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Abstract—With the potential of increased penetration of 

connected and autonomous vehicles (CAVs), intersectional 

signal control faces new challenges in terms of its operation and 

implementation. One possibility is to fully make use of the 

communication capabilities of CAVs so that intersectional 

signal control can be realized by CAVs alone – this leads to non-

signalized intersectional operation for traffic networks in urban 

areas. In this paper, the state-of-the-art on collaborative fault 

tolerant control schemes for complex systems will be briefly 

described. This is then followed by the formulation of 

operational fault tolerant control that realizes the collaborative 

fault tolerance functionality at CAVs operational level in 

response to possible individual vehicle faults, where detailed 

modelling using vehicle movement dynamics will be described 

together with the construction of fast fault diagnosis and a 

collaborative fault tolerant control algorithm. A simple example 

will be given as well to demonstrate the proposed algorithm 

together with the discussions on other issues such as randomness 

of the system, communication errors and full energy 

consideration. These leads to several future directions of the 

research for the traffic flow control of non-signalized 

intersections with 100% penetration of CAVs. 

Keywords—Intersectional signal control, Connected and 
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I. INTRODUCTION  

Operation of complex systems such as traffic network and 
industrial processes involves multiple layers of control 
systems that work collaboratively to fulfill the required 
operation.  For example, in transportation systems there is a 
generic three-layered operational structure as shown in the 
Figure 1, where the top layer performs traffic monitoring and 
management whilst the intersection layer looks after the 
distributed traffic signal-timing control for each intersection 
so as to ensure a smooth traffic flow with minimized 
congestion over a concerned urban area characterized by some 
networked intersections. In this context, intersection control 
plays a key role that ensures effective and safe passage of 
vehicles. Indeed, fixed timing traffic light control and adaptive 
signal control have been developed ([1] - [2]) over the past 
decades. In these signal control methods, the signal timing 
(i.e., the duration of green, red and yellow color of the traffic 
lights at intersections) is regarded as the control input and the 

traffic flow density or queueing length distribution is taken as 
the output ([14]).     

The ultimate purpose of traffic signal control is to control 
the signal lights timing so that a smooth traffic flow can be 
realized at intersections with minimum energy consumption. 

     

 

a) Signalized intersection            b)Non-signalized intersection 

 

 

c) Three-layered operational control for traffic flow 
networks 

Fig. 1. Signalized vs non-signal intersections control 
(picture source: www.google.com). 

With the potential of increased penetration of connected 
and autonomous vehicles (CAVs) on the road in the near 
future, vehicles near intersections can now ‘talk’ to each other 
via their communication capabilities. This achieves the 
exchange of vehicle state information in terms of speed and 
position among them.  For example, each vehicle would have 



the information on speeds and positions of other surrounding 
vehicles near their approaching intersections, and such extra 
information can effectively be used to manage the movement 
of the concerned vehicle when passing through the 
intersection. Indeed, using the speeds and positions 
information of other surrounding vehicles, the control systems 
of the concerned vehicle can pro-actively control its own 
speed and position in order to realize a smooth and effective 
intersectional passage with minimal energy consumption. 
This means that a possible solution would be to allow these 
CAVs to manage and optimize their intersectional passage by 
themselves rather than passively relying on the traffic signals.  
An eminent advantage would be that there is no need to install 
costly signalized traffic infrastructure at intersections, which 
would greatly simplify the intersection control.        

In this context, intersectional signal control faces the 
following new challenges in terms of its operation and 
implementation,  

1) How the communication capabilities of CAVs can be 
leveraged to develop control strategies that allow 
these CAVs to manage and control themselves when 
passing through non-signalized intersections;              

2) If a CAV has a fault how other CAVs can 
autonomously control themselves in a fault tolerant 
way so that they can still pass through the 
intersections safely with a good speed profile.             

This leads to non-signalized intersection operation for 
traffic networks and one of the key requirements is safety and 
smooth passage. This requires the development of fault 
diagnosis and collaborative fault tolerant control for the CAVs 
approaching and departing from the concerned intersections 
in terms of safety, smooth passage and minimum energy 
consumption.        

