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Using Grover’s search algorithm to characterize the Rigetti Quantum Computing
Platform

V. 1. Geyko
Lawrence Livermore National Laboratory, Livermore, California, 94550, USA*
(Dated: February 9, 2021)

Performance of the Rigetti quantum computing platform was tested during the period of time
from 12/16/2019 to 05/18/2020. The Grover’s search (GS) algorithm was used as a testing tool, in
particular, 3- and 4-level versions of the algorithm. As a result, a number of hardware issues were
revealed, so the algorithm was split to smaller blocks and individual gates, and all of them were
tested separately. The fidelity decay was found to be due to both decoherent processes and coherent
errors of the native hardware gates. These errors were estimated from RX gate benchmarks and
were in a form of extra rotation of the quantum state. As a consequence of that, performance of the
algorithm was shown to be strongly dependent on the native gate decomposition of the program.
Suggestions and possible improvements of the future Rigetti runs are made based on the obtained

observations.

I. INTRODUCTION

Rigetti Computing[l] is a private company that pro-
vides quantum computing services for customers and col-
laborators. Their hardware is based on superconducting
qubit technology, with a standard gate set and control
options. There are two fundamental gates for a single
qubit rotation (RX, RZ) and one two-qubit gate that
performs multi-qubit entanglement (CZ). While Rigetti
offers a variety of different lattices, which contain up to
28 qubits, the main focus of this research was on two-
qubit machines, in particular Aspen-4-2Q and Aspen-T7-
2Q. Multi-qubit lattices have not yet been tested due to
the increase in complexity of the required benchmarks
and unexpected behavior of some 2-qubit systems. The
initial motivation of the Grover’s search (GS) project was
to test the performance of the 3 and 4 level quantum
systems. However, it was quickly revealed that a careful
analysis of different components of the algorithm is re-
quired for better understanding of appeared issues. As
a result, such aspects as abnormal hardware behavior,
individual native gate benchmarking, and gate decompo-
sition are addressed in the present report.

The paper is organized as follows. A brief overview on
the native gates used by Rigetti is given in Sec. (II). A
description of the Grover’s search algorithm and its im-
plementation is provided in Sec. (III). A list of revealed
hardware issues is given in Sec. (IV). Native gate bench-
marks are performed in Sec. (V). In Sec. (VI), the re-
sults are summarized and the ideas on future work and
improvements are submitted.

II. NATIVE GATE OVERVIEW

Any program that is run on the Rigetti platform is
always decomposed into a sequence of native gates [2, 3].
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There are parametric single-qubit gates RX and RZ, and
a non-parametric CZ gate for two given qubits. Since a
2-qubit system is considered in this report only, the CZ
gate is applied to the second qubit and controlled by the
first one, and it is denoted as

CZ 1 0= CZ(1,0) (1)

Here, a standard numeration is used in where 0 denotes
the first qubit and 1 denotes the second qubit. The ma-
trix for the CZ gate reads as

100 0
010 0

CZ10=1401 o (2)
000 —1

The CZ gate is a hardware gate, thus, it is implemented
on the hardware level and actual control signals are sent
to the system in order to manipulate the qubits. It is also
known as the weakest link in a quantum circuit, as the
fidelity of this gate is worse than to single qubit gates.

The RZ is a parametric single qubit gate, which is de-
noted as

RZ(¢) 4, 3)

where ¢ is the qubit the gate is applied to, and ¢ is the
rotation phase in the range [—4m; +4n]. The gate per-
forms a rotation along Z-direction, and its matrix for a
single qubit reads as

RZ(2¢) = eXp(O_ i9) exp((lﬂ. 5) (4)

For two qubits, the matrices are obtained via tensor prod-
uct with the identity matrix, namely

RZ(26) 0 = RZ(26,0) ® 1(1) (5)
exp(—ig) 0 0 0
_ 0 exp(—ig) 0 0
= 0 0 exp(+ig) 0
0 0 0 exp(+i¢g)
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for the RZ gate applied to 0-qubit, and

RZ(20) 1 = 1(0) ® RZ(26, 1) (6)
exp(—i¢) 0 0 0
B 0 exp(+i¢g) 0 0
- 0 0 exp(—ig) 0
0 0 0 exp(+id)

for the RZ gate applied to 1-qubit. Notice that the ma-
trices in Eqs. (5,6) are certainly different.

Since the RZ gate does not change the population of
the qubit states and only rotates the relative phase be-
tween the ground and excited states, it is implemented
on the software level, hence there is no fidelity penalty
of applying this gate as many times as required, and the
effect is taken into account when the other gates are ap-
plied later in the program.

