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Introduction Experiment Setup

GNNs are popular models for learning on graph-structure data, We use Graph Ismorphism Network (GIN) [3] as the GNN. © Results from 50 independent trials
but their robustness is not well-understood. We study robust- Implemented using PyTorch Geometric |2]. © Training set: 20 node labels per class from

ness in context of node structural identity predictions and ex- © Architecture: 3 GIN layers, followed by two fully-connected G,
plore augmented training for improving robustness. (FC) layers © Validation set: 200 node labels

Key points: - - | © Each GIN layer is also composed of two FC layers. © Test set: 1000 nodes
© GNNS can perfectly distinguish structural identity (without Batchnorm applied follows each GIN layer. RelLU © Test score (Fj-macro) is from evaluating
noise) activation after linear transformations. model achieving best validation score after

© GNN accuracy sharply declines with structural noise © Only feature is node degree (normalized) training for 200 epochs
(random edge additions)

© Augmented training with generated noisy samples can

improve GNN robustness Experiments and Results

Generated Graphs

Graphs are generated from structural motifs according to [1].
Node labels are from well-defined structural role.

No noise Within 2-hop noise Within 3-hop noise

GNN performance vs. structural noise
We vary the ratio p of noisy edges added to G in increments of 0.05, and evaluate performance trained on each version

of G,. We evaluate for 3 different modes of noise: 2-hop, 3-hop, or unconstrained (global).

Figure: "Ring of houses' graph. Image from [1].
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W? introduce Stht.UI;al noise in the form of random edge ad- Findings: With no noise (p = 0), the GIN learns to classify nodes near perfectly. F'l-score declines sharply with
ditions, but keep original node labels. Labels no longer neatly increasing p (randomly added edges)-median performance is below 50% at 25% noise, and below 35% at 50% noise,
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Noise model parameters
© Noise ratio p: how many edge additions as ratio of original Augmented training from same distribution
edges We compare performance from augmented training vs. non-augmented training (baseline) on G,,. The augmenting
© Distance k: can only form new edges from nodes within k eraph G](}) is from same distribution as G,. All of G](})’s node labels are used to augment training.
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ing with generated noisy samples to improve robustness?
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Noisy Augmentation Method

Findings: Training augmentation with graph drawn from the same noise distribution gives relative improvement of

(7)
median F1 score up to 59%, 26%, and 26% for 2-hop, 3-hop, and global noise modes.

© Generating from same distribution: GG’ is j-th noisy graph
generated from G (of same size). We use 1 in practice to
augment training.

© Generating from similar distribution: G;(j ) is J-th noisy
graph generated from G’ (smaller version of GG). We use 10

such graphs to augment. 10 — 10 — 10 —

Mode Mode Mode

Augmented training with smaller graphs |
Here we use a sequence of 10 smaller generated graphs to augment training, where G;(] )is drawn from G,
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