This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 1642C

Supercomputer in a workstation:
simulation as a development

platform for network architectures

INFRASTRUCTURE

PRESENTED BY

Jeremiah Wilke, Sandia National Labs, Livermore, CA

T

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

SIAM PP’ Seatle y WA, 2020 Energy’s National Nuclear Security
1 Administration under contract DE-NA0003525.

Collaborators: Joseph Kenny, Cannada Lewis, Samuel Knight

2 | Applications and systems software need mechanism to convey
requirements between application teams and system vendors

App developers

Workloads:

V
SST Core eidars

Endpoint
Models ?

Device
Models

Hardware/Systems:

Component{ Link »Component
Event

Core
Instantiation Time

Coordination
Conf ti
onfiguration Pacallel

Partitioning Communication

The Structural Simulation Toolkit

provides analysis framework for
answering these questions

3 | The lab needs to work with vendors to advance new software
and new hardware from idea to production

Technology Prove Technology Technology System/Sub System Test
Research Feasibility Development Demonstration Development & Operation

Lelol o 0o 06 6.6, 0,0 ©

refol el e ©6.6.60,0,0 ©

Figure: Technology readiness levels used by Sandia to categorize transition from idea to product

4 I SST is an analysis tool for choosing best procurements or best
architectures to focus software development on

Interconnect Options

6 Dragonfly+

SST Core

Workloads

Component{ Link »Component
Event

Core
Instantiation Time

Coordination
[ti
onfiguration Pacallel

Partitioning Communication

@ Dragonfly

Interconnects example: 9 Fat tree

s | Conveying application requirements through simulation

€¢

endpoint model” that generates realistic traffic

Challenge is scale: Can | simulate a

supercomputer without an even
bigger supercomputer?

"OptkCO-design: Engagement with both app developers and network vendors

O Validation/Verification: Possible to demonstrate correctness on existing system
® pt
- ppFlexibility: Able to tune with different parameters

-OptfEfficiency: Able to execute on limited compute resources

" "L Fruitful: Provides useful results, preferably more than one-off study
*Opt]

NI

Extendable: Able to improve accuracy and detail if needed

[

=L

The “traffic pattern” on the network
characterizes our unique requirements

Compiler tools can eliminate rate-limiting step in generating
s endpoint models for interconnect designs
Simulator-specific

models/ -

On-line models directly

Run online model running applications and
Auto-generate | & = real network stacks are
“skeleton” 3 Run skeleton more accurate,
with compiler = app » more useful

f | Output
, ' results
ILVM RUn. app 3 Trace b .
o A =@ = | replay .
MPI Send(..) - B
Choose
MPI Allreduce () MPI_Send(..) design

Compute (x ms)
MPI Allreduce(...)
Compute (y ms)

7 | Related Work: Simulators, Performance Analysis Tools, and |
Network Runtimes I

Related Project | _____ Description | ____Where |

Julich (with DOE https://www.vi-hps.org/

Score-P + OTF2 Profiling and tracing tools funding) projects/score-p/
Tracer/CODES Interconnect simulator largely Argonng and https://github.com/LLNL
based on traces Lawrence Livermore /TraceR/

Parallel simulation framework

OMNet++ popular with internet networks Academic Community http://omnetpp.org
SMPI/SimGrid Slmulathn framework for INRIA http;://glthub.com/SImgr
running MPI apps id/simgrid

SST/macro is unique in its ability to

leverage compiler support, mixed
fidelity models, and HPC focus

Designing exascale interconnects is a challenge across the
entire software stack with many lab projects involved

These design questions often involve either
hardware or software that doesn’t exist yet!

Applications
1) Choose scalable algorithm (weak,strong)
2) Express communication pattern to
network stack using API

Network Software Stack
1) Collective algorithms
2) Choose and implement protocols
3) Choose service levels
4) Provide API for applications
5) Place jobs on nodes

Interconnect Haraware
1) Choose topology
2) Implement adaptive routing
3) Implement service levels and congestion control
5) Support software-defined networking (SDN)
6) High throughput for both large and small messages

UCX

&jwmmamcs .'J
LI ANCE

portals

Figure: Some of the projects with DOE
funding/collaborations affecting the network stack.
Many others including Charm++, Legion, DARMA

9 | Theoretical studies difficult to extend into working products
when only running simulator-specific communication libraries

Applications
1) Choose scalable algorithm (weak,strong)
2) Express communication pattern to
network stack using API

Network Software Stack
1) Collective algorithms
2) Choose and implement protocols
3) Choose service levels
4) Provide API for applications
5) Place jobs on nodes

Interconnect Haraware
1) Choose topology
2) Implement adaptive routing
3) Implement service levels and congestion control
5) Support software-defined networking (SDN)
6) High throughput for both large and small messages

MVAPICH

Each design issue
requires an
implementation in SST

Endpoint Models/ i

Traffic Generators

Message-transfer
Layer (MTL)