Indeed, during the operation of these non-signalized 
intersections, smooth and safe movement of vehicles is an 
important issue that ensures the achievement for smooth 
traffic flow without accidents.  Although some work has been 
carried out to analyze non-signalized intersection systems, 
these are largely performed for human-driven vehicles ([3] – 
[4], [8] – [9]), where passive analysis has been made together 
with system modeling on the characteristics of human-drivers’ 
behaviors at these intersections. On the other hand, much 
research has been carried out on the collision avoidance 
among vehicles ([10] – [11]).  This can be regarded as a 
prototype collaborative control between two or three vehicles 
when they are at risk of collision.  However, the 
communications between the concerned vehicles have not 
been fully used and the number of vehicles under 
consideration is small.  In this regard, collision avoidance is 
only a safety precautionary measure and is an added 
functionality for individual vehicles rather than their grouped 
collaborative controls.  As a result, when a fault occurs in a 
vehicle it is important to establish novel fault tolerant control 
strategies that can be used by CAVs to collaboratively control 
themselves when passing through non-signalized intersections 
by making use of their communication capabilities among 
themselves so as to pass through the intersection safely at their 
maximum allowable speed with minimized energy 
consumption.               

This forms the main topic of this paper, where modelling 
considering CAVs communication capabilities, fault 
diagnosis and collaborative fault tolerant control for CAVs 

near non-signalized intersections will be described – leading 
to a novel control strategy that ensures how healthy CAVs can 
pass through the non-signalized intersection safely, smoothly 
and also at maximum allowable speed.  For this purpose, in 
the next section a brief review of fault detection, diagnosis and 
tolerant control will be given. 

II.    FAULT DIAGNOSIS AND FAULT TOLERANT 

CONTROL 

A.      Fault Detection and Diagnosis. 

Given a dynamic system with available input and output, 
fault detection aims at using available inputs and outputs to 
detect the fault in the system. On the other hand, fault 
diagnosis (FD) and fault tolerant control (FTC) have been well 
developed over the past decades for control systems, where 
the purpose of FD is to estimate the fault in the system using 
available information such as inputs and outputs of the 
concerned system ([13]), and the purpose of fault tolerant 
control is to use the fault diagnosis result to reconfigure the 
controller so that the whole system may continue to operate 
safely until an economic repair is made ([15]).  Indeed, 
depending upon the system representation, fault diagnosis can 
be performed using either the observer-based approach or 
system identification-based approach, whilst fault tolerant 
control can be realized in either passive or pro-active ways.  
As for the types of the fault, it can be either the actuator fault, 
or system fault or even sensor faults as shown in Figure 2, 
where F stands for the possible faults in different parts in a 
closed loop system.  Of course, sometimes there are also faults 
in the controller itself, for example to represent the 
malfunctioning of the control software and hardware.          

                            

 

Fig. 2. Possible faults in a closed loop system. 

 

In terms of the algorithm structure, Fig. 3 shows how a 
fault diagnosis can be implemented in a software perspective. 
Once a fault is detected and further diagnosed, its estimate will 
be considered in the construction of fault tolerant control 
where both structure and control parameters can be tuned in 
real-time for a continued safe operation of the system. 

B.       Collaborative Fault Tolerant Control. 

     In 2005, a novel concept has been reported in ([11], 
[17]) on the collaborative fault tolerant control. The key idea 
is to consider complex systems composed of a number of sub-
systems, where if a fault takes place in a sub-system then other 
healthy system can pro-actively tune the control systems in a 
fault tolerant way so that the whole complex system can still 
function safely. This novel concept has also been applied 
recently to serially connected stochastic distribution systems 
([5]). In this case, two sub-systems have been considered, 
where the output of the first sub-system provides a boundary 
condition to the second sub-system. It has been demonstrated 
that the effect of the fault onto the operation of the closed loop 



system can be significantly reduced – leading to a safer 
operation of the concerned system.                

 

Fig. 3. Software structure of FD. 

 

In this paper, the formulation of operational fault tolerant 
control will be made that realizes the collaborative fault 
tolerance functionality at CAVs operational level in response 
to possible individual vehicle faults. The detailed modelling 
using vehicle movement dynamics will be described together 
with the construction of fast fault diagnosis and tolerant 
control algorithms. An example will be given in order to 
demonstrate the effectiveness of the proposed algorithm 
together with discussions on future directions. In this context, 
the modelling for the dynamics for CAVs approaching an 
intersection will be firstly described in the next section.             

 

III.    DYNAMICS FOR CAVS APPROACHING AN 
INTERSECTION. 

Taking each CAV approaching an intersection as a 
subsystem (i.e., an autonomous agent), then these subsystems 
should work together in a collaborative fault tolerant way to 
maximize the throughput of traffic flow when a fault occurs in 
a vehicle.  This belongs to a collaborative fault tolerant control 
for multi-agent systems ([5], [11]) subjected to various 
constraints, where modelling, fault diagnosis and 
collaborative fault tolerant control should be carried out.             