The RX gate is another single qubit gate and, while
it can be called with a parameter ¢, it is actually imple-
mented for ¢ = kn/2, where k is an integer. The single
qubit gate matrix representation reads as

cos(¢p) —isin(g)
—isin(¢) cos(9) (7)

and two-qubit gates are obtained via tensor product with
I(1) for the RX gate applied to 0-qubit

RX(26) =

RX(2¢) 0 = RX(2¢,0) ® (1) (8)
cos(¢) 0 —isin(¢) 0
_ 0 cos(9) 0 —isin(¢)
—isin(¢) 0 cos(9) 0
0 —isin(¢) 0 cos(¢)

and with I(0) for the other case

RX(2¢) 1 = I1(0) ® RX(2¢, 1) (9)
cos(¢) —isin(¢) 0 0
_ |—isin(¢) cos(¢) 0 0
0 0 cos(¢) —isin(¢)
0 0 —isin(¢) cos(¢)

The RX gate is a hardware gate and unlike the RZ gate
that just rotates the relative phase between the states,
this one changes the population of the qubit states. As a
result, this gate has finite accuracy and its fidelity is an
interesting subject for future research.

III. GROVER’S SEARCH ALGORITHM
A. Theoretical background

Initially, the motivation for using the Rigetti platform
was to compare its performance to LLNL QuDIT and
possibly with IBM-Q. The main tool was using a 3-level
Grover’s search algorithm, as LLNL QuDIT was limited
to 3 stable levels only at the time the project was pro-
posed. Besides, a 3-level problem is more complicated

and challenging than a standard 4-level (or 2-qubit) clas-
sical GS algorithm. However, the performance of the
3-level GS algorithm on the Rigetti platform was consid-
erably below expected, so the research drifted to some-
what more simple, yet more fundamental tests, such as
benchmarking the individual program constituents and
subsequently to gate set tomography in order to reveal
the reasons behind the observed discrepancies. A brief
recap of GS algorithm is required here, as it provides the
main blocks that are to be tested.

Consider an N-level quantum system, where N = 3
or N = 4 depending on the needs and benchmarks per-
formed. A quantum state is denoted as |¢), and the basis
decomposition reads as

N-1

) = aglk), (10)

k=0

where |k) is the basis vector, such that the only k-th state
is occupied, with the standard normalization condition
applied

N —

J

o] = 1. (11)
k=0

A 3-level system can be realized on a 2-qubit platform by
simply using three states only (|00), |01), |10)). In terms
of matrix representation, a 3 by 3 block matrix is em-
bedded in the 4 by 4 matrix of a 2-qubit system. Ideally,
the unused states should remain unpopulated (which is
not the case and the goal of the paper is to report the
observed discrepancy) and therefore are kept intact by
the gates, so the state vector takes the same form as in
Eq. (10), or in other words, ay = 0, for kK > N. In prin-
ciple, the choice of the unused states is arbitrary, as any
two basis states can be swapped while the correspond-
ing matrix rows and columns are swapped as well. In
this paper, however, the described structure is fixed, for
several reasons. First, for the relative simplicity, when
all unused states are gathered together instead of being
spread all over the matrix. Second, the excited states of
qubits are known to be less robust than ground states,
so by choosing lowest states for the operation the fidelity
of the simulations is improved.

Grover’s search quantum circuit consists of the 3 main
elements: Superposition gate S, Oracle U,,, and Grover’s
diffusion operator Us. The superposition gate is needed
to spread the state vector “evenly” among all the states
the search algorithm is operating on, assuming that the
initial state is the ground state |0). The superposition
state |s) is given by

s == > 1K), (12)

For the 4-level GS algorithm, the superposition gate is
implemented as a 2-qubit Hadamard gate

Sy =Hy = Hy® Hy, (13)



with the matrix

11 1 1
111 -1 1 -1
11 -1 -1
1 -1 -1 1

(14)

For the 3-level system, the S-gate the discrete Fourier
transformation[4] is used with the matrix

1 1 1 0

g — 1 67;6 677,'6 0
3 — ﬁ 1 e—i5 €i5 0
00 0 V3

where 6 = 27/3, and ¢ is the imaginary unit. The ma-
trix in Eq. (15) is unitary, as any two vectors formed by
matrix columns are orthogonal and of unit norm.

