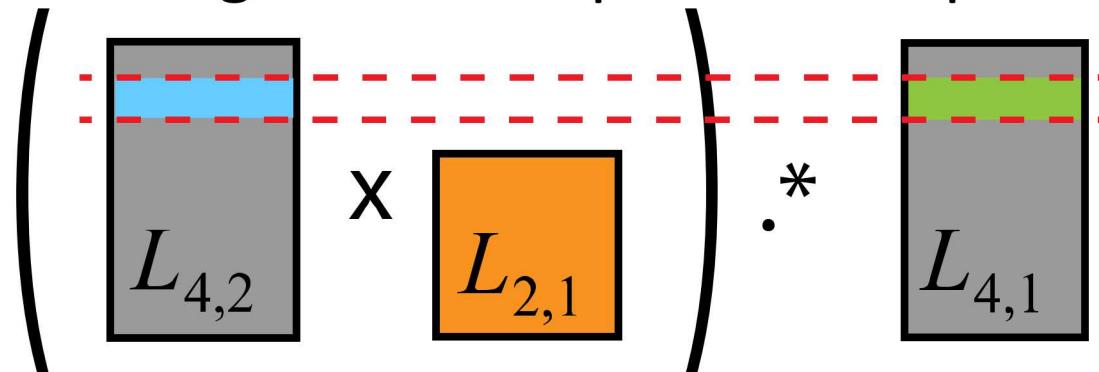


Number of messages per MPI rank = $O(Q) = O(\sqrt{P})$

Proposed Hybrid-Parallel Algorithm

Shared-memory level [1]:

- 1D row partitioning inside the block
- Balanced number of nonzeros in stripes
- $\#stripes = \#threads \times \alpha$
- α denotes decomposition rate
 - Empirically, $\alpha = 4$ gives the best runtime
- Each thread gets one stripe and computes:



Experimental Results – Part I

Framework

- Vertices sorted in decreasing order of their degrees
- C++ code with Intel compiler and OpenMPI
- Tested on
 - 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190 ranks
- Cilk for shared-memory parallelism
- Two clusters
 - with Skylake nodes: 2 Intel Xeon Platinum 8160 CPUs
 - (4x12): 4 MPI ranks per node, 12 threads per MPI rank
 - with Broadwell nodes: 2 Intel Xeon E5-2695 CPUs
 - (2x18): 2 MPI ranks per node, 18 threads per MPI rank

Experimental Results - Part I

Dataset – Part I

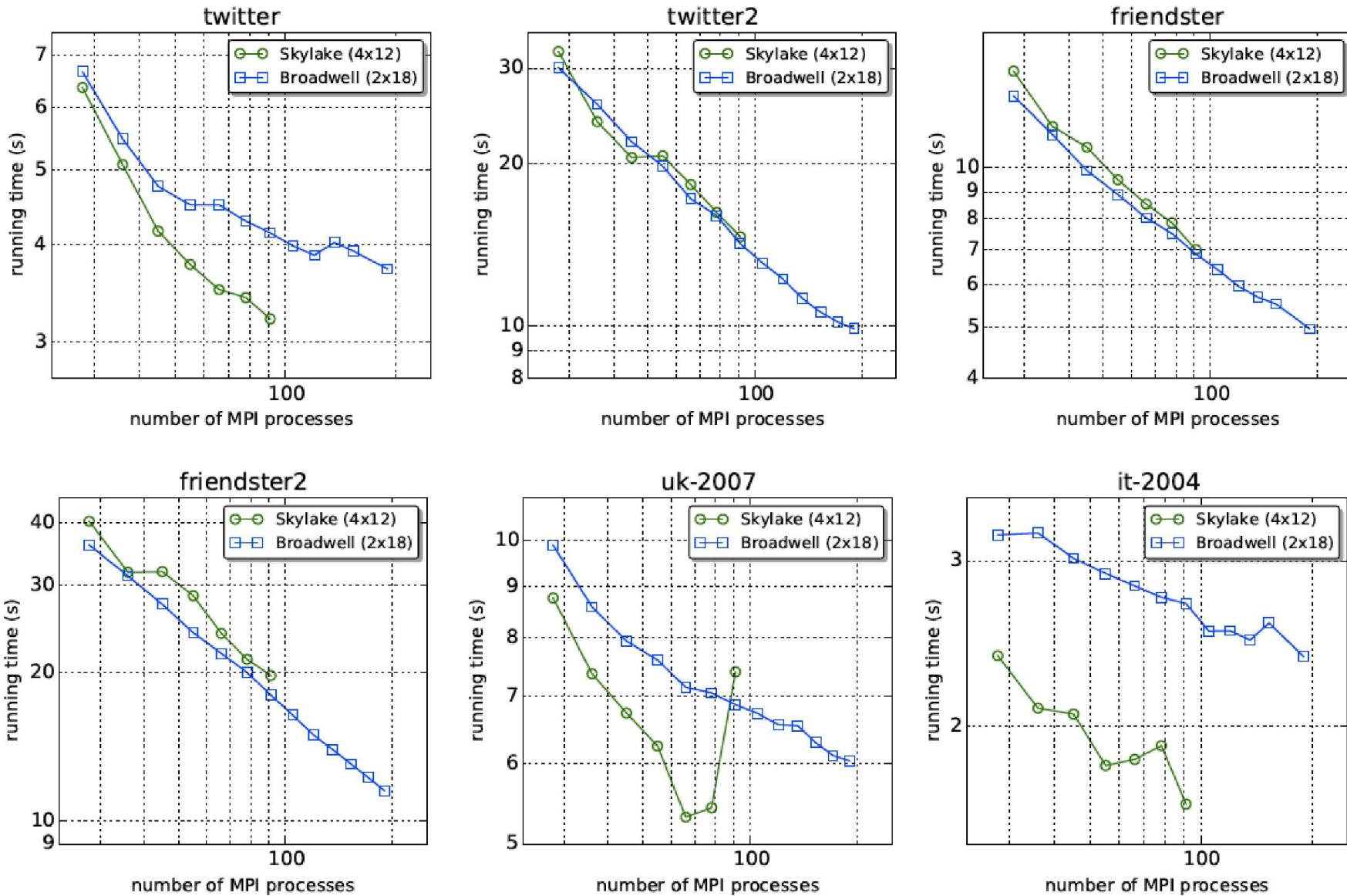
graph	#vertices	#edges	#triangles
it-2004 [1]	41,291,594	1,027,474,947	48,374,551,054
twitter [1]	61,578,414	1,202,513,046	34,824,916,864
Twitter2 [2]	103,809,266	3,107,433,379	151,582,758,659
Friendster [1]	65,608,366	1,806,067,135	4,173,724,142
Friendster2 [2]	131,216,732	3,604,811,068	16,803,555,478
uk-2007 [3]	105,896,555	3,301,876,564	286,701,284,103

