SAND2020- 1567D

Test-driven development and incremental app

integration of a GPU-enabled finite element library
J. Plews, M. Mosby, N. Belcourt, S. Miller, J. Thomas

THE NEED FOR INCREMENTAL GPU PORTING UNIT TESTING ON THE GPU

» Sierra/SM depends upon the GoogleTest framework for unit
Sierra/SolidMechanics (SM) is a large, general-purpose, legacy testing, which does not execute on the GPU

finite element codebase . - Cannot check quantities computed on the GPU during kernel execution
- Material models - Loads and boundary conditions

- Contact algorithms - Solvers I - As part of GPU implementation redesign, Sierra/SM developers

, , algorithms created a wrapper library based on Kokkos and GoogleTest to enable
Analysts in a diverse userbase rely on many unit testing constructs on the GPU

useful but non-GPU-enabled capabilities... -~ Collect a subset of test failures on the device, if any, and report on host

Core code algorithms
...But the core code team has developed a . Complex dependencies TEST_P(DeviceMeshFixture, compute_stress) {

auto&& mesh = make_host_mesh(get_mesh_spec(1));

small suite of GPU-enabled algorithms + CPU-only data structures, Sample GPU-enabled unit test

: fs—>compute_gradient (*xmesh, displacement, dispGrad,
design patterns detF)

device::compute_stress(*mesh, dispGrad, numIntg, - :
B ADkSiress): Launch GPU kernel to test in unit test body

test_ip_tensor_values(xmesh, pkStress,

Previous GPU code development adopted a “vertical slice” approach... get_gold_pk_stress(create_host_material()), .
numIntg, 1.e-5); Call function to evaluate kernel correctness

...But incremental delivery of GPU-enabled code capabilities e A
. . | . . ampie "R QL] meshtk::device for_each<meshtk::Element>("test ip scalar
requires incremental integration test correctness check values", m, KOKKOS_LAMBDA(const meshtk::DeviceElement& e) {

for (int ip = 0; ip < numIntg; ++ip) {

Correctness check on device; if failure, collect) NGP_EXPECT_NEAR(gold, scal(e, ip), tol);

Before redesign After redesign result and report after GPU execution ends });

TARGETING GPU-FRIENDLY ALGORITHMS FOR PERFORMANCE

GPU-enabled
Core AnaIySiS GPU-enabled Core Capabi“ties class HexInternalForceCalculatorUseVelGrad {
capabilities Analysis Comparing data requirements for early GPU prototype public:
private:

(tOp) Ond new GPU implementatiOn (bOHOm/) ngp::Field<double> currentCoordsField;

ngp::Field<double> velocityField;
ngp::ConstField<double> vorticityField;
: :ConstField<double> stretchingTensorField;

FU”-featUI’ECj FUlly GPU-Eﬂab|Ed FU”'featured and F' = = Egp;:Fie1d<double> newInternalForceField:
' irst attempt at GPU kernel implementation by [0 L S oreeT
but not useful partially GPU-enabled P P p: sConstrieldzdaubles elementhassField;

ngp::ConstField<double> elementMassField;

ta rgEtEd algorlthms IﬂVOIVlng ngp::Field<double> hourglassDecayField;

ngp::Field<double> volumeField;

—_— La rge data movement from hOSt to ngp::ConstField<double> oldRotationField;

ngp::Field<double> newRotationField;
1 ngp::ConstField<double> oldStretchField;
deVICe and baCk ngp::Field<double> newStretchField;

ADAPTING LEGACY INTERFACES FOR GPU PERFORMANCE - Multiple unstructured field data accesses G e

ngp: :ConstField<double> oldUnrotatedStressField;

— Many tempora ry Va r|ab|es |n GPU kernels ngp: :Field<double> newUnrotatedStressField;

ngp::Field<double> newRotatedStressField;

— “.exceSS|Ve pESSImlsm! ngp: :ConstField<double> oldHourglassOpField;

ngp::Field<double> newHourglassOpField;

GPU and CPU execution utilize different mesh traversal (loop) structures np: :Field<double> elenTineStepField;

const ngp::Mesh mesh;
Real currentTimeStep;