We consider an N number of CAVs approaching an 
intersection as shown in Figure 4, and assume that for i = 1, 
2, …, N, the dynamics of the ith CAV is a self-closed loop 
system whose position and speed are denoted in a 2D plane 
shown in Figure 4 as             

 

𝑥𝑖 =  [
𝑝𝑖

𝑞𝑖
] ;  

𝑑𝑥𝑖

𝑑𝑡
=  𝑥̇𝑖 =  [

𝑑𝑝𝑖

𝑑𝑡
𝑑𝑞𝑖

𝑑𝑡

] ; (𝑖 = 1, 2, … , 𝑁) 

 

where 𝑝𝑖  stands for the longitude movement and 𝑞𝑖 represents 
the latitude movement (i.e., lane changes) of the ith CAV in 
Figure 4. In this case the longitude movement is for the 
direction of the vehicle moving forward and the latitude 
movement is for lane changes.                 

 

Fig. 4. A simple intersection with CAVs. 

 

The position and speed are the two group of state variables 
defined as follows,    

          𝑋𝑖 =  [
𝑥𝑖

𝑥̇𝑖
] ∈ 𝑅4;    (𝑖 = 1, 2, … , 𝑁)                       (1)                                            

In this regard, the dynamics of the ith CAV (the ith agent or 
sub-system) can be expressed in the following form 

          𝑋̇𝑖 = 𝐴𝑖𝑋𝑖 + 𝐵𝑖𝑟𝑖 + ∑ 𝐶𝑖𝑗𝑋𝑗
𝑁
𝑖≠𝑗 + 𝐸𝑖𝑓𝑖                  (2)                                                        

where {𝐴𝑖 , 𝐵𝑖} are the assumed known parameter matrices that 
represent the own dynamics of the concerned CAV of 
appropriate dimensions, 𝐶𝑖𝑗  are the communication 

coefficient matrices that represent the communication 
capabilities between the ith and the jth CAVs, indicating the 
availability of vehicle-to-vehicle (V2V) information 
exchanges. If there is no communication between the ith and 
the jth CAVs, then 𝐶𝑖𝑗 = 0. In equation (2), 𝑟𝑖 is the set-point 

of the position trajectory of the ith CAV.  
 
     It can be seen that, rather than using double integrals model 
([9] – [10]) to represent the dynamics of each CAV, here we 
assume that each CAV has a fully automated system which 
only accepts the position set-point trajectory as the closed loop 
input.  This allows us to simply model the dynamics of each 
CAV as a local closed loop system where the input to the 
vehicle is in fact the set-point of the position trajectory and the 
output is its actual position trajectory.  This is a simplified 
local closed loop model as the speed (either actual or its set-
point) can be obtained by the first order derivative operation 
of the position.  In this way, we can model each CAV as a 
linear system albeit the dynamics inside a local open loop 
system at vehicle level can be nonlinear.             
 

In equation (2), 𝑓𝑖 is the fault for the ith CAV and if 𝑓𝑖 =
0 then the ith CAV is considered healthy (no fault), otherwise 
it is considered as having a fault occurring in its system. This 
is a generic representation of the fault in a CAV and can stand 
for sensor faults, actuator faults and faults in the powertrain, 
etc. Also, 𝐸𝑖 in equation (2) is the parameter matrix that shows 
how the fault is to affect the system dynamics.             

It can be seen that the state vector (1) is always measurable 
and its V2V information is also available for other CAVs in 
the concerned vehicle group near the intersection. If we define 
the whole state vector as 

 



        𝑥𝑇 = [𝑋1
𝑇 𝑋2

𝑇 ⋯ 𝑋𝑁−1
𝑇 𝑋𝑁

𝑇] ∈ 𝑅1×4𝑁                 (3)                           

 

Then the whole connected system can be expressed using the 
following compact multi-variable state space model format 

                 𝑥̇ = 𝐴𝑥 + 𝐵𝑟 + 𝐸𝑓                                        (4)                                           

with the following output equation only for the position 
trajectory of each CAV. 