The Oracle gate, by the design of the algorithm, marks
the state that is being searched for; hence it is assumed
to be unknown in advance. The structure of the gate,
however, is well-defined, and in this particular realization
it is a phase flip of the w state, namely U, |¢) = |¢) for
(Y|lw) = 0, and U, |¢p) = —|¢) for (Y|w) = 1. In other
words, the operator reads as

(15)

U, =1 — 2w)wl, (16)

and the matrix representation is trivial: it is a unit ma-
trix with —1 instead of 1 at the position (w,w). Once the
structure is fixed, it is only the state number w that is
unknown and has to be guessed by the algorithm.

The Grover’s diffusion operator reflects the state vector
|1} through the superposition vector |s)

Us =2|s)(s| — 1. (17)

The matrix representation is rather dense, it takes the
following form for the 3-level system

-1 2 20
112 -1 2 0
Us=312 2 -10 (18)
0 0 0 3
and for the 4-level system
-1 1 1 1
171 -1 1 1
Ust = 1 1 -1 1 (19)
11 1 -1

The Grover’s search circuit is demonstrated in Fig. (1).
The initial state |0) is changed to |s) by applying the
S gate, then the block of U, and Uy is applied several
times. At the end of the algorithm, the state is measured.
The algorithm was shown to have a quadratic speed-up
compared to a classical linear search algorithm for large
N[5]. The goal of the present research is, however, to
repeat the Grover’s amplification block as many times as
possible to study the fidelity decay.

Y =0)
N levels S

7]
7]

U, 1 Us

— =

repeats 1 times

FIG. 1: Grover’s search circuit. The superposition gate S
transforms the ground state 1 = |0) to the superposition state
|s). The block of two gates (Oracle U,, and Grover’s diffusion
U,) is then repeated ni; times. Finally, the measurements of
the quantum state are performed.

Notice that Grover’s algorithm operates on the state
vector in the (|w),|s)) plane only. Thus, it is convenient
is to carry out the analysis in the new basis (Jw),|s)),
so the state vector reads as |¢) = als) + B|w). The
application of one Grover’s iteration U, Us is equivalent
to the application of the matrix D to |+) in the new basis
[6) = DIy), i.

& a N4 _ 2 o
_:D(>:lg «ﬂ() (20)

(B) B ~ | g
After a number of Grover’s iterations nji, the popula-

tion of the desired state p, is found via measurements
as

Po = {wl¥)* = (a(w]s) + Blwlw))? (21)
_ 0 g 9B
=% +p +2\/N'

Initially, the system is in the ground state, and after
the application of the superposition gate it goes to the
|s) state, so « = 1, and § = 0. Skipping some straight-
forward algebra, one can show that after ny; applications

of the D matrix the probability of the desired state reads
as

Po = sin’(ngf + k), (22)
where
2v/N —1
sin(f) = —N
(23)
. 1
sin(k) =

ik
As pointed out, two cases are of particular interest:
N =3, and N = 4. For the latter, 6 = 7/3, and k = 7/6,
so that the probability p, is exactly equal to unity for
every third Grover’s step nyi = 1,4,7,10.... It can be
used as an ideal tool to diagnose the fidelity of quantum
gates, as the difference between the unity and measured
probability shows the rate of the decay processes in the
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FIG. 2: The analytical probability p,, to find the system in
the desired state w after n;; iterations of the Grover’s search
algorithm. Blue points: p,, is close to zero, green points p,, is
close to unity.
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FIG. 3: Probability to find the system in the |2) state as
a function of Grover’s iterations. Results from two different
Rigetti QPUs are compared to analytical theory. Every point
is obtained as an average over 10000 shots.

system. For the former, N = 3, the probability is a peri-
odic function of n;;, with an irrational period, therefore
only certain points are of interest, shown in Fig. (2). For
example, points where the probability is close to unity, as
these points serve the purpose of a circuit fidelity bench-
mark. Normally, other points are not of interest for the
Grover’s search algorithm, however in this particular con-
text, points such that the probability is close to zero can
be used as well. The reason is that the total number of
states is small, so if p, & 0, it automatically implies that
the other states have population of 1/2, which is clearly
distinguishable from 0, and therefore such points can be
used for a study of the fidelity decay. This argument is
not valid when N is large, as the populations of other
states are 1/(N — 1), which is close to zero for N > 1.
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FIG. 4: Population of desired state measured as a function of
n;t for the 4-level GS program run on Aspen-7-2Q-C lattice.
Every point is obtained as an average over 10000 shots. The 4
colors correspond to 4 different possible oracles w = 0, 1, 2, 3.

