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Abstract— Dense non-volatile memory arrays offer an attractive
pathway towards the deployment of complex pre-trained neural
network models, including state-of-the-art convolutional neural
networks (CNNs), for edge inference workloads. However, these
systems may be afflicted by device-level noise and retention loss
effects that make robust implementations more challenging. In
this work, we investigate the damage caused by these effects on
inference accuracy, introduce a mitigation strategy, and
demonstrate its effectiveness in improving the reliability of a
fabricated array of SONOS (Silicon-Oxide-Nitride-Oxide-
Silicon) devices. On the MNIST, fashion-MNIST, and CIFAR-10
classification tasks, our approach noticeably increases system
resilience to both noise in the synaptic values as well as to
realistic drift in these values over time. Moreover, given
correctly chosen activation and bounding schemes, we also show
that strong performance can be realized with ADC schemes at
only 5-8 bits of precision.

Index Terms-- SONOS, CTM, neural networks, edge inference

1. INTRODUCTION

Non-volatile memory (NVM) arrays deliver low-latency
and high-performance in-memory computing, at projected
throughputs of multiple tera-operations (TOPs) per second.
They can also achieve femto-joule energy budgets per
multiply-and-accumulate (MAC) operation by directly
implementing within the analog circuit the vector-matrix
multiplications (VMM) that are critical to neural network and
scientific computing applications [1, 2]. While emerging
analog NVM options such as filamentary/resistive RAM,
phase-change memory (PCM) and conductive-bridge RAM
(CB-RAM) suffer from limited by relatively poor endurance,
non-linearity, and cell-to-cell variation, foundry-accessible
Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) based charge-
trap memory (CTM) cells offer an alternative pathway
towards more standardized neural network realizations with
120x greater energy efficiency than an equivalent SRAM
counterpart [3, 4]. Recently, similar three-terminal NOR Flash
arrays implementing computer vision tasks were demonstrated
[5], yet such systems are not at industry standard complexity
and do not consider several imperfect device issues. In this
work, we interface a neural training library with device-aware

inference modeling and propose how CTM devices can

efficiently implement deep networks.

Prior work has considered the injection of noise during
training to increase the resilience of the hardware to read
noise, variability, and circuit non-idealities [6],[7]. We
additionally investigate the impact of retention loss as
measured in real devices and show that the same device-aware
training methods can be applied to mitigate the effects of
weight drift. In the following sections, we demonstrate that the
following two approaches — in terms of software neural
network and circuit architecture respectively — can mitigate
device non-idealities:

e The use of noise regularization during training which
implicitly battles generic noise disturbance, device-to-
device variability, and charge decay phenomenon:

e The use of an appropriate 1T,1CTM cells in a dual array
configuration to reflect analog weights, which battles
device-to-device variability
At measured levels of charge decay and at small levels of

intrinsic system noise, we demonstrate that SONOS arrays

which reflect neural network arrays as analog physical
quantities can yield inference accuracies that are relevant to
modern machine-learning vision tasks.
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Figure 1. (a) A three-terminal SONOS devices in which a synaptic weight is
stored as a specified quantity of charge residing in a nitride charge trapping
layer, (b) A computational array made up of SONOS devices for performing
matrix-vector multiplication; inputs are applied as pulsed row voltages from
the left and the outputs can be read out as currents at the bottom; a constant
gate voltage is applied to all the SONOS devices (red). The 2T array uses an
access transistor in every cell (black), used during programming..
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Figure 2. (a) Sub-sets of an input (blue) are applied as vector inputs to an
array containing a set of convolutional filters in a layer; each set (red) is
then passed to a following array. (b) Our neural network, trained on MNIST
or f-MNIST, where example images are convolved over a set of 4 layers
followed by 2 fully connected (FC) layers.