             𝑦 = [

𝑥1

𝑥2

⋮
𝑥𝑁

] = 𝐹𝑥;    𝐹 = 𝑑𝑖𝑎𝑔(ℵ, … , ℵ); 

             ℵ =  [1 0]                                                         (5) 

In equation (4), it has been denoted that    

             𝐴 =  [

𝐴1 𝐶12 ⋯ 𝐶1𝑁

𝐶21 𝐴2 ⋯ 𝐶2𝑁

⋮
𝐶𝑁1

⋮
𝐶𝑁2

⋮ ⋮
⋯ 𝐴𝑁

] ∈ 𝑅4𝑁×4𝑁;    

 

           𝐵 =  𝑑𝑖𝑎𝑔(𝐵1, … , 𝐵𝑁) ∈ 𝑅4𝑁×2𝑁  

 

           𝐸 = 𝑑𝑖𝑎𝑔(𝐸1, 𝐸2, … , 𝐸𝑁) ∈ 𝑅4𝑁×𝑁;       

 

           𝑓 =  [
𝑓1

⋮
𝑓𝑁

] ∈ 𝑅𝑁; 𝑟 =  [

𝑟1

⋮
𝑟𝑁

] ∈ 𝑅2𝑁 . 

It can be seen that equations (4) – (5) represent the group 
dynamics of the concerned CAVs approaching an intersection.  
This is the standard state space equation where the fault vector 
f is in a generic form that can represent either actuator, system, 
sensor or controller faults of a CAV.   

To ensure a safe movement of this group of CAVs, it is 
imperative that the following condition (or constraints) on safe 
distance between any two vehicles should be satisfied all the 
time.       

                     ‖𝑥𝑖 − 𝑥𝑗‖ > 𝛿;     𝑖 ≠ 𝑗                            (6)                             

where 𝛿 > 0  is a pre-specified minimum safe distance 
between any two CAVs.  

In addition, to maximize the throughput of all CAVs, the 
speed of each needs to be maximized, this means that the 
concerned collaborative fault tolerant control should be to 
design the set-point 𝑟𝑖 , (𝑖 = 1, 2, … , 𝑁) so that the longitude 
speed of each CAVs is maximized so long as it does not 
exceed the required speed limit on the road, namely,  

                         max
𝑟

𝑝̇𝑖 ;    (𝑖 = 1, 2, … , 𝑁)                     (7)                         

subjected to the speed limitation 

                         ‖𝑝̇𝑖‖ < 𝑀; (𝑖 = 1, 2, … , 𝑁)                   (8)                         

To summarize, when a fault occurs the purpose of 
collaborative fault tolerant control design is to select the set-
points to each CAV in the group so that the following multi-
objective constrained optimization is achieved:  

                   max
𝑟

𝑝̇𝑖;   (𝑖 = 1, 2, … , 𝑁) 

                   s.t. 

                     ‖𝑥𝑖 − 𝑥𝑗‖ > 𝛿;     𝑖 ≠ 𝑗   

                     ‖𝑝̇𝑖‖ < 𝑀; (𝑖 = 1, 2, … , 𝑁)                       (9)                             

To solve such a problem, one needs to perform FD(see 
Figure 3) and FTCin a logical order.  This will be described in 
the next sections.   

To better formulate the optimization problem, one can 
group all the position variables together in representing the 
system dynamics in (4). For this purpose, we can define the 
following position vector 

                    𝑧 =  [

𝑥1

⋮
𝑥𝑁

]  

Then the state vector can be defined as 

                    𝑣 =  [
𝑧
𝑧̇

] 

Under these definitions, equation (4) can be transferred into 
the following form             

     𝑣̇ =  [
𝑧̇
𝑧̈

] =  [
0 𝐼

𝐴21 𝐴22
] 𝑣 +  [

𝐵11

0
] 𝑟 +  [

𝐸11

𝐸21
] 𝑓           (10)                    

where the parameter matrices {𝐴21, 𝐴22, 𝐵11, 𝐸11, 𝐸21} can be 
obtained from the original parameter matrices given in 
equation (4).     

The problem can be transferred into making the speed of 
each vehicle to be as close as possible to its maximum 
allowable speed M with respect to a time interval average.  In 
this case the objective function in (7) can be transferred into 
the following optimization problem             

          min
𝑟

1

𝑇2− 𝑇1
∫ (𝑀 −  𝑥̇𝑖)2𝑇2

𝑇1
𝑑𝑡                             . 

where interval [𝑇1, 𝑇2] is the time during for the ith CAV to 
pass through the intersection. This looks like a linear quadratic 
problem, where one can further minimize the following       

                           

     min
𝑟

∑ ∫ (𝑀 −  𝑥̇𝑖)2𝑇2

𝑇1

𝑁
𝑖=1 𝑑𝑡 = min

𝑟
∫ 𝑥̃𝑇𝑥̃𝑑𝑡

𝑇2

𝑇1
 . 

where it has been denoted that       

𝑥̃𝑇 = [𝑀 − 𝑥̇1, 𝑀 −  𝑥̇2 , . . . , 𝑀 − 𝑥̇𝑁  ]  

On the other hand, one needs to constrain the changes of 
the set-point to each CAV to avoid unnecessary speed 
variations for a smooth movement, this would lead to the 
following optimization problem       

             min 𝐽 =
𝑟

{ ∫ (𝑥̃𝑇𝑥̃
𝑇2

𝑇1
+  ϑ∆𝑟𝑇∆𝑟)𝑑𝑡 

                s.t. 