B. Practical realization of the GS algorithm on the
Rigetti platform

All the gates in the GS circuit are decomposed into
a sequence of native Rigetti gates[(]. Depending on the
number of the levels N, the decomposition of S and U
gates is very different. For example, the S3 gate has
approximately 35 native gates in its decomposition with
3 CZ gates, while S4 has only 6 native single qubit gates,
as the 2-qubit Hadamard gate does not require any qubit
entanglement. The similar story is for the U, gate: Ugs
has 26 native gates with one CZ among them, while Ugy
has only 9 gates with one CZ. The more gates involved
in the decomposition, the worse the fidelity is, and the
following tests confirm that statement.

All the Rigetti circuits are built using PRAGMA PRE-
SERVE _BLOCK]7] compiler macro in order to ensure
that the total number of the native gates in every compo-
nent of the GS algorithm is fixed and to disable compiler
optimization. Every measurement is obtained as an aver-
age over 10K shots, so that the statistical error (standard
deviation of the binomial distribution, see Appendix(A)
is negligible compared to the deviation due to the hard-
ware.

Fig. (3) illustrates the result of a 3-level GS program
run on the Aspen-4-2Q and Aspen-7-2Q QPUs. The Or-
acle state is w = 2, however the results are not very
different for the other options (w = 0 and w = 1). In all
cases the fidelity drops very quickly as ny increases, and
the system seems to be decoherent after just several iter-
ation of the Grover’s diffusion operator. Moreover, even
the superposition gate S35 has non negligible infidelity in
the case of Aspen-7. There are still points that match
closely, for example, njy = 5 or ny, = 10, which presum-
ably occurred accidentally, taking into account how poor
it is at some other points (ny = 6 or ny, = 11).

The 4-level GS algorithm was also tested on the Rigetti
Aspen-7-2Q machine. The results are shown in Fig. (4).
While it looks somewhat better than in the 3-level GS
case, the fidelity still drops rapidly and after ny = 15



the system becomes almost decoherent. Notice also the
difference between the performance of the program with
the oracles based on different desired states. The ground
state based oracle (red color in Fig. (4)) performs consid-
erably better than the one based on the |11) state, which
was not apparent in the 3-level case. The reason for that
might be the increased fidelity decay of the 3-level system
GS.

C. Coherent errors

To further investigate the fidelity decay of the 4-level
GS algorithm, every individual block was tested sepa-
rately. The most interesting results were obtained when
the Grover’s diffusion gate Ugq was considered. Applied
to the ground state even amount of times, ideally it
should not change it at all, because

(2ls)(s| = 1)*]0) = (2ls)(s| — I)(2ls)(s]0) —10)) ~(24)
= 4(s]0)(s]s)|s) — 4(s[0) ) +[0) = |0).

The results obtained from the Aspen-7-2Q QPU are dras-
tically different and are shown in Fig. (5). The U,y gate
is applied to the ground state n;; times, and each point is
obtained via averaging over 10K shots. The most promi-
nent feature of the observed behavior is that decaying os-
cillations are present, therefore there are some combined
coherent and incoherent errors that affect the fidelity of
the measurements. Coherent errors imply that the Ugy
gate does not perform the unitary transformation cor-
rectly, in other words, some extra parasitic rotation is
added to the designed gate. Unlike decoherent errors
that cannot be mitigated by any means except for im-
proving the hardware, coherent errors can be in principle
corrected by extra over/under rotation, however, their
source, magnitude and direction vector have to be iden-
tified first. This is the main motivation for the gate set
tomography of the native Rigetti gates.

IV. HARDWARE ISSUES

In this section, we address a number of issues that
arise when a quantum circuit is run on actual hardware.
Most of the issues described in this section have an un-
predictable nature, thus are hard to control and mitigate.
Yet, having an idea of what the symptoms are might be
useful when production runs are performed. The names
of the issues are made up based on the observed behavior
and referred to “spikes”, “drifts”, etc.

The main tool to diagnose these issues is measuring the
qubit states at a certain point of the circuit and compar-
ing the results to the analytic expectations. In particular,
a program P that comprises of the S35 superposition gate
and the measurements of both qubits is used. Every set of
the 4 measurement points (pg, £ = 0, 1,2, 3) is obtained
via averaging over 10K shots in order to eliminate statis-
tical errors (see Appendix(A)). Ideally, one can expect to
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FIG. 5: Population of w = 0 and w = 1 states as a function of
ni for the U.4* program run on Aspen-7-2Q-C lattice. Ide-
ally, the population of w = 0 state should be unity, and the
population of w = 1 state should be zero.

measure pg = p; = p2 = 1/3 and p3 = 0 at all times with
the statistical spread of o = 0.0047. As different features
of the hardware are tested, the program P might be re-
peated many times and typically be run for a period of
time of up to 30 minutes repeatedly. Observations of the
data lead to the issues reported below.