II. SONOS DEVICE AND ARRRAY

SONOS devices are highly suitable for analog memory
with multiple levels because both program and erase
operations can be achieved using Fowler-Nordheim (FN)
tunneling, making it possible to target states with high
precision in the drain current or threshold voltage. The ONO
stack is a critical part of the SONOS memory cell, shown in
Fig. 1(a). Charge is stored as electrons or holes residing in
traps embedded in the nitride layer of the ONO stack.
Depending on the type and amount of charge trapped, the
threshold voltage (Vi) and current (Ig) of the cell can be
placed at desired levels. The programming voltage and/or
pulse width can be varied to set the device to different current
levels. While the drain current can in theory be set by precise
programming bias voltages, variation in these states is
expected in practice, with a spread that depends on many
device-level factors such as interface states in the SONOS
stack, random dopant fluctuations and variations in charge
trapping within the nitride. Moreover, the amount of
variation can increase over time. So far, the realistic
properties of the SONOS stack and their implications for a
neural network inference accelerator have not been
considered in detail.

We study three-terminal SONOS devices implemented in
a dense array that holds a matrix of weight values, a small
example of which is shown in Fig 1(b). The charge-trapping
nitride layer can be programmed to a specified current level
by applying a large voltage between the poly-cap gate and the
drain. During inference, a fixed voltage Vg read is applied to
the pass transistors of every cell in a bitwise fashion and the
current drawn by each device is scaled by the input voltage,
applied between the source and drain. The device currents
along a column are summed by Kirchoff’s current law and
ultimately yield an output via the analog to digital converter
(ADC). During programming [3, 4], our studied array uses
the Control Gate (CG) having an ONO gate dielectric and a

Select Gate (SG) having a SiO, gate dielectric. We also use
two SONOS arrays to represent a matrix of real-valued
weights, where each weight is represented by the difference
of the currents drawn by a pair of SONOS cells. The currents
drawn by corresponding columns in the two arrays are
subtracted, and the result is again digitized using an analog-
to-digital converter (ADC).

IIT. CNN INFERENCE SIMULATIONS

Arrays of NVM devices can greatly accelerate matrix
operations in neural networks, but with a potential loss in
accuracy brought upon by non-ideal effects at the device level.
Inference operations may be perturbed by cycle-to-cycle read
noise, imprecise programming, device-to-device variation, and
loss of state retention. In SONOS devices, these issues arise
from imperfect control over the device dimensions, the spatial
and energy distribution of desired and undesired traps, and the
quantity of stored charge. Partly as a result, the
implementation in NVM arrays of large convolutional neural
networks (CNNs) — which generalize to hard real-time
recognition tasks — has so far been limited [8]. Cognizant of
this, we connect Keras, a library for training deep neural
network models, and a new inference engine within the
CrossSim platform, an open-source Sandia software that
models crossbar arrays as highly parameterizable neural cores.
In order to implement special bounding and clipping scehmes
during training , we have also used functions from the
Whetstone library [9]. Our NVM-CNN uses an existing
scheme to implement convolutional kernels on memory
arrays, shown in Fig. 2 [10]. During inference, we import
SONOS-specific parameters and inject cycle-to-cycle device
noise to the synaptic weights (using CrossSim), while neuron
noise is added during training (using Keras) onto the inputs to
the rectified linear unit (ReLU) activation function. We bound
the activations to a maximum value of 1.0, though we will
also later consider a case with the bound removed. Implicitly,
the use of training noise provides an effective form of neural
network regularization and combats over-fitting [11]. The
spread oney of the Gaussian noise introduced during training
can be linked to the spread of cycle-to-cycle synapse noise gsyn
during inference as:

(1) Oneu = Osyn (Wmax — Winin) \/;'mn-l

where ya is the average value of an activation calculated over
n synapses. When importing trained models, we select the
device dynamic range used in each layer to contain the central
10-90% of the weight values in that layer; the extreme weight
values are clipped to the maximum or minimum allowable
device currents. By adaptively tuning the weight values that
are represented by the device current levels, the effect of
imprecision in the programmed currents (due to write errors,
read noise, variability, or drift) can be minimized. In the
results to follow, we find that clipping the extreme 20% of
weight values during inference has a very small influence on
the network’s accuracy.

