
Supercomputer in a workstation:
simulation as a development
platform for network architectur

1_
M

,LVNi
CO P i

INFRA STRUCTUR

PRESENTED BY

Jeremiah Wilke, Sandia National Labs, Livermore, CA

Collaborators: Joseph Kenny, Cannada Lewis, Samuel Knight

SIAM PP, Seatle, WA, 2020
1

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-1642C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Applications and systems software need mechanism to convey
requirements between application teams and system vendors

*pp developers
Workloads:

Endpoint
Models

SST Core

C omponent Link C omponent

E vent

C ore

Instantiation

C onfigur at iOn

Partitioning

Time
C oordinat ion

Parallel
Commlinication

Device
Models

The Structural Simulation Toolkit
provides analysis framework for

answering these questions

* Vendors

Hardware/Systems:

3 The lab needs to work with vendors to advance new software
and new hardware from idea to production

Software:

Hardware:

Technology Prove Technology Technology System/Sub System Test
Research Feasthility Development Demonstration Development & Operation
0 o 0 o 0

 }

y

Figure: Technology readiness levels used by Sandia to categorize transition from idea to product

4 SST is an analysis tool for choosing best procurements or best
architectures to focus software development on

Workloads
SST Core

Component Link C omponent

Event

Core

Instandation

Configuration

Partitioning

Time
Coordination

Parallel
Communication

Interconnects example:

5 Conveying application requirements through simulation
requires "endpoint model" that generates realistic traffic

Opt

• E

Opt

• F

Opt
NIC

Challenge is scale: Can I simulate a
supercomputer without an even

bigger supercomputer?

CO-design: Engagement with both app developers and network vendors

Validation/Verification: Possible to demonstrate correctness on existing system

I F le xib ili ty : Able to tune with different parameters

' E ffi cien cy : Able to execute on limited compute resources

*Fruitful: Provides useful results, preferably more than one-off study

Extendable: Able to improve accuracy and detail if needed

Bu The "traffic pattern" on the network
characterizes our unique requirements

Compiler tools can eliminate rate-limiting step in generating
6 endpoint models for interconnect designs

Simulator-specificH6Eks
models

7211

Auto-generate
"skeleton"
with compiler

Is641 1411HirrOMPILER
INFRASTRUCTURE

LVM

MPISend(...)

MPI_Allreduce()

Run online modelThr

Run skeleton
app

Trace
replay

MPI Send(...)

Comoute(x ms)

MPI Allreduce(..

Comoute(y ms)
Output
trace

• • •

Output
results

On-line models directly
running applications and
real network stacks are

more accurate,
more useful

a008

0.006

E 0.004

0.002

0.000

- 8192

- 16384

- 32768

Fattree

Choose
design

7 Related Work: Simulators, Performance Analysis Tools, and
Network Runtimes

Related Project Description

Score-P + OTF2 Profiling and tracing tools

Tracer/CODES
Interconnect simulator largely

based on traces

OMNet++
Parallel simulation framework
popular with internet networks

SMPI/SimGrid
Simulation framework for

running MPI apps

MI

Where

Ailich (with DOE
funding)

Argonne and
Lawrence Livermore

Academic Community

INRIA

SST/macro is unique in its ability to
leverage compiler support, mixed
fidelity models, and HPC focus

https://www.vi-hps.org/
projects/score-p/

https://github.com/LLNL
/TraceR/

http://omnetpp.org

https://github.com/simgr
id/simgrid

8 Designing exascale interconnects is a challenge across the
entire software stack with many lab projects involved

These design questions ften involve either
hardware or software that doesn't exist yet!

