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High-Order Methods in SPARC

Summation-by-Parts Methods:

Entropy-Stable High-Order Finite Difference
(Multi-block Structured)

SCCFV Subbareddy Candler 64°
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° Cell-centered for strong inter-block coupling
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Entropy-Stable Spectral Collocation Elements \
(Unstructured) .
> No need for over-integration \
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4 I Entropy-Stable Spectral Collocation Element Operators
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5 I Entropy-Stable Spectral Collocation Element Operators
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6 | Entropy-Stable Spectral Collocation Element Operators

Volume terms (operators are sparse)
° Simple gradient complexity: 3*(p+1) per solution point [LG and LGL]

—Qlw(q)

° Flux divergence complexity: 3*(p+1) inviscid and viscous flux evaluations
per solution point [LG and LGL]

[E (Qa.- - §nrbm.b§l) o fh} 1+ Qg i, fri; = Filgi. @5)

Concurrency over (p+1)"3 solution points per element

Halo for ghosting

Mass matrix always diagonal: Exact for LG points, approximate for
LGL points
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Entropy-Stable Spectral Collocation Element Operators

Interface terms (operators are sparse)
> Simple gradient complexity: 2*(p+1) [LG] or 2 [LGL] per face point

> b my(a) = ngf) (o) — 000 ) wy (65 wi@), b0 T w(a) )

° Flux divergence complexity:
o 2%(p+1)+1 [LG] or 1 [LGL] non-dissipative inviscid flux evaluations
> 1 [LG and LGL] dissipative inviscid flux evaluation
o 2¥(p+1)+1 [LG] or 3 [LGL] viscous flux evaluations

(L) [ {(E) (AT L (R)(L)TY _ 2
4 L) (L) _ p(R) (LY e ALY o p(B) oy BR) .
+ gt (5 — b0 ) g (B w, b B wL b0 )

Concurrency over (p+1)"2 face points per interface

Use face coloring to manage conflicts




8 I Performance Analysis — Taylor-Green Vortex (TGYV)

Methods:
*  Structured cell-centered finite volume (SCCFYV)
*  Structured high-order finite difference (CCHOFD)

* Unstructured spectral collocation element (SCE)
* Note: All cases using LGL points

Architectures:
* Intel Haswell (HSW) CPU (32 cores/node)
- NVIDIA Volta (V100) GPU (4 GPUs/node)

Configuration:

* Single node simulations

* 30s simulation time; explicit time step control

3D Cartesian Meshes:

* 32(MPI+10OMP) vs. 2(MPI+320MP) * 963, 885k DOFs
*  High-order performed better with latter e 1283, 2.1mil DOFs

* OpenMP threads mapped to hardware-threads
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Performance Analysis — TGV Figure of Merit

First attempt to quantify performance of high-order
&
tsccry * €TTsccry
t-erré

Figure of Merit =

t - Wall-clock time for 30s simulation time (s)
+ errf = [ |e(t) — & (t)|*dt - Enstrophy error
*  Reference: Spectral element solution, 5123

* Note: results are architecture independent

Analysis:
* Current optimal 1s near CCHOFD?2, SCE2
* Better performance on GPUs

*  Bottlenecks
*  CPU — Residual (computation)
*  GPU - ConsRelations (gradient, communication)
*  Remainder also needs more profiling/improvement

m
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10 I Performance Analysis — TGV Node Utilization P i g
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11 I Performance Analysis — TGV Timer Breakdown , - Conn

I Gradient
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High-order trends:
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12 1 Future Performance Work

Optimization for HOFD and SCE:

*  More detailed profiling ‘
*  More work on hierarchical parallelism (memory layouts, shared memory)
¢ SIMD for CPUs

* Better communication pattern for SCE-LGL

Evaluate efficiency of high-order methods:
*  More analysis/feedback on figure of merit
*  Measure and compare communication cost and computational throughput

*  Benchmark with open-source software

Performance analysis of more complex problems: ;
*  Wall-modeled large eddy simulation ‘

* High-speed boundary layer with chemical reactions