IV.ACCURACY DEGRADATION DUE TO INTERNAL NOISE

As a first lens of analysis, we analyze the resilience of pre-
trained neural networks — with and without noise
regularization during training — to the disturbance of VMM
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Figure 3. (a) Performance on the MNIST task as additive read noise is
injected for five neural network models trained with different levels neuron
noise; for each, five different models were produced for statistical purposes
with error bars as shaded regions; (b) MNIST task degradation as
proporational read noise is injected; (c) fashion-MNIST degradation as
additive noise is injected; (d) fashion-MNIST degradation as proportional
noise is injected.; (e ) and (f) show additive and proportional for the CIFAR-
10 task which is a set of 10 images from the ImageNet database with
dimensions 32x32x3. In order to obtain all trained weights, batch size = 128,
at task-specific learning rate was used; optimzer used was RMSProp for
MNIST and Fashion-MNIST, and ADAM for CIFAR-10.

operations by cycle-to-cycle read noise within the SONOS
array. We assume two different noise models; one where
Gaussian synaptic noise is dominated by an additive
component (e.g. Johnson-Nyquist noise) that does not scale
with the weight value, and one where the synaptic noise is
dominated by a proportional component which scales with
the device value (e.g. shot noise). For the present analysis, we
do not implement a model of random telegraph noise (RTN),
although this was done in [7]. Although additive and/or
proportional Gaussian noise can cancel within layers, in
deeper networks these effects compound and blur important
convolutional features more dramatically than in shallower
networks [12].

As visible in Fig. 3(a) and (b), on the MNIST task, even a
very large amount of read noise (o) fails to substantially
degrade the network inference performance; robustness is
nonetheless greater in the networks that were strengthened by
noise regularized training. However, to a large extent the
degree of resilience is a function of the task. With the same
number of parameters (~500,000) between the models trained
for the MNIST and fashion MNIST (f-MNIST) image
recognition tasks, failure is more noticeable on the more
difficult f-MNIST task, as shown in Fig. 3(c) and (d). The
accuracy for neural networks trained both with and without
noise regularization now falls substantially below the baseline

without noise (~90%) on the fashion-MNIST task, decreasing
below 85% when ogyn < 0.1. Nonetheless, we find that noise-
trained models at appropriate levels of oney can dramatically
improve their resilience as compared to the model without
any preparation for noise during training (e.g. blue curve).
The best performing regularization approach does seem to
vary based on the injected noise type; onew = 0.1 (orange) has
the greatest resilience to proportional noise, while oney = 0.4
(purple) does best against additive noise.

Lastly, in Figure 3(e) and (f), we have analyzed
performance on the CIFAR-10 task [13], which is a standard
image recognition task in machine learning workflows and
widely considered to be more difficult than either MNIST or
fashion-MNIST. Notably, the images now contain 3 color
channels and are of larger dimensionality (32x32 pixels). In
the CIFAR-10 case, we see that noise degradation is even
more severe, with osyn < 0.05 now necessary for good (>80%)
performance on the task. In addition, at this harder task the
noise regularization procedure has become more difficult and
required smaller appropriate levels of oney in order to ensure
convergence during the training stage. However, as visible,
this noise regularization remains effective, with both
proportional/additive noise cases showing regularized
networks degrading more gracefully than the non-prepared
example (blue). Although this task is easier than state-of-the-
art tasks such as ImageNet, our analysis converges with a
parallel analysis of internal noise impact on edge inference
[14]. In addition, as in [15], we have found that proper weight
scaling between neural network trained models and
conductance mapped values is critical to resilience.