Applications
1) Choose scalable algorithm (weak,strong)
2) Express communication pattern to

network stack using API

Network Software Stack
1) Collective algorithms
2) Choose and implement protocols
3) Choose service levels
4) Provide API for applications
5) Place jobs on nodes

interconnect Haraware
1) Choose topology
2) Implement adaptive routing
3) Implement service levels and congestion control
5) Support software-defined networking (SDN)
6) High throughput for both large and small messages

Frig

emir—inure°

OpenMPl MVAPICH MPICH

A

►
•

upe+
UCX

FABRICS
.ALLIANCE

Open

portals
Figure: Some of the projects with DOE
funding/collaborations affecting the network stack.
Many others including Charm++, Legion, DARMA

9 Theoretical studies difficult to extend into working products
when only running simulator-specific communication libraries

Applications
1) Choose scalable algorithm (weak,strong)
2) Express communication pattern to

network stack using API

Network Software Stack
1) Collective algorithms
2) Choose and implement protocols
3) Choose service levels
4) Provide API for applications
5) Place jobs on nodes

interconnect Haraware
1) Choose topology
2) Implement adaptive routing
3) Implement service levels and congestion control
5) Support software-defined networking (SDN)
6) High throughput for both large and small messages

OPENFABRICS
ALLIANCE

fir
1111.1111

MVAPICH

Each design issue
requires an

implementation in SST

V

Endpoint Models/
Traffic Generators

Message-transfer
Layer (MTL)

Byte-transfer
Layer (BTL)

Topology,
Routing,

Congestion

Ember Motif

Irmber Engine

Application Code

Skeletonizer

1111 Hermes API:
MPI Semantics

Firefly NIC:
Packetization

Traces
(OTF2/DUMPI)

SST/macro:
MPI Semantics

Other transports (e.g. GASNet)

PISCES NIC:
Packetization

Interconnect Models
Merlin, PISCES,
LogGOPS

1 0 Illustrative example: Reconfigurable optical interconnects study
shows how challenging technology transitions are

NIC Switch

Switch
• 17

Buffer ,iitille,

x

 .4.......cod Buffer
Tx

Tx
Buffer

Switch

i

Tx
Buffer

NIC

Results showed
2X speedup with
reduced energy

Figure: Two traffic flows contend for bandwidth across electrical network
Figure: Electrical links replaced with optical links for higher bandwidth density
Figure: Reconfigurable switches move bandwidth to alleviate hotspots
Figure: Two traffic flows no longer contend for the same network path

Collaboration with
Keren Bergman

11 Transitioning from an interesting idea in a simulator-specific
model to a ready product is challenging

Technology Prove Technology Technology System/Sub System Test
Research Feasthility Development Demonstration Development & Operation
0 O 0 o •

Software:

Initial ide

Simulat
produces ideas
at TRL 1-3

)
‘se OpenFlow

Demo with OpenFlow -> Add to MPI stack -> Deploy on system

No hardware
exists to

advance TRL of
software stack!

12 Theoretical studies difficult to extend into working products
when only running simulator-specific communication libraries

Applications
1) Choose scalable algorithm (weak,strong)
2) Express communication pattern to

network stack using API

Network Software Stack
1) Collective algorithms
2) Choose and implement protocols
3) Choose service levels
4) Provide API for applications
5) Place jobs on nodes

interconnect Haraware
1) Choose topology
2) Implement adaptive routing
3) Implement service levels and congestion control
5) Support software-defined networking (SDN)
6) High throughput for both large and small messages

OPENFABRICS
ALLIANCE

fir

MVAPICH

Endpoint Models/
s

What if each simu r
implementation directly
used existing libraries?

Byte-transfer
Layer (BTL)

Topology,
Routing,

Congestion

Ember Motif

1111 Ember Engine

Application Code

Skeletonizer

Hermes API:
MPI Semantics

Firefly NIC:
Packetization

Traces
(OTF2/DUMPI)

SST/macro:
MPI Semantics

Other transports (e.g. GASNet)

PISCES NIC:
Packetization

Interconnect Models
Merlin, PISCES,
LogGOPS

13 Solving problem by directly simulating real application code
requires overcoming the challenge of scale

Solution: Compiler support to automatically generate endpoint
models by eliminating expensive memory/compute

r
Original Source Code:

double* big = new double[N];
MPI_Sendrecv(big,...);
for (i=0; i < N; ++i){
expensive_compute();