                   ‖𝑥𝑖 − 𝑥𝑗‖ > 𝛿;     𝑖 ≠ 𝑗   

                   ‖𝑝̇𝑖‖ < 𝑀; (𝑖 = 1, 2, … , 𝑁)                    (12)   

where 𝑟 =  𝑟∗ +  ∆𝑟, 𝑟∗ is the set-point vector to the CAVs 
when there is no fault in the concerned CAV group, and ∆𝑟  is 
the incremental value of the set-point vector when there is a 
fault occurring in a CAV, 𝜗 > 0 is a pre-specified weighting 



coefficient. In this case, ∆𝑟 is the signal variation of the set-
point vector to CAVs and is related to the estimated fault in 
fault detection and diagnosis. This is a finite-time linear 
quadratic control problem subjected to the relevant 
constraints, where standard optimal control theory can be 
readily applied ([19]).             

 

IV. FAULT DIAGNOSIS OF EACH CAV 

In this section we will formulate an adaptive observer-
based fault diagnosis ([12]) for each CAV represented by 
equation (2).  For this purpose, the following adaptive 
diagnostic observer is constructed.  

    𝑋̇̂𝑖 = 𝐴𝑖𝑋̂𝑖 + 𝐵𝑖𝑟𝑖 + ∑ 𝐶𝑖𝑗𝑋̂𝑗
𝑁
𝑖≠𝑗 + 𝐸𝑖𝑓𝑖 + 

              + 𝐿(𝑥𝑖 −  𝑥̂𝑖)                                                   (13)               

where 𝑋̂𝑖  is the estimate of 𝑋𝑖  and 𝑓𝑖  is the diagnosed (i.e., 
estimated) result of 𝑓𝑖, 𝐿 is a gain matrix to be selected. Define 
the state estimate error and the fault estimation error as       

                  𝑒𝑖 =  𝑋̂𝑖  −  𝑋𝑖 

                  𝑓𝑖 =  𝑓𝑖 −  𝑓𝑖                                                  (14) 

Then the following fault diagnosis result can be obtained, 
where the detailed formulation, including the selection of the 
gain matrix 𝐿, can be found in [16] where the formulation uses 
the well-known Lyapunov stability theory.  

                 
𝑑𝑓̂𝑖

𝑑𝑡
=  −𝜇𝑖(𝑥̂𝑖 − 𝑥𝑖)                                        (15)      

where 𝜇𝑖 > 0 is a pre-specified adaptive gain. Note that this 
observer is only for the purpose of estimating the fault.  Other 
fault diagnosis methods can also be applied here to formulate 
the required fault diagnosis algorithm.                    

 

V. COLLABORATIVE FAULT TOLERANT 
CONTROL - AN APPROXIMATED SOLUTION FOR 

OPTIMIZATION PROBLEM (12) 

Using the fault diagnosis result given in equation (15), a 
collaborative fault tolerant control that ensures the sub-
optimality of the combined optimization (12) will be 
formulated and described in this section.                                       

A. Collaborative Fault Tolerant Control Structure 

For the fault case where the speed variation of the faulted 
CAV takes place in a way that does not violate the linear 
model format, a state feedback based position trajectory set-
point adjustment for ∆𝑟  can be formulated so that the 
information of other CAVs will be used in a feedback way to 
tune the position set-point of other concerned CAVs.  

Assuming that the 𝑖∗th CAV has developed a fault, then 
the collaborative fault tolerant control for other healthy CAVs 
would be to tune their set-point slightly to ensure a safe 
movement in line with the optimization given by equation 
(12). This will lead to the following form      

                      𝑟𝑗≠𝑖∗
=  𝑟𝑗≠𝑖∗

∗ + ∆𝑟𝑗≠𝑖∗
                                    (16)                        

where the incremental change of set-points for healthy CAVs 
are represented as ∆𝑟𝑗≠𝑖∗

 which is given by      

                     ∆𝑟𝑗≠𝑖∗
=  ∑ 𝜃𝑗𝑓𝑖𝑋𝑗𝑗≠𝑖∗

                               (17a)                                        

 where 𝜃𝑗  is a set of feedback gain matrices via the 

communication to all the healthy CAVs. This means that we 
need to select 𝜃𝑗 so that the optimization problem (12) can be 

solved, and the solution to (12) becomes a parametric solution 
under (17a). For the faulty ith CAV, the set-point tuning 
should be zero, i.e.          