V. ACCURACY DEGRADATION DUE TO CHARGE DECAY

In addition to synaptic read noise, loss of synaptic state
retention due to the decay or leakage of charge from the
trapping layer is also a potential source of neural network
accuracy degradation during inference. A number of charge
loss mechanisms have been identified in SONOS devices
deployed for storage applications [16]. Among the main
proposed mechanisms is a two-step leakage process that
begins with Frenkel-Poole thermionic emission of trapped
charge from the nitride layer, followed by tunneling through
the oxide layer, with the assistance of oxide traps [17]. An
alternative mechanism for threshold voltage drift, proposed in
[18], is based on the lateral migration of charge within the
nitride layer by means of thermal hopping from one trap to the
next. The trapped electrons and holes migrate with different
effective mobilities and recombine; over time, this process
leads to a spatial charge distribution that causes a drift in the
threshold voltage and subsequently in the drain current. The
rate of current drift by both mechanisms depends on the
number of program-erase cycles endured by the device, either
through increasing the density of oxide traps or by increase the
difference in electron and hole populations.

We study the effect of charge decay on neural network
inference by characterizing a prototype CTM array. SONOS
devices were fabricated using 40nm SONOS eNVM
technology by Cypress Semiconductor. The ONO stack layers
are engineered to have the highly robust retention properties
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Figure 4. The evolution of inference accuracy over time on (a) fashion
MNIST and (b) CIFAR-10 as a result of charge decay. Using the measured
SONOS device retention properties (blue), the degradation on both tasks is
negligibly small. The performance curves corresponding to hypothetical
devices of inferior quality, quantified here as the variability (as a percentage
of the device dynamic range) in the programmed currents after one day, are
also shown.

needed for analog memory. Notably, good retention can be
achieved by trapping charge in deep traps rather than in
shallow traps within the nitride layer. The fabricated devices
were programmed to specified levels of drain current, and the
retention properties as well as the standard deviation of the
drain current over a group of devices were characterized over
time. Measurements on the SONOS devices, conducted over a
24-hour period after programming, show that the drain current
in all of the cells drift by an equivalent amount irrespective of
the initially programmed current. Beyond this timeframe, the
change in device properties was very small. Our scheme for
representing positive and negative weights, which involves the
subtraction of the current from two CTM arrays, naturally
compensates for this type of uniform drift that does not
depend on the initial current. Drift in the positive device,
which increases the weight, is always canceled by the same
drift in the negative device, which decreases the weight. On
the other hand, since the charge loss mechanisms are
stochastic, variable rates of current drift in different devices
result in an increased spread or uncertainty in the device
currents over time, whose effect is similar to an increase in the
level of read noise, but does not vary from cycle to cycle.

In this work, we extrapolate the time dependence of the
drain current I(f) and its uncertainty off) by fitting the
measured data to a stretched exponential function:

N\ T/To
2) I(t) = Iy + ({oo — Ip) (1 —exp |— (j) >
t T‘f‘“TH
(3) o1(t) =010+ (01,00 — 01,0) (1 —exp |— (F)

where ¢ is the time after the last programming event, T is the
operating temperature, /o is the initially programmed current
with uncertainty ozo, and I, is the saturated current at 1 = o
with a saturated uncertainty ;.. This function has previously
been used to model the time dependence of the threshold
voltage Vi of SONOS devices [18, 19]. In these works, Vi
was derived from the measured drain current using a fixed
value of transconductance gm, and the evolution of the
threshold voltage spread was found to follow directly from the
drift in the center value. To fit the measured retention
properties in our SONOS devices, we use a characteristic
decay time of 7 = 1 day. We also use a value of 7y = 2500K
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Figure 5. (a) Modeled non-uniform drift characteristic of the device currents
for previously published SONOS devices for several initial programmed
values 1. The spread o, in weight values also increases with time. (b) The
initial (t = 0) distribution of current values and the distribution after t = 1
day for a SONOS array trained for the MNIST task. The distribution is
shown for the positive array of the fourth convolutional layer. The large
peaks at the minimum (0.1) and maximum (1.0) values in the initial
distribution arise because weights lying outside the center 80% range are
clipped to these values. The evolution of the test set accuracy as a function of
the time after programming are shown for (c) MNIST and (d) fashion
MNIST. The injection of neuron noise during training (6, > 0) increases
resilience to synaptic read noise as well as the effects of weight drift.

from [19]. The decay time 7 is physically derived from an
activation energy as exp(—Er/kT), where k is the Boltzmann
constant and Et depends on the spatial and energy distribution
of traps, the composition of the ONO stack, and the number of
program-erase cycles endured by the device.