}
y PI Allreduce(...);

r
Auto-skeletonized
Source Code:

double* big = nullptr;
MPI_Sendrecv(big,...); //modeled
modelCompute(N,...);
yip! Allreduce(...); //modeled

1) Developer
adds pragmas

2) Clang
source-to-source

Modified Source Code:
#pragma sim null_variable
double* big = new double[N];
MPI_Sendrecv(big,...);
#pragma sim compute
for (i=0; i < N; ++i){
expensive_compute();

}
M PI Allreduce(...);

3) sim++ src.cpp
Redirect MPI call

Simulation
Endpoint
Model

Auto-skeletonized
Object Code:

call SIM_MPI_Sendrecv(....);
call modelCompute(N);
sall SIM_MPI Allreduce(...);

4) Link to simulator with
SIM MPI X symbols_ _
sim++ -o sim.x -lsim

PF - 1 EF compute '*'\
00 1 PB M- -

41111111-- g4111,1i,

Olt

64 GB memory
100 GF compute

14 I " s ke I eton izati on" to provide scalable simulation
Simulator needs to achieve both "encapsulation" and i

• Simulator runtime must mimic memory separation of a distributed
system

• Each virtual process needs a private:

• Stack - User space-threads for scalable stack separation

• Heap - Each individual heap allocation already "private"

• Globals - Skeletonizer renames global variables to be accessible in
a thread-local context

• Resulting simulation emulates concurrent execution of many virtual
processes in one physical simulator processes (or a few simulator
processes for parallel discrete event simulation - PDES)

Pr—
SST/Macro Process

,.-
Stacks

Ltext

1PU I Address Space

alai

Global
Data

15 High-fidelity simulation is possible for exascale network, but
not for the entire exascale system

High-Fidelity Sim of ls
(100x Overhead)

Exascale System Coarse-Grained Sim of ls
(100x Cost Reduction)

Nodes

Network
Interface

Switches

Compute

100 ExaOPs

1 PetaOPs

Memory

25 PB

5 TB

5 PetaOPs 100 GB

4
1: 9 II Wn

4

41 i — V r

Using the supercomputers
of today to design the
supercomputers of

tomorrow

Compute

I 1 ExaOP/s

I

I

400
GigaOP/s

50 TeraOP/s

Memory

5 PB

500 GB

25 GB

I Compute

I 5 TeraOPs

I

I

1 TeraOPs

5 TeraOPs

Memory

40 GB

5 GB

20 GB

A coarse-grained simulation is feasible on a powerful workstation.
A mixed-fidelity (detailed network, coarse-grained nodes) is feasible

with an existing supercomputer!

16 Shorten time to production-ready by eliminating rate-limiting
step: don't need access to non-existent supercomputer

Technology Prove Technology Technology System/Sub System Test
Research Feasthility Development Demonstration Development & Operation

o o o

(\I

$$$$$
Every day

hardware sits
underutilized

because
software stack

isn't ready
costs money

e OpenFlow

Compiler support
allows simulator
to advance TRL
far beyond just
interesting ideas

very day
hardware or
software

development
is delayed

sacrifices lab
computing
leadership

1 7 Auto-skeletonization via compiler overcomes scaling challenges
by reproducing behavior without expensive compute

CoMD traffic patterns

•., •

9: AI•••
• • • •

%. '9F
An.
• • •
• • • •

•• • 9 • ••I
••• ••• %Z.;• "..

• •IL.'• • •11..
•• • •

••• • •• • •

Skeleton

• • L "E.

9 • • I
'NZE:m

or%
l • • 1. •

....
..... .r.. • ...••.,... 1.• .4.. "...• • • •

'14 IN %... •• • ..•r.. %, 1• Al% .

%••

•..••••••:;!...

