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2 High-Order Methods Usage in SPARC
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Wall-Modeled LES



3 High-Order Methods in SPARC

Summation-by-Parts Methods:

Entropy-Stable High-Order Finite Difference
(Multi-block Structured)

o Hybrid WENO or Artificial Viscosity for shock
capturing

o Cell-centered for strong inter-block coupling

Entropy-Stable Spectral Collocation Elements
(Unstructured)

o No need for over-integration

o Tensor product elements

o Artificial Viscosity for shock capturing

• Legendre-Gauss or Legendre-Gauss-Lobatto
solution points
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--- SCE LGL, p= 7 83

--- SCE LGL, p = 3 163

—•- SCE LG, p = 3 163

  SCE LG, p = 1 323

—•- HOFD 4th HWENO 643

  SCCFV Subbareddy Candler 643
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4 Entropy-Stable Spectral Collocation Element Operators

Continuous
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Linearly Stable
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5 Entropy-Stable Spectral Collocation Element Operators

Continuous

Otq + axk fk 01) = Oxk ekiax,

Entropy Stable
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6 Entropy-Stable Spectral Collocation Element Operators

Volume terms (operators are sparse)
° Simple gradient complexity: 3*(p+1) per solution point [LG and LGL]

—Q,Twtq)

0 Flux divergence complexity: 3*(p+1) inviscid and viscous flux evaluations
per solution point [LG and LGL]

[2 (Qk — 
2 
—nrbk

r kr 
bT 0 jki 1 + QT:sekj:1:15i =ik(qi.,412)

Concurrency over (p+1)^3 solution points per element

Halo for ghosting

Mass matrix always diagonal: Exact for LG points, approximate for
LGL points
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7 Entropy-Stable Spectral Collocation Element Operators

Interface terms (operators are sparse)

o Simple gradient complexity: 2*(p+1) [LG] or 2 [LGL] per face point

E c) 1Tit,(q) = 4L;) — b21 .17'.5 (b{„ViTw(q), (II

o Flux divergence complexity:
O 2*(p+1)+1 [LG] or 1 [LGL] non-dissipative inviscid flux evaluations
o 1 [LG and LGL] dissipative inviscid flux evaluation
• 2*(p+1)+1 [LG] or 3 [I,G1.] viscous flux evaluations

n(L) (b(L) ;s _ b(R)b(L)T) jrdri r, kr., kr I kr/

n(L) (b(L) — b(R)) g b(L) v‘r b(L) - b(R) w b(R) -115r ircrir kr! 11/4. kr!. 5 kri 3 krz 3 kr! 3

Concurrency over (p+1)^2 face points per interface

Use face coloring to manage conflicts
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8 1 Performance Analysis — Taylor-Green Vortex

Methods: 

Structured cell-centered finite volume (SCCFV)

• Structured high-order finite difference (CCHOFD)

• Unstructured spectral collocation element (SCE)
Note: All cases using LGL points

Architectures: 

- Intel Haswell (HSW) CPU (32 cores/node)

• NVIDIA Volta (V100) GPU (4 GPUs/node)

Configuration: 

Single node simulations

• 30s simulation time; explicit time step control

32(MPI+10MP) vs. 2(IPI+320MP)
• High-order performed better with latter

• OpenMP threads mapped to hardware-threads

(TGV)

------- - - —
0111111itrouniel ................ "'"............................................................................................................................................................
................... ...... 

u"..:00.11,111

qhr„ I 
"  

I

I t% " 
" "

• 
11ui;1111• .1k1 

11:4'.1111!1!;11 

1141144111•1111!"1111111141414.14141111.11110111!111111411411114111:4444,i14:41.41 itllii161 1.1111111111:114111 1111.11:41 41:111:1141 111 Fill4r111.111. II 
1111 I I I Ili I 1:11 I II   I I I I I 11;10 

I I I 111 I 
r I 11.1 I II: 

I I

u;iii 

;ii 

N.1111111

11:11:1• 

1411:14111:: 

........... 

............• 
111:11:::111111:11.11

It1:1:11:11::::PI '4, 41 41 141 "

111.111‘11111114%

111111101411111111001141/114441

11114jittigii%411 ,1114411101141114

14411
4104101111111111111/ ...... 11144.111,1% '.4411,1140010.

11111 

04441111141"1 " 
14144

.. 

14141111k

............................................................................. 14.4
111114.4.11141.414111.040.1,111443/4.2447

..........................................
*4°44

oir.10 llllllllllllllllllllllllllllll
01111100 lll l
JILT°, i„. l 11111111111111111111:1111111

aillorte,°°.0.Pli.,,,...",P701111111111111111111.11

11111111111111111:
agit,,e•reo. ,f,4; lllllllllllllllllllllllllll

4P71:11---';:°1001111111111111111111111111111:111111:111111111111,11
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

;II
11,0•J °0111111111111111110

0,1
El 0

3D Cartesian Meshes: 

• 963, 885k DOFs

• 1283, 2.1mil DOFs



9 Performance Analysis — TGV Figure of Merit

First attempt to quantify performance of high-order

C
Figure of Merit — 

tSCCFV • errSCFV

t • errE

t - Wall-clock time for 30s simulation time (s)

errE = f IE(t) — Ere f (012 dt - Enstrophy error

Reference: Spectral element solution, 5123

• Note: results are architecture independent

Analysis: 

Current optimal is near CCHOFD2, SCE2

Better performance on GPUs

Bottlenecks
• CPU — Residual (computation)

• GPU — ConsRelations (gradient, communication)

• Remainder also needs more profiling/improvement
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10 Performance Analysis —TGV Node Utilization

Analysis: 

—10-16x GPU node speedup over HSW node

Speedup is greater at high-order with more DoF

SCCFV faster on CPU, lower order SCE matches on GPU
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11 Performance Analysis — TGV Timer Breakdown

SCE Kernel Analysis: 

High-order trends:

CPU — Volume increases, interface decreases

• GPU — similar, communication and remainder dominant
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g: SCE5 - 963
h: SCE7 - 1283
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12 Future Performance Work

Optimization for HOFD and SCE: 

ore detailed profiling

More work on hierarchical parallelism (memory layouts, shared memory)

SIMD for CPUs

Better communication pattern for SCE-LGL

Evaluate efficiency of high-order methods: 

More analysis/feedback on figure of merit

Measure and compare communication cost and computational throughput

Benchmark with open-source software

Performance analysis of more complex problems: 

• Wall-modeled large eddy simulation

High-speed boundary layer with chemical reactions