                     ∆𝑟𝑖 = 0                                                         (17b) 

It can be seen that if there is no fault then 𝑓𝑖 = 0, this leads 
to ∆𝑟𝑗≠𝑖∗

= 0  in equation (17). The structure of (17) thus 

guarantees the necessary compensation to the set-points of 
other healthy CAVs if there is a fault.  When no fault occurs, 
there is no need to apply the tuning to the set-points.                         

                         

C. Approximated Solution to Optimization  

Problem (12) 

To select 𝜃𝑗 so that the optimization problem (12) can be 

solved, one can substitute (16) and (17) into (12) to start with, 
then we can obtain the explicit expression of the performance 
index J with respect to 𝜃𝑗  by using the generic solution of 

linear time-invariant state space model to obtain 𝑥̃𝑇  as a 
function of 𝜃𝑗  . This can be achieved using the available 

parameters in equation (10) for a given interval [𝑇1, 𝑇2].  In 
this context, this time interval is divided into a number of sub-
intervals and within each sub-interval ∆𝑟𝑗≠𝑖∗

 is kept as a 

constant in line with the use of zero-order holder.  This 
provides an approximated solution of 𝜃𝑗 to (12) rather than 

using standard LQR algorithm.             

As for the constraints, a simple switching mechanism can 
be used, where if the constraints are satisfied then the above 
obtained setpoint tuning in (17) will be used, otherwise the 
collaborative fault tolerant control would set 𝜃𝑗 = 0.  

For large fault (i.e., an accident in a CAV), other healthy 
CAVs need to again control their passing through movements 
safely and this may need to change their position and speed in 
a large range.  In this case, nonlinear control strategies should 
be used.  This belongs to the future study where collaborative 
fault tolerant control will be formulated in a nonlinear control 
way with the following rule.            

                        ∆𝑟𝑗≠𝑖∗
=  ∑ ℎ(𝑋𝑗)𝑗≠𝑖∗

                                    (18) 

where h(.) is a nonlinear control strategy for the set-point 
tuning as a result of the optimization in (12).                  

         

VI. A SIMPLE SIMULATION EXAMPLE 

A simple simulated case study has been considered, where 
10 identical CAVs have been included as an example to 
demonstrate the proposed method with the time interval 
[𝑇1, 𝑇2] = [0, 100𝑠].  The safe distance limit is set to 𝛿 = 1. 8 
meters and the maximum speed limit is 30MPH. The 
dynamics of each car has been discretized at 0.01 second 
sampling interval., this is the sampling rate for the control 
algorithm implementation as given in equation (17).                  

The simulation results for two CAVs’ responses are shown 
in Figures 5 – 8, where Figure 5 shows the fault diagnosis 
effect, Figure 6 gives the speed profile, Figure 7 shows the set-
point tuning and Figure 8 displays the distance between the 



two concerned CAVs.  It can be concluded that desired results 
have been obtained.                                              

 

Fig. 5. Fault diagnosis result. 

Note that the simulation is carried out for 10000 sample 
point which equals to 100 seconds. The fault is a small 
actuator fault and the vertical axes of figure 8 has a unit of 0.1 
meter. 

 

Fig. 6. Keeping maximum speed when passing through 
the intersection. 

 

Fig. 7. Set-point incremental tuning ∆𝑟𝑗≠𝑖∗
. 

 

Fig. 8. Keeping a safe distance 

VII. STOCHASTIC FEATURE IN COMPUTING 
OPTIMAL CONTROL AND ROBUSTNESS ISSUES 

The formulation so far is performed in the deterministic 
dynamics domain.  However, there are various uncertainties 
and randomness for such a system. These will be further 
discussed in this section. 

A, Random number of CAVs to be considered 

As the number of CAVs entering the non-signalized 
intersections are generally random, the number of the 
objective functions is also a random number.  This means that 
the optimization index 𝑁 is a random integer. In this context, 
the size of the optimization is random from time to time and 
the implementation of the algorithm should consider this 
effect and its impact to the real-time computing for the 
collaborative fault tolerant control among healthy CAVs. 