1.•

Actual

HPCG Compute Times
2.5

2.0

0.5-

0 .0

I I

I I

-03

Si m

-00

WI 1 1
DDOT WAXPBY SpMV MG

Despite approximations, traffic pattern and
compute times are reasonably reproduced

Total

18 Auto-skeletonization via compiler overcomes scaling challenges
by reproducing behavior without expensive compute

Figure: Memory and compute of GASNet library in simulator

600

500

-400
j.

c)
i= 300

73

200

100

0

e--• Wall Time
o o Memory Footprint

o

512 1024 2048
Num. Procs

10

8

6

4

2

4096
0

M
e
m
o
r
y
 F
oo
tp
ri
nt
 (
G
B
)

Application with GASNet
runtime running directly in
simulator, but injects traffic

into simulated network

Running non-skeletonized
version would be TBs memory!

Move beyond basic source-level models to more accurate and
more flexible computational models: Machine Learning

int ComputeSPMV_ref(const SparseMatrix A, Vector & x, Vector

assert(x.localLength A.localNumberOfColumns);
assert(y.localLength A.localNurnberOfRows);

Test vector lengths

#ifndef HPCG_NO_MPI
ExchangeHalo(A,x);

#endif
const double * const xv = x.values;
double * const yv = y.values;
const local int t nrow = A.localNumber0fRows;

#ifndef HPCG NO OPENMP
#pragma omp parallel for

#endif
for (local int t i=0; i< nrow; i-H-)

double sum = 0.0;
const double * const cur vals = A.matrixValues[i];
const local int t * const cur inds = A.mtxIndL[i];

Capture nrow as
kernel metadata

Automatically detect
OpenMP regions and
instrument for fitting models

kdded instrumentation with
automatic capture of nrow.

Mso captured inside the
lackend are
\1UM_OMP_THREADS,
DMP_PROC_BIND and
DMP_PLACES

Move beyond basic source-level models to more accurate and
more flexible computational models: Machine Learning

const local_int_t nrow = A.localNumber0fRows;

fO_ComputesPW_ref_pp_ComputesPin_ref_cppEll_memoize_start(nrow)
#pragma omp parallel for

for (local_int_t i = 0; i < nrow;
ble sum = 0.0;
st double *const cur_vals = A.matrixvalues[i];
st local_int_t *const cur_inds = A.mtxIndL[i];
st int cur_nnz = A.nonzerosInRow[ill

(int j = 0; j < cur_nnz; j++)
um += cur_vals[j] * xv[cur_inds[j]];
ij = sum;

fO ComputesPMV ref_pp_ComputeSPin_ref_cpp6l_memoize_end();

21 Move beyond basic source-level models to more accurate and
more flexible computational models: Gradient-Boosted Trees

Median, upper,
lower bounds
generated

E

0.000016

0.000008

0.000002

4

• Model 4

4

Reproduce complex,
non-linear behavior

•

4

0.00007

0.00006

nrow = 1000

Collect samples scanning over
app parameters, OpenMP
config, and replicates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
NUM_OMP_THREADS

0.000008

0.000006

0.000004

*4

•

0.00003

0.00002

♦

•

•
•

4
4

4
4 4 4* * ♦

OMP_PROC_BIND

Data 0

- Data 3

- Data 4

• Model 0
• Model 3

• Model 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
NUM_OMP_THREADS NUM_OMP_THREADS

22 I Move beyond instrumentation-based models and provide
models for configurable architectures: LLVM + ML

*Don't rely on existing system for benchmarking — estimate performance for new architectures

•We still want fast, functional simulation on X86, e.g. — but collect enough performance counters to estimate
performance on different architecture

•Proposal: Embed LLVM IR in simulator executable

Simulator

Kernel I

Counters from X86
functional simulation

Performance
Estimate

Cross-compiled
Machine Code

Performance Estimator:
1) Basic block vectors

2) MCA (Machine code analyzer)
3) ML-based model

Acknowledgments
Sandia gational Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

National Nuclear Security Administration

Sandia
1 National

Laboratories