A. Retune

Sometimes, even an empty program can have very poor
readout properties. For example, the ground state prob-
ability pg = 0.86, which is quite far from unity. Since
the program is empty and no active reset [3] has been
performed, the issue is due to the state preparation and
measurements (SPAM). Having at most 86% fidelity for
any measurement is undesired, especially if the program
of interest has many gates and therefore is suffering from
even more fidelity decay. According to the response of
the Rigetti team, the reason for this problem is caused
by readout characterization drift caused by changes in the
ambient temperature and device operating point inside the
fridge. This is specific to the readout circuit, and not
necessarily related to gate fidelity or other measures of
overall performance. Aspen-7 has been noted by the team
as suffering from readout classification error, more than
Aspen-4. This is part of the natural design iteration pro-
cess the team was going through and expected improve-
ments in the future. This problem is solved by a retune
of the qubits, so the remedy is quite simple, namely to
perform all the production runs immediately after a re-
tune. Retunes are typically performed several times per
day. Running the program after a retune improves the
readout fidelity to 94%, which is far from perfect but
close to the parameters reported on the Rigetti lattices
page[l] fRO = 93.55% (fRO = 93.55%)).
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FIG. 6: Measured populations of four states (po, p1, p2, p3)
as functions of time. The program is the S3 gate, run on
Aspen-4 lattice. This type of a behavior is called “drifts”.

B. Drifts

Drifts represent the processes of slow, yet consider-
able, change of the readout fidelity. An example of such
a drift is shown in Fig. (6). The program P was run on
the Aspen-4 machine for about 25 minutes, and the time
evolution of py for all k was collected. A strong drift of
the population values was observed instead of the theo-
retical constant values 1/3 for k& < 3 and 0 for & = 3.
While py and p; are more or less close to the estimated
values, po and p3 drift uncontrollably. This behavior can
be explained as a failure of the second qubit, because the
ground and the first states are given by |00) and |01), and
the other two states by |10) and |11) where the second
qubit is in excited state.

Fortunately, strongly drifting behavior is relatively
rare and can be detected by repeating the same program
several times in a reasonable period of time, like 15-30
minutes. Some means of control are needed in order to
guarantee the validity of the results.

C. Spikes

Spikes are a different type of irregular behavior of the
measured population numbers. Similarly to the case of
drifts, the program P was run for 30 minutes and the
data was collected. Unlike drifts, the population values
were stationary except for a short period of time approx-
imately from 400 to 500 seconds. During this time, all
4 populations behaved very chaotically and irregularly
with no apparent trend, and the system returned to its
quiet state just after 500 seconds. We could not deter-
mine what caused such behavior, however it was very
rarely observed, so it is less of a concern.

Spikes are easy to detect even while a production run.
In order to do so, one needs to repeat the same program
several times (5-10 repetitions should be enough) and
check the standard deviation of this small sample. If
any spikes occur, the standard deviation will immediately
increase and be detected.
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FIG. 7: Measured populations of four states (po, p1, p2, p3)
as functions of time. The program is the S3 gate, run on
Aspen-4 lattice. This type of a behavior is called “spikes”.
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FIG. 8: Measured populations of four states (po, p1, p2, p3) as
functions of time. The program is the S3 gate, run on Aspen-4
lattice. The standard deviation is about 3 times greater than
the one estimated from the binomial distribution.

D. Anomalous noise

The other interesting feature are periods of anomalous
noise. When the same program is run many times, one
can assume the results are governed by the binomial dis-
tribution. If the properties of the system are unchanged,
the standard deviation depends on the number of mea-
surements N,,, only (see Appendix(A)) and scales as in-
verse of the square root of N,,. However, this is not
what was observed in some runs of Aspen-7 machine.
Fig. (8) illustrates this phenomenon. Again, the program
P was run many times, no drifts or spikes were detected,
yet the spread of the data is considerably greater than
o = 0.0047.