B. Communication issues 

CAVs use wireless communication as a major feature to 
exchange information of their state with other vehicles. Albeit 
wireless communications are being improved there are still 
issues related to the reliability of communication channels.  
For example, the common features of packet-drops and delays 
in communications would still exist and will therefore present 
impact to the modelling and control quality. In these cases, the 
communication packet-drops and delays are random. This 
indicates that the coefficients 𝐶𝑖𝑗 in equation (4) are random 

numbers.  These random coefficients make the original system 
(4) a stochastic system subjected to random parameters.  
Therefore, the optimization should be solved in stochastic 
optimization sense.  For example, optimization (12) should 
now be read as 

             min 𝐽 =
𝑟

Mean{ ∫ (𝑥̃𝑇𝑥̃
𝑇2

𝑇1
+  ϑ∆𝑟𝑇∆𝑟)𝑑𝑡} 

                s.t. 

                   ‖𝑥𝑖 − 𝑥𝑗‖ > 𝛿;     𝑖 ≠ 𝑗   

                   ‖𝑝̇𝑖‖ < 𝑀; (𝑖 = 1, 2, … , 𝑁)                       (19)   

where 𝑀𝑒𝑎𝑛 {. }  is the mathematical expectation operator 
applied to the integration, and the above optimization problem 
should be subjected to the following stochastic dynamic 
constraints in Ito stochastic differential equation form  

𝑑𝑋𝑖 = (𝐴𝑖𝑋𝑖 + 𝐵𝑖𝑟𝑖 + ∑ 𝜌𝑖𝑗𝐶𝑖𝑗𝑋𝑗(𝑡 −  𝜏𝑖𝑗)

𝑁

𝑖≠𝑗

+ 𝐸𝑖𝑓𝑖)𝑑𝑡  

              + 𝜎𝑖(𝑡)𝑑𝜔                                                       (20) 

where 𝜌𝑖𝑗  is a random switch taking values of 1.0 and zero.  If 

there is a communication packet-drop then its value is zero, 
otherwise its value is 1.0, 𝜏𝑖𝑗  represents the random time 

delays on the communications between the ith and the jth 
CAVs.  

In this context, the problem set-up looks similar to networked 
control systems subjected to random delays and 
communication faults, where the rather rich literature on this 
subject can help to obtain effective solutions to stochastic 
optimization problem of descriptions (19) – (20). For 
example, in terms of fault diagnosis, rather than using an 
adaptive observer-based approach in equation (15), the well-
known Kalman filtering or minimum entropy filtering should 
be used to obtain the fault estimation ([20] – [21]). In terms of 



set-point adjustment to healthy CAVs, similar structured 
optimization effect given in equations (17) and (18) can still 
be applied. This defines the scope of the optimization. 

C. Robustness consideration 

The models used to characterize CAV dynamics is quite 

simple and a linear model has been used for all the involved 

CAVs.  In practice, realistic models for vehicles should be 

considered.  For example, one can consider using a full 

dynamic model that involves air drag forces and road surface 

roughness.  In this context, the following open loop dynamics 

of CAVs should be firstly used to obtain the closed loop 

CAVs control. 

 

           𝑋̇𝑖 = 𝐴𝑖𝑋𝑖 + 𝐵𝑖𝑟𝑖 + ∑ 𝐶𝑖𝑗𝑋𝑗
𝑁
𝑖≠𝑗 −  

1

2
𝜎𝐷𝑖𝐻𝑖𝑋𝑖

2 + 𝐸𝑖𝑓𝑖     

                                                                                            (21)      

where the quadratic term is the air dragging term and other 

symbols are constants. This would lead to the following non-

linear dynamics in matrix form 

 

                 𝑥̇ = 𝐴𝑥 + 𝐵𝑟 + ℵ(𝑥) + 𝐸𝑓                             (22) 

 

where ℵ(𝑥) groups all the nonlinear components for the 

system.             

 

D. Full energy consideration 

The energy consideration here is reflected by the constrained 

changes of the incremental values ∆𝑟𝑖𝑗 , where the idea is to 

minimize the variations of the set-point as they will impact 

the acceleration and de-acceleration of CAVs. Alternatively, 

one can use the data provided by CAVs to value the energy 

consumption in a much more accurate manner. In this case, 

in line with the motion dynamics, the following energy 

calculation for the ith CAV can be included. 