The measured SONOS devices show an initial variability in
the programmed current oy that is equivalent to 0.4% of the
dynamic range, which increases to 0.8% after 24 hours. The
blue curves in Fig. 4(a) and (b) show that this degree of
variability, accompanied by a decay in the device dynamic
range, does not visibly degrade the inference accuracy on the
fashion MNIST task or the CIFAR-10 task. The result
suggests that from the perspective of device retention, state-of-
the-art CTM arrays optimized for analog memory are
sufficient for long-term deployment in inference applications
at the studied level of neural network complexity. The lack of
any noticeable accuracy loss further suggests that the retention
properties of these devices may also be sufficient for more
difficult inference tasks than studied here that use larger,
deeper, and more complex neural network topologies.

To investigate the implications of a more severe amount of
charge decay using less optimized CTM devices, and to
understand how drift effects might scale to more complex
neural networks, we consider the hypothetical cases where the
observed amount of charge decay has been amplified. These
cases are shown by the orange, green, and red curves in Fig. 4:
the same initial error of 0.4% of the dynamic range was
assumed, but the uncertainty after one day was increased to



several times the observed amount. At these inferior levels of
device retention, the accuracy degradation resulting from drift
and variability is more significant. Although the directional
effect of a uniform current drift is fully canceled out as
described above, it nonetheless reduces the useable dynamic
range in each device, exacerbating the effect of both read
noise and drift variability over time. The more challenging
CIFAR-10 task is more sensitive to the effects of charge decay
on the network weights, which follows from our finding that
more challenging tasks are also more sensitive to read noise.

To examine the combined effects of non-uniform current
drift and increasing current variability, we model the
properties of a previously published SONOS device that was
fit using the stretched exponential model in Equation (2).
Here, we wuse a thermally activated decay constant
T = 19 exp(Er/kT), using 7o = 8.0 x 10'2 hours, E1 = 0.85 eV,
and Ty = 2500K, corresponding to a SONOS device measured
in [19] that has endured 1000 program-erase cycles prior to
deployment for inference. Unlike the uniform decay observed
in our fabricated SONOS devices, we assume that all devices
approach the same value of I, (set to the upper limit of the
dynamic range) with the same time constant; thus, for the
same time interval, devices with /y further away from /. will
decay by a larger amount. Fig. 5(a) shows the current drift
characteristics modeled by Equations (2) and (3) for several
values of the initial current, normalized by I.. The current drift
that occurs on short time scales (¢ < 1 minute) is not explicitly
shown. Fig. 5(b) shows how charge decay modifies the
distribution of the weight values in the positive array in one of
the layers of the neural network, trained for the MNIST task.
After one day has elapsed after programming, the current
values shift asymmetrically toward larger values. The use of
two differential devices to represent a weight partially
mitigates the effect of drift, but the cancellation is incomplete,
since the amount of drift depends on the present value of the
device current.

Fig. 5(c) and (d) show how this model of current drift in
SONOS devices affects the test accuracy on the MNIST and
fashion MNIST tasks, respectively. In the noise unprepared
models, significant accuracy degradation begins after about
one day for MNIST and within hours for fashion MNIST.
Note that in this model, the variability o; after one day — see
Fig. 5(a) — is a considerably smaller fraction of the total
dynamic range than the hypothetical cases shown in Fig. 4,
suggesting that non-uniform decay and dynamic range
compression can potentially play a large role in the
performance degradation. Cycle-to-cycle read noise (ggn =
0.1) further degrades performance, though the added effect is
slight. Remarkably, the regularization effect provided by
neuron noise injection during training (oneu = 0.4) considerably
improves the system’s resilience to drift; for both tasks, the
point at which the accuracy drops to 70% is enhanced by
multiple orders of magnitude.

