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Problem:
Seismic sensors can provide high temporal resolution data
about nearby activity, such as use and movement of vehicles and
other heavy equipment. However, traditional seismic analysis
tools are designed for earthquake or other large events and do
not perform well at extracting local pattern-of-life information.

Questions:
I. Can we detect pattern-of-life activities in seismic
waveforms?

2. Can we cluster the detections such that similar
activities are grouped together to support
interpretation?

1. Raw seismic data
Real seismic sensor data recorded at 500
Hz on three channels (R,T, Z).

Raw Seismic Signal
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2. Probabilistic power spectral density

Define filter bands and determine periods of time where activity is high and
distinguishable from noise.
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• Shown: PPSD for 3 July and 4 July 2018

• Interpretation: Distinct amplitude difference 0.8 - 40 Hz between

night time, normal day time, and site activities
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3. Seismic event detection
STA/LTA to detect discrete non-traditional seismic events that
occur within the full seismic waveform.
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4. Method 1:Compression Based Clustering 11

O. Prediction by partial matching
(PPM) with arithmetic coding
(AC)

Statistical data compression techniques are
based on Markov models of different contexts.
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11. Weighted Adjacency Matrix and
Louvain Community Detection

Construct adjacency matrix with events as
nodes and NCD as edge weights, then apply
Louvain community detection
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I . Normalized Compression
Distance (NCD)

NCD between two seismic events estimates
how much shared information they have.

N C D =
max fC (x), C (y)}
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Normalized Compression Distance:
C(x, y) - minfC(x), C (y)}
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Preliminary Results
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Seismic event community
graph

Modularity = 0.41
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t-SNE mapping of clustered events
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4. Method 2: Feature Based Clustering
O. Feature Extraction
Top 10 Frequencies most present in Event
Power
Duration
Peak Amplitude

I . Dimensionality Reduction
Standardize features and use PCA to reduce
number of features down to 5, which explains
74% of the variance in the features.

Preliminary Results
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Dendrogram for hierarchical clustering
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Technical Challenges and Discussion

Event detection

• Need to define granularity of an event
• Events of interest are outside of

traditional seismological targets
• Very poor supervision
• Tuning global parameters is challenging

Clustering

• Results depend on quality of detected events
• Very poor supervision
• Selected time period for analysis might not be

sufficient for capturing similar events
• Results are hard to interpret
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