This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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Many Sandia efforts are premised on idea that Al solutions will be instrumental
in delivering these requirements

Sandia has a goal of creating a bridge
between the broader world of Al and our
missions

Consequence
Extending and developing Al algorithms

Evaluating novel hardware and accelerators

Explore brain-inspired sensor technology

Diversity |dentifying opportunities for novel Al impact

Developing tools and analyses suitable for
widespread adoption of emerging Al
technologies
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Graph Neural Networks (GNNs) are a powerful abstraction for learning embeddings on
graph structured data

GNNs have been used in several domains including drug discovery, material science,
molecular toxicity prediction

Evaluate a powerful GNN (Xu et al. 2018) in the presence of noise E E‘}
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Test F1 score of GIN model with varying levels . . . )
of structural noise added to input graph, across Augmented vs. non-augmented training (baseline) for node classification on Gp.

3 different modes of noise constraint. Y-axis 1s F1 Score, x-axis 1s random edge addition ratio.

* GNNs can predict the six classes with perfect accuracy with no noise
» The class prediction accuracy drops quite fast even at the presence of small amount of
noisy edges 0.1-0.15

« The prediction accuracy can be improved by training on augmented noisy grﬁcmp

“How Robust are Graph Neural Networks to Structural Noise”, J. Fox, S. Rajamanickam,
DLGMA workshop, AAAI 2019.




