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Introduction

G\\s are popular models for learning on graph-structure data,
but their robustness is not well-understood. We study robust-
ness in context of node structural identity predictions and ex-
plore augmented training for improving robustness.
Key points:

O GNNs can perfectly distinguish structural identity (without
noise)

O GN\ accuracy sharply declines with structural noise
(random edge additions)

© Augmented training with generated noisy samples can
improve GNN robustness

Generated Graphs
►

Graphs are generated from structural motifs according to [1].
Node labels are from well-defined structural role.

Figure: "Ring of houses" graph. Image frorn [1].

Size of base graphs used. G' is downsized version of G. G is
ring-of-houses in all experiments.

ame Xodes Edges Classes
Ring of houses G 2664 3996 6
Ring of houses C 264 396 6

Structural Noise

We introduce structural noise in the form of random edge ad-
ditions, but keep original node labels. Labels no longer neatly
match structural identity.

Noise model parameters

@ Noise ratio p: how many edge additions as ratio of original
edges

© Distance k: can only form new edges from nodes within k
hops.

New edge pairs are sampled uniformly at random, under k-hop
constraint.

Augmented Robustness Training

Graph training samples is often limited. Can we augment train-
ing with generated noisy samples to improve robustness?

Noisy Augmentation Method

© Generating from same distribution: G,j) is j-th noisy graph
generated from G (of same size). We use 1 in practice to
augment training.

@ Generating from similar distribution: is j-th noisy
graph generated from G' (smaller version of G). We use 10
such graphs to augment.
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Model

We use Graph Ismorphism Network (GIN) [3] as the GI\
Implemented using PyTorch Geometric [2].

© Architecture: 3 GIN layers, followed by two fully-connected
(FC) layers

@ Each GIN layer is also composed of two FC layers.
Batchnorm applied follows each GIN layer. ReLU
activation after linear transformations.

© Only feature is node degree (normalized)

Experiment Setup

© Results from 50 independent trials

© Training set: 20 node labels per class from
Gp

© Validation set: 200 node labels

© Test set: 1000 nodes

© Test score (Fi-macro) is from evaluating
model achieving best validation score after
training for 200 epochs

Experiments and Results
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GNN performance vs. structural noise
We vary the ratio p of noisy edges added to G in increments of 0.05, and evaluate performance trained on each version
of Gp. We evaluate for 3 different modes of noise: 2-hop, 3-hop, or unconstrained (global).
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Findings: With no noise (p = 0), the GIN learns to classify nodes near perfectly. F1-score declines sharply with
increasing p (randomly added edges)-median performance is below 50% at 25% noise, and below 35% at 50% noise,
across all modes.

Augmented training from same distribution
We compare performance from augmented training vs. non-augmented training (baseline) on Gp. The augmenting

graph Gp(1) is from same distribution as Gp. All of Gp(1)'s node labels are used to augment training.
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Findings: Training augmentation with graph drawn from the same noise distribution gives relative improvement of
median F 1 score up to 59%, 26%, and 26% for 2-hop, 3-hop, and global noise modes.

Augmented training with smaller graphs
Here we use a sequence of 10 smaller generated graphs to augment training, where Gpi(j) is drawn from G'.
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Findings: Augmented training is beneficial even when the smaller graphs are not of exactly same distribution as Gp.
Relative improvements (of median) are 38%, 18%, and 20% for 2-hop, 3-hop, and global noise modes.
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