[1] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection”, *ACM TOMS*, 2011.

[2] G. Slota et al., “Scalable Generation of Graphs for Benchmarking HPC Community-Detection Algorithms”, *SC19*.

[3] P. Boldi and S. Vigna, “WebGraph Datasets: Laboratory for algorithmics”, 2018.

Experimental Results – Part I



Experimental Results – Part I

Comparison against other MPI and Cilk-based approaches

	Our method MPI+Cilk	GC'17 Champion Pearce [1] MPI	GC'18 Champion Yasar et al [2] Cilk	Tom&Karypis [3] MPI
twitter	3.21 s. 1092 cores	8.52 s. 6144 cores	x2.6 28.35 s. 48 cores +2HT	x8.8 18.52 s. 169 cores
friendster	4.95 s. 3420 cores	-	x3.7 18.55 s. 48 cores +2HT	x5.5 27.51 s. 169 cores

[1] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed memory”, *IEEE HPEC 2017*.

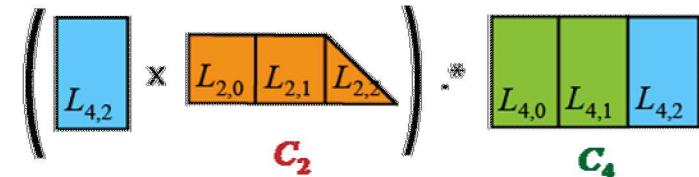
[2] A. Yasar et al., “Fast triangle counting using Cilk”, *IEEE HPEC 2018*.

[3] A. S. Tom and G. Karypis, “A 2D Parallel Triangle Counting Algorithm for Distributed-Memory Architectures”, *ICPP, 2019*.

Experimental Results – Part II

- Largest public graph: WDC [1]
 - 3.5B vertices, 112B edges, 9.6T triangles
- Tested on
 - 105, 136, and 171 MPI ranks
 - Shared-memory parallelism
 - Cilk
 - OpenMP
 - The cluster with Broadwell nodes
 - (1x36): 1 MPI rank per node, 36 threads per MPI rank

Experimental Results – Part II



- For small graphs
 1. computation starts after receiving C_r and C_q
 2. use dense hashmap (the fastest)
- For the large graph, memory is a problem
 1. interleaved computation & communication
 - For $k = 0$ to r
 - allocate memory and receive $L_{r,k}$ and $L_{q,k}$
 - compute sum $((L_{q,r} \times L_{r,k}) \cdot^* L_{q,k})$
 - deallocate memory used for $L_{r,k}$ and $L_{q,k}$
 - 2. use sparse hashmap (the most memory-efficient)

Experimental Results – Part II

- Largest public graph WDC
- Baseline algorithm [1]: 808 s. on 256 (x24) nodes

#MPI ranks	Runtime (s)	
	OpenMP	Cilk
105	582	559
136	522	492
171	497	481

- %40 faster using almost same number of cores
 - $256 \times 24 = 6144$ vs $171 \times 36 = 6156$

Conclusion

- A hybrid-parallel algorithm for triangle counting
- 2D Cartesian partitioning among MPI ranks
- 1D row partitioning among Cilk/OpenMP threads
- Fastest known runtime on twitter: 3.21 seconds
 - 2.6x faster than the baseline algorithm
- Fastest known runtime on WDC: 481 seconds
 - %40 faster than the baseline algorithm
- ✓ 2D Cartesian partitioning + hybrid approach