Byte-transfer
Layer (BTL)

Topology,
Routing,
Congestion

Ember Engine

Hermes API:
MPI Semantics

Firefly NIC:
Packetization

Application Code

Skeletonizer

Traces
(OTF2/DUMPI)

vy
SST/macro:
MPI Semantics

Other transports (e.g. GASNet)

Interconnect Models

Merlin, PISCES,
LogGOPS

PISCES NIC:
Packetization

0 | lllustrative example: Reconfigurable optical interconnects study
shows how challenging technology transitions are

Optical .
NIC Switch Transceiver Switch Switch NIC
BJf)f(er Bt?f)f(er BJf)f(er Bt?f)f(er BJf)f(er Bl?f)f(er u xe"
= = = F
k\ 5 X u xer /

Results showed

2X speedup with
reduced energy

COLUMBIA

vty Collaboration with

dg Keren Bergman
Figure: Two traffic flows contend for bandwidth across electrical network

Figure: Electrical links replaced with optical links for higher bandwidth density

Figure: Reconfigurable switches move bandwidth to alleviate hotspots
Figure: Two traffic flows no longer contend for the same network path

Switch Switch
Buffer k ‘/,1’ uffer

| X

N T
N Bufter

11 | Transitioning from an interesting idea in a simulator-specific
model to a ready product is challenging

Technology Prove Technology Technology System/Sub System Test
Research Feasibility = Development Demonstration Development & Operation

No hardware

exists to
advance TRL of
software stack!

Software:

Initial ide@ Demo with OpenFlow -> Add to MPI stack -> Dely on system

Simulator
produces ideas

at TRL1-3

12 | Theoretical studies difficult to extend into working products
when only running simulator-specific communication libraries

Ember Motif Application Code

Endpoint Models/ iy
Traces

What '|f eaCh S]mulator Ember Engine Skeletonizer (OTF2/DUMPI)
implementation directly , —

used existing libraries? Hermes AP P! Semantes

MPI Semantics Other transports (e.g. GASNet)

Applications
1) Choose scalable algorithm (weak,strong)
2) Express communication pattern to
network stack using API

Network Software Stack
1) Collective algorithms
2) Choose and implement protocols
3) Choose service levels
4) Provide API for applications
5) Place jobs on nodes

Interconnect Haraware
1) Choose topology
2) Implement adaptive routing
3) Implement service levels and congestion control
5) Support software-defined networking (SDN)
6) High throughput for both large and small messages

Byte-transfer Firefly NIC: PISCES NIC:
Layer (BTL) Packetization Packetization

Topology, Interconnect Models
Routing, Merlin, PISCES,

Congestion LogGOPS

13

Solving problem by directly simulating real application code

requires overcoming the challenge of scale

Solution: Compiler support to automatically generate endpoint

models by eliminating expensive memory/compute

Modified Source Code:

#pragma sim null_variable

double* big = new double[N];

MPI_Sendrecv(big,...);

#pragma sim compute

for (i=0; i < N; ++i)
expensive_compute();

}
MPI_Allreduce(...);

Original Source Code:
double™ big = new double[N]; 1) Developer

MPI_Sendrecv(big,...); adds pragmas
for (i=0; i < N; ++i)

expensive_compute();

}
MPI1_Allreduce(...);

2)Clang
source-to-source

Auto-skeletonized Auto-skeletonized

Source Code: Object Code:

double® big = nuliptr; . call SIM_MPI_Sendrecv(....);
MPI_Sendrecv(big,...); /modeled 3) sim++ src.cpp call modelCompute(N)

modelCompute(N....) Redirect MPI call gl cai sim_mPI Allreducey...):
MPI_ Allreduce(...); //modeled —

4) Link to simulator with
SIM_MPI_X symbols
sim++ -0 sim.x -Isim

Simulation
Endpoint
Model

64 GB memory
100 GF compute

B s s B

Simulator needs to achieve both “encapsulation” and
| “skeletonization” to provide scalable simulation

« Simulator runtime must mimic memory separation of a distributed
system

« Each virtual process needs a private:
« Stack - User space-threads for scalable stack separation
* Heap - Each individual heap allocation already “private”

» Globals - Skeletonizer renames global variables to be accessible in
a thread-local context

« Resulting simulation emulates concurrent execution of many virtual
processes in one physical simulator processes (or a few simulator
processes for parallel discrete event simulation - PDES)

SST/Macro Process
MPI Rank 0 MPI Rank 1 (Stacks]

Context Context
Global Data Global Data 0 1

Global
Data

Address Space Address Space Address Space

15 | High-fidelity simulation is possible for exascale network, but
not for the entire exascale system

- High-Fidelity Sim of 1s Exascale System Coarse-Grained Sim of 1s
(100x Overhead) (100x Cost Reduction)
| Compute | Memoy Compute | Memory Compute | emory _
Nodes 100 ExaOPs 25 PB I 1 ExaOP/s 5 PB I 5 TeraOPs 40 GB
NeWOrk 1petaOPs 57TB I Gig‘;%)P . 500GB I 1 TeraOPs 5 GB
Switches ~ 5PetaOPs 100GB |50Teraop/s 25GB | 5Tera0Ps 20GB

A coarse-grained simulation is feasible on a powerful workstation.