Notice that such behavior was quite common at the
early stages of the project, namely in January-February
2020, and became very rare later on (April-May). While
the cause was not revealed, it appears as if it was some
kind of permanent low amplitude spikes issue. While
there is no means of control and mitigation of such a
thing, it can be easily detected by performing the same
trick as with spikes, namely, sampling every data point
over 5-10 shots and checking if the standard deviation is
still in the limits of the binomial distribution.
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FIG. 9: Measured populations of four states (po, p1, p2, p3)
as functions of time. The program is the S3 gate, run on
Aspen-4 lattice. The only difference is in the native gate de-
composition. Top: decomposition 2, bottom: decomposition
1, corresponding to Table (I).

E. Native gate decomposition dependence

Notice that the mean values of pg, p1, and ps in Fig. (8)
are considerably different, while all of them were ex-
pected to be 1/3. It might initially seem that the system
is not properly calibrated, so the ground state has higher
probability, and, indeed, pg > p;1 2. This was not the
case, however. The main reason was the difference of the
native gate decomposition. Rigetti uses a compilation al-
gorithm that has a random component, therefore the gate
decomposition can vary from one instance to another.
For example, Fig. (9) demonstrates how two different na-
tive gate decompositions can lead to completely different
performance of the program P. The examples of such de-
compositions are shown in Table (I). They have the same
number of CZ gates but different numbers of single qubit
gates. Ignoring the global phase, the resulting unitary
matrices are identical up to machine precision, therefore
the conclusion can be drawn that some coherent errors
are responsible for such pronounced differences between
the two decompositions when they are run on the QPU.

Decomposition 2
RZ(-1.2397237089721242) 1

Decomposition 1
RZ(1.901868944617673) 1

RX(pi/2) 1 RX(pi/2) 1
RZ(0.84460947696346) 1  |RZ(2.2969831766263367) 1
RX(-pi/2) 1 RX(-pi/2) 1
RZ(1.0931380177326422) 1 |RZ(2.048454635857148) 1
RX(pi/2) 2 RZ(pi) 2
RZ(1.2199169159226386) 2 |RX(pi/2) 2

RX(-pi/2) 2 RZ(1.9216757376671576) 2

RZ(-0.7853981633974487) 2|RX(-pi/2) 2
Cz21 RZ(-2.356194490192344) 2
RZ(-1.5707963267948941) 1|CZ 2 1

RX(pi/2) 1 RZ(-pi/2) 1

RZ(3*pi/4) 1 RX(pi/2) 1

RX(-pi/2) 1 RZ(3*pi/4) 1

RZ(-pi/2) 2 RX(-pi/2) 1

RX(-pi/2) 2 RZ(-pi/2) 2

Ccz21 RX(-pi/2) 2

RX(pi/2) 1 Ccz21
RZ(-1.6940492545467922) 1|RX(pi/2) 1

RX(-pi/2) 1 RZ(-1.6940492545467922) 1

RZ(1.6940492545467922) 2 |RX(-pi/2) 1

RX(pi/2) 2 RZ(1.6940492545467922) 2
cz21 RX(pi/2) 2
RZ(1.093138017732643) 1 |CZ 2 1

RX(pi/2) 1 RZ(2.048454635857151) 1
RZ(0.8446094769634596) 1 |RX(pi/2) 1

RX(-pi/2) 1 RZ(2.296983176626333) 1

RZ(-1.2397237089721216) 1|RX
RZ(-1.0931380177326417) 2|RZ

—

-pi/2) 1

(1.9018689446176724) 1

RX(pi/2) 2 RZ(2.048454635857145) 2
RZ(0.84460947696346) 2 |RX(pi/2) 2

RX(-pi/2) 2 RZ(0.8446094769634598) 2
RZ(1.2397237089721203) 2 |RX(-pi/2) 2

RZ(1.2397237089721203) 2

TABLE I: Two different decompositions of the same gate Ss.
While, theoretically, these two decompositions are nearly in-
distinguishable, they differ significantly in practice when the
list of gates is run on Rigetti QPUs.

V. NATIVE GATE BENCHMARKS
A. RZ gate benchmark

Aspen-7-2Q-C lattice was used for the benchmarks of
the RZ gate. There were two tests: one immediately af-
ter a retune, and the other approximately 1.5 hours later.
The program consists of the RZ gate with ¢ = 7/4 ap-
plied to either the 0 or 1 qubit and the measurement of
all qubit states. The gate was applied ny; times. Fig. (10)
shows that the result does not depend on ny;, as it was
expected since RZ is a software gate. It does not de-
pend on the qubit the gate was applied to for the same
reasons. Basically, this program is just equivalent to the
measurement of the ground state.