 

    𝐸𝑖,𝐶𝐴𝑉 = ∫ 𝑃𝑖,𝐶𝐴𝑉𝑑𝑡
𝑇2

𝑇1
                                                   (23) 

 

    𝑃𝑖,𝐶𝐴𝑉 =  𝑀𝑖𝑥̇𝑖𝛼𝑖 +  
1

2
𝜎𝐶𝐷𝐻𝑥̇𝑖

3 +  𝑀𝑖𝑔
𝑑ℎ𝑖

𝑑𝑡
+ 𝑑𝑖𝑀𝑖𝑔𝑥̇𝑖  

                                                                                           (24) 

where 𝑀𝑖  is the mass, 𝜎  is the air density, 𝐶𝐷  is the air 

resistance coefficient, 𝐻 is the projected area of CAV, 𝑔 is 

the gravity coefficient, 
𝑑ℎ𝑖

𝑑𝑡
 is the difference of elevation, 𝑑𝑖 is 

the rolling resistance coefficient. 𝑃𝑖,𝐶𝐴𝑉  is the power of the ith 

CAV. 

 

Therefore, the total energy consumed around the non-

signalized intersection is given by 

 

𝐸𝑛𝑒𝑟𝑔𝑦 (𝑟) =  ∑ 𝐸𝑖,𝐶𝐴𝑉

𝑁

𝑖=1

 

                                                                                          (25) 

Adding the above energy into the performance function 

would lead to the following comprehensive index 

 

      min 𝐽 =
𝑟

Mean{ ∫ (𝑥̃𝑇𝑥̃
𝑇2

𝑇1
+  𝜗∆𝑟𝑇∆𝑟)𝑑𝑡 + 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑟)} 

                                                                                          (26) 

subjected to the following full constraints. 
                 

                   ‖𝑥𝑖 − 𝑥𝑗‖ > 𝛿;     𝑖 ≠ 𝑗   

                         ‖𝑝̇𝑖‖ < 𝑀; (𝑖 = 1, 2, … , 𝑁)                        

 

                         𝑥̇ = 𝐴𝑥 + 𝐵𝑟 + ℵ(𝑥) + 𝐸𝑓 

 

This is a complicated dynamic multi-objective optimization 

and implementation onto the concerned CAVs requires 

certain computing power.             

 

E. Integral interval issues 

In the optimization, the interval is defined as [𝑇1, 𝑇2]. Whilst 

𝑇1 can be fixed, 𝑇2 does vary with the speed of the concerned 

CAVs. Moreover, the duration of each CAVs passing through 

the non-signalized intersections are different. This means that 

one need to consider the optimization for each CAVs with 

variable integral durations, where the actual optimization 

should be multi-objective with the following performance 

index for each CAV simultaneously  

 

    Min
𝑟𝑖

 𝐽𝑖 = 
1

𝑇2(𝑥̇𝑖)− 𝑇1
∫ [(𝑀 −  𝑥̇𝑖)

2𝑇2(𝑥̇𝑖)

𝑇1
+  𝜗𝑖∆𝑟𝑖

2]𝑑𝑡 + 

+  𝐸𝑖,𝐶𝐴𝑉  

 

          𝐸𝑖,𝐶𝐴𝑉 = ∫ 𝑃𝑖,𝐶𝐴𝑉𝑑𝑡
𝑇2(𝑥̇𝑖)

𝑇1
 

  

with 𝑖 = 1, 2, … , 𝑁 . In this context, effective real-time 

solution to such an optimization exercise is needed in the 

future study ([22]).  

 
VIII. CONCLUSIONS 

With 100% CAVs penetration on the road, intersection 
controls can be realized in a non-signalized way. In this case, 
the CAVs can control themselves to pass through the 
concerned intersection, where safety and smooth passage 
become an important issue when a CAV develops a fault. In 
this paper, a simple collaborative fault tolerant control is 
proposed which makes a full use of V2V information among 
all the concerned CAVs near an intersection. Assuming each 
CAV is well-controlled as a linear closed loop system with 
set-point as its position trajectory, then a simple state space 
model that takes into account V2V information among the 
concerned CAVs group has been formulated with a generic 
fault injection format as shown in equation (2). Using such a 
model, a fault diagnosis and collaborative fault tolerant 
control has been obtained, where an optimization problem is 
formulated as shown in (12) with an approximated solution 
that tunes the position set-points of other healthy CAVs. 
Simulation results have been obtained showing the 
effectiveness of the proposed method.                         

The feature of collaborative fault tolerant control means to 
use healthy CAVs to control the whole system performance. 
The faulty CAVs can also be controlled in a self-fault tolerant 
way, where the existing fault tolerant control can be directly 
applied.  This would lead to a total fault tolerant effect where 
the system is not only controlled by healthy CAVs but also 
operated by faulty CAVs. This presents a future perspective. 
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