A . * Redesign for sustainability of GPU T -
Initial GPU code used separate data structures & execution paths implementation targets algorithms involving)

- Unnecessary COde dUplicatiOn and blOat . LESS data required! class DevicelInternalForce {
private:

. . . . public:
- Incompatible with hybrid CPU/GPU algorithms - Synchronization of host/device data
const meshtk::Mesh mesh;
Only When neEded const device::FunctionSpace& functionSpace;

const int numIntgPts;

Initial GPU code was forced to conform to legacy interfaces _ ReUse of data structures static const DevicePtrematerial: :Materiallight> material;
B UndeSIrable dependenCIeS Oﬂ dEVlCE (e.g., Iﬂterp0|at|0n meshtk: :NodeVecField displacement;

meshtk::ElementPointerField dispGrad;

- DiffiCUIt to unit teSt Spaces for f|nite elementS) meshtk: :ElementPointerField detF;

meshtk: :ElementPointerField pkStress;
meshtk: :NodeVecForce force;

void processCentDiffIntegrator(sm::Region& region, const

; : : std::vector<const stk::mesh::Partx>& rigidBodyParts,
Sample time integration const Real dtNew, const Real dtOld) {

algorithm before redesign const Real time_factor = 0.5 % (dtNew + dt0ld); PERFORMANCE OF NEW GPU ELEMENT IMPLEMENTATION

if (region.getGpuMeshType() == sm::Region::GpuMeshType::STK) {
sm: :processCentDiffIntegratorGPU(region.getNgpMesh(), region,

Evaluated only on GPU : :
selector, dtNew, dtOld);
data when GPU execution ek Single element block, Multiple

enabled; static algorithm } GPU- or CPU-only execution element
e: CPU-only legacy co blocks,
hybrid
Setup 114 CPU+GPU

Internal Force execution

* Redesigning from the high level allows interleaved CPU and GPU total) 14 4.55

code execution under a uniform interface — T

I - Mixed CPU/GPU S
Sync to device 0.94 | Ry Timing

Compute 14 2.97 _ comparison
Sync to host - - 0.46 of GPU vs.

_ CPU: 8,000
Internal force 1.0 12.4 38.2 elements
speedup -

\

initial velocity

* Clean interface enables test-driven development of underlying implementation
without unnecessary dependencies on legacy data structures

Runtime [s]

Sample element kernel launch after redesign

Speedup summary of GPU vs. CPU: _
cube domain of 125,000 elements, 500 time steps, no output. o 15 20 25 3b a5 4D

Num. Cores

Each object creates its own std::vector<std::shared_ptr<InternalForceAlgorithm>> algorithms;
algorithm with requisite data for (auto&& e : elems) {

algorithms.emplace_back(CONCLUS'ONS

e—>create_internal_force_algorithm(localErrors, active,
Generic, high-level interface . colorSelectors));
may implement any

underlying loop structure; InternalForceTimeSteps timesteps; » Refactoring high-level interfaces incrementally to accommodate GPU
for (auto&& alg : algorithms) {

GPU- or CPU-friendly alg->compute(timesteps); algorithms enables incremental code integration
}

* Targeting algorithms and data structures which have favorable properties
. What about polymorphism? (e.g., low data access to flops ratio) for prototyping on the GPU avoids

- Sierra/SM relies heavily on many dynamic types of material overly pessimistic outlooks on performance

models, boundary conditions, finite element formulations...

- Enable runtime creation of polymorphic objects through » Enabling unit testing constructs on GPU architectures is necessary for
terface toalloc o naral TeE D test-driven development of new capabilities

Sample creation of yoid GpuTotalLagrange::create_device_material() { CITATIONS

polymorphic object for CPU material::AlProperties props;
or GPU execution material::LinearElasticMaterial mat(props);
material = [1] M. Mosby et al. “STK NGP Test: a platform portable unit testing framework.” In DOE Performance, Portability and Productivity Annual Meeting, Denver, CO, April 2019.
mtk_ngp::device_new<material::LinearElasticMaterial>(mat);

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &

1 i f \/) ;\)] e Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
@ Sandla Natlonal I.aboratorles NAS"\ ENERGY Department of Energy’s National Nuclear Security Administration under contract DE-NAOOQ3525.