The result, however strongly depends on the retune
time, which is demonstrated in Fig. (11). The same loss
of fidelity (from 0.94 to 0.86, as reported before) was ob-
served. Furthermore, analyzing the results in Fig. (11),
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FIG. 10: Measured populations of all the four states after the
RZ(m/4) gate was applied n;; times to 0 qubit (left) or 1 qubit
(right). The program was run approximately 1.5 hours after
retune.
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FIG. 11: Measured populations of all the four states after the
RZ gate applied nit times. Left: 1.5 hours after retune, right:
immediately after retune.

one can notice that only one qubit is actually having per-
formance issues and needs some retuning. Indeed, only
the w = 0 and w = 1 states are affected (red and blue
lines) and they correspond to |00) and |01). The popula-
tion of the other two states (]10) and |11)) remains nearly
zero, so the second qubit does not require a retuning.

B. RX gate benchmark

The same Aspen-7 machine and the same approach was
used to benchmark the RX gate. It was applied to either
of the qubits with the parameter w/4. As was mentioned
in Sec. (II), the only native RX gate is RX(kw/2), so,
in fact, some decomposition was benchmarked instead of
the native RX gate [9]. These tests reveal some coherent
errors in the nature of the RX gate, which was one of the
main motivations for this benchmark.
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FIG. 12: Measured populations of the w = 0 and w = 2 states,
as the RX(7/4,0) gate is applied ni; times. Dashed: ideal
theoretical population oscillations, solid points - experimental
data.

When the RX gate is applied to the 0 qubit, the pop-
ulation densities of w = 0 and w = 2 states will oscillate
periodically

po = cos> (nitd/2), (25)
p2 = sin®(ni$/2),

where ¢ = 7/4 in our setup. Neglecting the effects re-
lated to the state measurement errors (94% at best), one
can observe in Fig. (12) how this analytical prediction
is violated and the experimental results get out of phase
as nj, grows up. In order to find this phase mismatch,
we assumed that every time the RX gate is applied, a
phase shift A¢ appears. This phase shift can be found
by performing least squares fit of the experimental data
using the form

po = Ag cos® (ni[¢/2 + Ag)), (26)
pa = Az sin®(ni[¢/2 + Ad)),

where Ao are the amplitudes to compensate readout
fidelity losses. Fig. (13) demonstrates a good fit between
the experimental data and Eq. (26). As the result, A¢
was found for both qubits the RX gate was applied to:

Ao = 0.0145, (27)
A¢y = 0.009.

It would be interesting to see the decomposition of
RX(m/4), as it might contain several RZ and RX gates
and it is not yet clear which of them are responsible for
coherent errors. More benchmarks of RX(7/2) are re-
quired to fully understand the phenomenon.
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FIG. 13: Measured populations of w = 0 and w = 2 states at
three different parts of n;i, scale. Dashed line: least square fit
of the data with shifted analytical expression.

C. CZ gate benchmark

Two different approaches were used to benchmark the
CZ gate. Since the gate only changes the sign of the
w = 3 state, applying the gate numerous times to the
ground state might not be very informative. Therefore
the system was prepared in the w = 1 or w = 2 states
by applying RX(m,0) or RX(m, 1) gates respectively, and
then the CZ gate was applied n;; times. In Fig. (14),
both scenarios are shown. The main difference between
them is that one set of measurements was performed im-
mediately after a retune (w = 2 case) and the other was
done some time after (w = 1 case). This circumstance
significantly changed the readout fidelity of the prepared
states (approximately from 0.9 to 0.8) and the state col-
lapse time from 128 to 32 CZ gate time intervals. Here,
the state collapse time is defined as the time it takes
for the population of the ground state to reach the pop-
ulation of the excited state, measured in CZ gate time
intervals. This approach can be used to estimate T; time
of the qubits. If the time of the CZ gate is about 200 ns
[10], then application of 100 gates takes about 20 us. By
that time the excited state loses half of it population, so
that 71 ~ 20 ps. According to Rigetti report, the 77 time
of Aspen-7 was about 60 us that is on the same order of
the estimated value but greater by a factor of 3. The
nature of this discrepancy remains unknown, therefore
more benchmarks are needed to reveal it.

The second set of benchmarks is the application of ei-
ther Uy = RX(w,1) - RX(7,0) - CZ(0,1) or a pure CZ
gate. The Uy gate only changes the phase of the w = 0
state and the CZ gate changes the phase of the w = 3
state. Since the Uy gate has two RX gates inside, which
are far from ideal, one can expect considerably different
performance for these two cases. However, the difference
was nearly indistinguishable, as shown in Fig. (15). The
result of this benchmark is not understood for now and
needs further investigation.
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FIG. 14: Measured populations of all the states as a function
of ni; of the CZ gate applied. Left picture: the w = 2 state is
excited, measurements are taken immediately after a retune,
right: the w = 1 state is excited, measurements are taken

some time after a retune.
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FIG. 15: All four states populations are measured as functions
of ni, of either Uy or CZ gates applied.

