
r

L

►
a

x
x

•eiRP'Et driven development and incremental
ration of a GIDLJ enabled finite eLernent Library

• E

■

J. Plews, M. Mosby, N. Belcourt, S. Miller, J. Thomas

TU Iti lEED FOR INCREMULL GPU PORTING

Sierra/SolidMechanics (SM) is a large, general-purpose, legacy
finite element codebase

Material models Loads and boundary conditions
Contact algorithms Solvers

Analysts in a diverse userbase rely on many
useful but non-GPU-enabled capabilities...

...But the core code team has developed a
small suite of GPU-enabled algorithms

GPU-enabled

algorithms

Core code algorithms

• Complex dependencies

• CPU-only data structures,

design patterns

Previous GPU code development adopted a "vertical slice" approach...

...But incremental delivery of GPU-enabled code capabilities
requires incremental integration

Before redesign

CPU-only analysi

Core Analysis

Full-featured

GPU-only
an alysis

tZU-enabled

1r capabilities

After redesign

Hybrid CPU+GPU analysis

Core

Analysis

GPU-enabled

capabilities

Fully GPU-enabled, Full-featured and

but not useful partially GPU-enabled

ADAPTING LEGACY INTERFACES FOR GPU PERFORMANCE
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GPU and CPU execution utilize different mesh traversal (loop) structures

Initial GPU code used separate data structures & execution paths
Unnecessary code duplication and bloat
Incompatible with hybrid CPU/GPU algorithms

Initial GPU code was forced to conform to legacy interfaces
Undesirable dependencies
Difficult to unit test

Sample time integration

algorithm before redesign

Evaluated only on GPU

data when GPU execution

enabled; static algorithm

void processCentDiffIntegrator(sm::Region& region, const
std::vector<const stk::mesh::Part*>& rigidBodyParts,

const Real dtNew, const Real dtOld) {
const Real time_factor = 0.5 * (dtNew + dtOld);
// .
if (region.getGpuMeshType() == sm::Region::GpuMeshType::STK) {
sm::processCentDiffIntegratorGPU(region.getNgpMesh(), region,

selector, dtNew, dtOld);
return;}

// ... Else: CPU—only legacy code here ..
}

Redesigning from the high level allows interleaved CPU and GPU
code execution under a uniform interface

Clean interface enables test-driven development of underlying implementation
without unnecessary dependencies on legacy data structures

Each object creates its own

algorithm with requisite data

Generic, high-level interface

may implement any

underlying loop structure;

GPU- or CPU-friendly

Sample element kernel launch after redesign

std::vector<std::shared_ptr<InternalForceAlgorithm» algorithms;
for (autc&& e : elems) {

algorithms.emplace_back(
e—>create_internal_force_algorithm(localErrors, active,

colorSelectors));
}

InternalForceTimeSteps timesteps;
for (auto&& alg : algorithms) {

alg—>compute(timesteps);
}

• What about polymorphism?
Sierra/SM relies heavily on many dynamic types of material
models, boundary conditions, finite element formulations...
Enable runtime creation of polymorphic objects through
interface to allocate on CPU or GPU

UNIT TESTING ON THE GPUI:Illai

Sierra/SM depends upon the GoogleTest framework for unit
testing, which does not execute on the GPU

Cannot check quantities computed on the GPU during kernel execution

As part of GPU implementation redesign, Sierra/SM developers
created a wrapper library based on Kokkos and GoogleTest to enable
unit testing constructs on the GPU

Collect a subset of test failures on the device, if any, and report on host

TEST_P(DeviceMeshFixture, compute_stress) {
auto&& mesh = make_host_mesh(get_mesh_spec( ));
//
fs—>compute_gradient(*mesh, displacement, dispGrad,

detF);

}

//
device::compute_stress(*mesh, dispGrad, numIntg,

deviceMat, pkStress);
test_ip_tensor_values(*mesh, pkStress,

get_gold_pk_stress(create_host_material()),
numIntg, 1.e-5);

Sample GPU-enabled unit

test correctness check

Correctness check on device; if failure, collect

result and report after GPU execution ends

Sample GPU-enabled unit test

Launch GPU kernel to test in unit test body

Call function to evaluate kernel correctness

meshtk::device_for_each<meshtk::Element>("test ip scalar
values", m, KOKKOS_LAMBDA(const meshtk::DeviceElement& e) {

for ( ip = ; ip < numIntg; ++ip) {
NGP_EXPECT_NEAR(gold, scal(e, ip), tol);

}
});

TARGETING GPU FRIENDLYALGORITHMS FOR PERFORMANCE

Comparing data requirements for early GPU prototype

(top) and new GPU implementation (bottom).

First attempt at GPU kernel implementation
targeted algorithms involving

Large data movement from host to
device and back
Multiple unstructured field data accesses
Many temporary variables in GPU kernels
...excessive pessimism!

Redesign for sustainability of GPU
implementation targets algorithms involving

Less data required!
Synchronization of host/device data
only when needed
Reuse of data structures static
on device (e.g., interpolation
spaces for finite elements)

class HexlnternalForceCalculatorUseVelGrad {
public:
//
private:
ngp::Field<double> currentCoordsField;
ngp::Field<double> velocityField;
ngp::ConstField<double> vorticityField;
ngp::ConstField<double> stretchingTensorField;
ngp::Field<double> newInternalForceField;
ngp::Field<double> newHourglassForceField;
ngp::ConstField<double> elementMassField;
ngp::Field<double> hourglassDecayField;
ngp::Field<double> volumeField;
ngp::ConstField<double> oldRotationField;
ngp::Field<double> newRotationField;
ngp::ConstField<double> oldStretchField;
ngp::Field<double> newStretchField;
ngp::ConstField<double> oldRate0fDeformationField;
ngp::Field<double> newRate0fDeformationField;
ngp::ConstField<double> oldUnrotatedStressField;
ngp::Field<double> newUnrotatedStressField;
ngp::Field<double> newRotatedStressField;
ngp::ConstField<double> oldHourglassOpField;
ngp::Field<double> newHourglassOpField;
ngp::Field<double> elemTimeStepField;
const ngp::Mesh mesh;
Real currentTimeStep;
const UGHexProps hexProps;
const ElasticProps elasticProps;

};

class DevicelnternalForce {
public:
//
private:
const meshtk::Mesh mesh;
const device::FunctionSpace& functionSpace;
const int numIntgPts;
const DevicePtr<material::MaterialLight> material;

};

meshtk::NodeVecField displacement;
meshtk::ElementPointerField dispGrad;
meshtk::ElementPointerField detF;
meshtk::ElementPointerField pkStress;
meshtk::NodeVecForce force;

PERFORMANCE OF NEW GPU ELEMENT IMPLEMENTATION
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Refactoring high-level interfaces incrementally to accommodate GPU
algorithms enables incremental code integration

Targeting algorithms and data structures which have favorable properties
(e.g., low data access to flops ratio) for prototyping on the GPU avoids
overly pessimistic outlooks on performance

Enabling unit testing constructs on GPU architectures is necessary for
test-driven development of new capabilities

MI I

. Si

Sample creation of

polymorphic object for CPU

or GPU execution

void GpuTotalLagrange::create_device_material() {
material::AlProperties props;
material::LinearElasticMaterial mat(props);
material =

mtk_ngp::device_new<material::LinearElasticMaterial>(mat);
}
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