A mixed-fidelity (detailed network, coarse-grained nodes) is feasible
with an existing supercomputer!

Using the supercomputers
of today to design the
supercomputers of
tomorrow

6 I Shorten time to production-ready by eliminating rate-limiting
step: don’t need access to non-existent supercomputer

Technology Prove Technology Technology System/Sub System Test
Research Feasibility = Development Demonstration Development & Operation

® Q

Compiler support
allows simulator
to advance TRL
far beyond just
interesting ideas

Every day

Every day | | < 4 hardware or

hardware sits software
underutilized development
because , — : is delayed
software stack CaCea | sacrifices lab
isn’t ready e gl b gy L computing
costs money ‘ leadership

17 I Auto-skeletonization via compiler overcomes scaling challenges
by reproducing behavior without expensive compute

Skeleton

CoMD traffic patterns

Region Timer (s)

Actual 0.0

Despite approximations, traffic pattern and

compute times are reasonably reproduced

HPCG Compute Times

2.0t

1.5}

0.5}

B O3
T Sim
HE -O0

DDOT WAXPBY SpMV MG Total

18 I Auto-skeletonization via compiler overcomes scaling challenges
by reproducing behavior without expensive compute

Figure: Memory and compute of GASNet library in simulator

600 10

=0 IWaIITirIne
e—e Memory Footprint Application with GASNet

500_ . . 3 3
1® = runtime running directly in
o simulator, but injects traffic
—~ 400} - : :
u lg E into simulated network
o S
g 300 © . .
== O Running non-skeletonized
IS 14 > version would be TBs memory!
= 200| o
=
Q
12 =
100}

512 1024 2048 4096
Num. Procs

Move beyond basic source-level models to more accurate and
more flexible computational models: Machine Learning

int ComputeSPMV_ref(const SparseMatrix & A, Vector & x, Vector & y) {

assert(x.localLength >A.localNumberOfColumns);

assert(y.localLength >A.localNumberOfRows);

#ifndef HPCG_NO_MPI

ExchangeHalo(A,x); :
ttendif Automatically detect

const double * const xv = x.values; OpenMP regions and
double * const yv = y.values; instrument for fitting models
const local_int_t nrow = A.localNumberOfRows;

#1fndef HPCG_NO_OPENMP
#tpragma omp parallel for j Capture nrow as
ftendif kernel metadata

for (local_int_t 1=0; i< nrow; i+) {
double sum = 0.0,
const double * const cur_vals = A.matrixValues[i];
constilocal int it = vconst cur:inds == A.mtxTadEEr]s

Move beyond basic source-level models to more accurate and
more flexible computational models: Machine Learning

const local_int t nrow = A.localNumberOfRows;

ﬁwf@_ComputeSPMV_ref_pp_ComputeSPMV_ref_cppﬁi_memoize_start(nrow)
sliipragma omp parallel for
RO Clocal s int SEi s 01 miraNs 11+)

\dded instrumentation with |SARCRCIUNERNINIE

st double *const cur_vals = A.matrixValues[i];
st lpcal ant tixconst our ands = AmExTndl-lq1];
st int cur_nnz = A.nonzerosInRow[illj

OMP_PLACES

fO0 _ComputeSPMV_ref pp ComputeSPMV_ref cpp61l memoize end();

21 | Move beyond basic source-level models to more accurate and
more flexible computational models: Gradient-Boosted Trees

Reproduce complex, T T
' non-linear behavior ' v s
Median, upper, o mwoa] g ;
lower bounds ’ - '

generated Collect samples scanning over
o app parameters, OpenMP
~config, and replicates

PO ! 0.000008 | | ik N
| [¢ ¢ # 0.00003
4
0.000006
¢
0.000004 ¢
0.00002
0.000004
0.000002 ¢
12345678 9101112131415161718192021222324 12345678 9101112131415161718192021 222324 12345678 9101112131415161718192021222324

NUM_OMP_THREADS NUM_OMP_THREADS NUM_OMP_THREADS

2 | Move beyond instrumentation-based models and provide
models for configurable architectures: LLVM + ML

*Don’t rely on existing system for benchmarking — estimate performance for zew architectures

*We still want fast, functional simulation on X80, e.g. — but collect enough performance counters to estimate
performance on different architecture

*Proposal: Embed LLVM IR in simulator executable

Kernel IR ,
Cross-compiled

Machine Code

Counters from X86
functional simulation Performance Estimator:

1) Basic block vectors
2) MCA (Machine code analyzer)
Performance 3) ML-based model
Estimate

Simulator

Acknowledgments
Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

Sandia
National
Laboratories