VI. DISCUSSION AND CONCLUSION

Running Grover’s search (both 3-level and 4-level ver-
sions) can be an excellent illustration of Rigetti capabili-
ties, weak points and areas of possible improvements. As
demonstrated in the present report, a lot of efforts should
be made in order to improve the results of the GS runs
on Aspen-4 and Aspen-7 QPUs.

e All production runs should be performed immedi-
ately after a retune, as the readout fidelity can be
improved from 0.86 to 0.94. While it remain un-
clear how a retune affects performance of the gates,
the measurements of different programs are notice-
ably affected.

e A fixed native gate decomposition should be used
for all runs of the program. One very important
mistake that was made when the initial GS pro-



gram was run on Aspen-4/7 QPUs, was that the
native gate decomposition was not fixed for all it-
erations ni;. As a result, it was in fact a different
program that ran each time, and since the hardware
coherent errors of the native decomposition can be
significant, the results were noticeably affected in
an uncontrollable way. The solution of this prob-
lem is relatively simple. Once a decomposition is
obtained, it should be fixed for all iterations ni.
Moreover, the decomposition can be tested individ-
ually before the production run of the GS program,
and only the best decompositions can be used.

e By default, the accuracy of the native gate decom-
position of a desired unitary transformation is as
small as machine precision. That leads to a large
number of native gates required to represent one
unitary transformation (up to 35 gates for the Ss
gate). Since every gate brings more errors caus-
ing overall fidelity decay, it might be beneficial to
reduce the accuracy of the decomposition and de-
crease the total number of gates. However, the
dependence of the decomposition accuracy on the
number of gates and even such a possibility remain
unknown, therefore more detailed research is re-
quired.

e Many hardware issues can be mitigated by perform-
ing a small batching of the data. Such an approach
can, for example, distinguish spikes and anomalous
noise. The cost is that the runtime is increased by
a factor 5-10. However it is always better to run a
longer program than to run a short program many
times and collect untrustworthy results.

e Ideally, native gates can be corrected in order to
eliminate coherent errors. Decoherent errors, such
as Ty or Ty processes (decoherence, i.e. a collapse
of the wavefunction to the ground state, and de-
phasing respectively) cannot be cured, yet coherent
errors, when the gate does not perform the desired
unitary transformation, can be fixed by applying
extra corrections, therefore gate set tomography
(GST) for all the native gates should be performed.

Everything except for the last item can be done in
a reasonable amount of time, as the required experience
and expertise with Rigetti platform have already been ob-
tained. The pyquil scripts for most of the tasks have been
written. The last item, however, might be a more com-
plicated task, as it requires many different tests. In fact,
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the gate correction can be realized with the RZ gate only.
Indeed, the other two, RX and CZ, are non-parametric
gates, so even if the full GST of them is performed and
corrective unitary operators are found, the only way these
corrections can be implemented is via a combination of
these gates and a number of RZ gates with the correct
parameters. We might expect that the total number of
gates to correct coherent errors might increase consider-
ably, so that more decoherent errors will be introduced.
In this case a precise balance of terms might be needed,
and, what is most important, this balance might also
depend on the problem of interest and on when the op-
timization is performed.
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APPENDIX A: BINOMIAL DISTRIBUTION

Consider a random variable X that can take values
either 1 or 0 with probability p and (1 — p) respectively,
where 0 < p < 1. The variable is measured independently
n times, and the normalized total number of success is
denoted as Y = Y X;/n. The random variable Y is
then has binomial distribution with the mean value p
and the variance p(1 — p)/n. In the limit of large n,
when p is not too close to either 0 or 1 (pn or (1 — p)n
grows unboundedly as n grows), the distribution may be
approximated by the normal distribution with the same
mean value, u = p, and the variance 02 = p(1 — p)/n.

For typical values of p and n used in this work (p ~ 2/3,
n = 10%), one can estimate the standard deviation to
be 0 =~ 0.0047. This estimate provides a bound on the
statistical spread of the data collected via measurements.
This estimate might not be correct for the cases of p too
close to 0 or 1, for example, p = 0.9997 for at n;, = 11
iteration of the 3-level GS algorithm, but for the majority
of the measurements it is still a very good estimate.
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