VI. EFFECTS OF QUANTIZATION

The conversion from the analog output of a computational
memory array to a digital signal that can be routed to the next
stage — and vice versa — is a costly operation in analog
neuromorphic accelerators. While analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs) with high bit
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Figure 6. Test accuracy vs. ADC and DAC resolution for the (a) MNIST and
(b) fashion MNIST tasks, with a model that is trained with a bounded (with
and without training noise) vs. unbounded ReLU activation function.

resolution are desired to maintain high precision in the neuron
activation values, this typically comes at a large overhead in
area, energy, and latency to the system, offsetting the critical
advantages of computation in non-volatile memory arrays [1].
To this end, it is critical to determine the least amount of ADC
and DAC precision that can still yield high neural network
accuracy, and to design the system so that lower-precision,
and thus lower-energy conversions can be tolerated.

Fig. 6(a) and (b) show the accuracy of the neural network
as a function of the bit precision of the ADC and DAC, for the
MNIST and fashion MNIST tasks, respectively. The blue
curve shows the performance for CNNs that use a bounded
ReLU function, which we have assumed for most of this
paper, while the orange curve shows a standard unbounded
ReLU function. The bounded ReLU is described by f(x) =
min(max(0, x), 1), and has an output in the range (0, 1).
Consequently, for all but the final softmax layer, the ADC and
DAC range for the bounded system is set to (0, 1), as any
information outside of this range is discarded by the activation
function. The ADC range for the final layer is calibrated by
inspecting the output values from the relevant arrays. The
range is chosen so that very large activation values are
clipped, which slightly reduces the maximum attainable
accuracy but reduces the precision requirement on the final
layer ADC. For the unbounded neural network models, this
calibration is performed on the output of every layer to set the
range on the corresponding ADCs and DACs.

For both image recognition tasks, the use of a bounded
ReLU function reduces the required ADC/DAC precision by
one bit: down to four bits for MNIST and five bits for fashion
MNIST. Any input to the bounded ReLU exceeding a value of
1 simply collapses to an output of 1; the ADC requirement is
relaxed by eliminating the need to quantize larger array
outputs. We also find that by constraining the activation
function to operate within a finite range, the activation values
tend to become more concentrated near the extreme values of
0 and 1. A one-bit reduction in the ADC precision potentially
halves the energy budget. The known bounds on the
activations also simplify the hardware design, as the
ADC/DAC ranges no longer need to be data-dependent.
Further reduction in precision may be possible by training the
network to more closely approach the limit of a binary
distribution of activation values, which would imply that only
one bit of ADC precision is needed. Noise injection during
training, when combined with the bounded activation,
improves the resilience to quantization effects for the MNIST
task, but this is not seen for fashion MNIST.



VII. DISCUSSION

Our results so far imply that co-design between devices and
inference accelerator can yield promising performance on
state-of-the-art tasks used in the machine learning community.
However, while our decay model so far used realistic SONOS
data, our modeled noise is generic. In an extension of this
work, we plan to incorporate device-specific parameters for
these and combine them with realistic decay to in order to
analyze whether equivalent-accuracy to software performance
with emerging SONOS NVM is possible. In addition, an
alternative approach to analog inference is the binary
approach, in which weights and activations can be simplified
to logic gates [20]. Prototypes of this concept with emerging
filamentary and magnetic NVM devices have been proposed
[21, 22]. Thus in the future we plan to rigorously benchmark
analog inference versus competitor binary systems.

VIII.

Neural network inference using SONOS-based in-memory-
computation systems is fast, massively parallel, and highly
energy-efficient compared to digital implementations, but its
accuracy may be degraded by weight values that are imprecise
or decay over time. We have shown that these architectures
can retain high accuracy at conceivable levels of system noise
by deploying device-aware training methods. We have also
found that the retention properties of state-of-the-art SONOS
devices are sufficiently ideal to support inference engines
implementing large convolutional neural networks, without
the need for frequent device updates.

CONCLUSIONS
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