
AEC Program Review Meeting
Feb 3rd — Feb 6th, 2020

The work was performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA. Financial support was provided by the U.S. Department of

Energy, Vehicle Technologies Office. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering

Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration

under contract DE-NA0003525.

Ignition Mechanism of Low-Temperature Transient Plasma

Sayan Biswasl, Isaac Ekotol, Riccardo Scarcelli2

1 Sandia National Laboratories, Livermore, CA
2 Argonne National Laboratory, Lemont, IL

AEC Program Review Meeting
Sandia National Laboratories, February 3 — 6, 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Acknowledgements

Technical support: Alberto Garcia, Keith Penney, Gary H ubba rd

DOE Program Managers: Michael Weismiller, Gurpreet Singh

Hardware support: Mark Musculus

Chemical Mechanism support: Marco Mehl

1

SAND2020-1559PE



Major PACE Outcomes to Support Dilute/Lean PURPOSE

-. 

Unlock high-

efficiency
dilute

combustion

• Better efficiency and reduced emissions
through design-of-mixture and superior ignition

stoic > 12%  efficiency gain [UNDER REVIEW]

lean > 25% efficiency gain (higher risk)

Major Outcome 6: Develop viable advanced igniters and control
methods that expand existing dilution limits

Proposed success measure: Prototype igniters and control
strategies enable stable ignition for EGR dilution rates of up to
40% or air dilution rates of up to 50% with no adverse impact on

pollutant emissions relative to the stock OEM configuration.

Condition(s): ACEC 3 bar/1300 rpm test point.

Owner — Ignition Team Leads, due FY21Q2.



The ignition team under the PACE initiative

Scarcelli R. (ANL)

Ekoto I. (SNL)

Plasma and CFD ignition modeling

Fundamental ignition experiments (optical diagnostics)

Chen J. (SNL)

Nguyen T. (SNL)

Grout R. (NREL)

DNS of kernel evolution

Physics based ignition submodel development

ML based ignition submodel development

Rockstroh T. (ANL)

Pitz W. (LLNL)

Metal engine experiments

Surrogates and kinetics for ignition

OLE



Breakdown/arc free low-temperature plasma (LTP) igniters are
advantageous for high-efficiency mixed-mode engine combustion
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• Large volume
• Accelerated flame speeds
• Potentially avoids breakdown
• Plasma species generation j

Electrode Erosion

  Soldera et al, IEEE Trans

Vehicular Tech, 53(4), 2004.

CONS

• Pulse reflections can
cause breakdown

• Breakdown events
cause severe erosion

• Confined ignition



Low-Temperature Plasma (LTP) facilitates radical driven
ignition w/o electrode corrosion

Low-energy electrons
lead to gas heating

Electric field: E =

Reduced electric field: 1E1 /N

Arc Discharge equilibrium plasma
.Applications melting & welding

1E16

1E15

1E14

1 E 1 3

PM Discharge: partial equillbrium
Applications. plas la chemical
corwersion, cb.mical vapor

deposition (CVD)

Glow Discharge: En close to the
breakdown threshold

Applications  light sources, surface
treatment. CVD

T — 8000 K
T = 4000 K

Streamer Discharge: overvoltage up to
240%

Applications: surface treatment, flue
gases treatrnent. electrical breakclokA.n,

power switches

350 K

SDBD: overvoltage up to 1000%
Applications: surface treatment, flue

gases treatment, actuators

wevcrwsvr

411= 400 K

100 1 000

Reduced Electric Fiefd, Td

0 Starikovskiy & Aleksandrov, Prog Energy & Combust Sci, 39, 2013.

C R E

T= 300 K

Nanosecond Pulsed Discharge:
overvoltage up to 10 times

Applications 
• Plasma supported combustion
• Plasma supported aerodynamics

• Chemical conversion
• CVD

High-energy electrons
promote radical formation U



Previous: Transient plasma igniters have ability to extend
lean/dilute ignition limits

Barrier discharge igniter (BDI)
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Previously observed multi-pulse LTP to arc transition
Sjöberg et al, SAE Intl Engines, 2014

Arcs with multi-pulse — no arc with single-pulse

a thermal or chemical pre-conditioning mechanism
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Engine results confirmed by calorimetry

Gap: 5.0 mm
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Transition from LTP to arc is sensitive
to # of pulses and inter-pulse time

Streamer branching phenomena
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Diagnostics & facilities to explore TPI

Collecting
lens

Camera lens
f = 28 rnrn

Pinhole
d = 200 pm

Optical Ignition Calorimeter

traleaducer
IP= 106652 or
1111051) Fill/Evacuate

V = 29 cm'

Thermocouple

Control box for # of pulse,

inter-pulse delay

Pulses Per Burst Time Between Pulses

2

1

5 10 600 us
300 as I ms

200 Ms \ ms

100 us

f = 200 min Calorirneter f = 200 mrn f = 90 ram

0 1 B

Modified
Anode i—

Brisk plug

Cathode

CRT; 

3.4 mm

1/8" dia
stainless steel

rod

512 x 512 px2

60 kHz

Knife-edge Photron SA-Z

Schlieren imaging

• Discharge volume

• Channel temperature

(with calorimetry)

• Flame kernel growth

Experimental conditions

• Propane/air

• .1) = 0.52 — 1.0

• EGR 0 — 34%

• Voltage 8 — 15 kV

• Pressure 1.3 — 4 bar

Transient Plasma Systems



Smaller gap size can be used to reduce peak voltage and #
of pulses, at expense of longer inter-pulse delay, and
lesser margin of error Current study Previous study

Gap size 3.4 mm 6.2 mm

# of pulses, N 2 10

Dwell, S (µs) 300 100

peak (kV) 14.1 17.5

E total (mJ) 17 86

cu
Challenges of smaller gap ro
• Longer dwell ,T)
• Less margin of errors
• Arc-free ignition ?

Benefits of smaller gap
• Lower peak voltage

1

• Lesser # of pulses
• Reduced ignition energy
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CRE
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LTP to breakdown transition
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Breakdown/arcing occurs after ignition

via LTP pulses
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Reducing # of pulse eliminates
breakdown: Ignition via LTP

(i) 1

# of pulses, N 2
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Reducing dwell leads to ignition kernel quenching

(i)
# of pulses, N 2

Dwell, 8 100 its

Vpeak 12.3 kV

6 = 100 ius

N = 2 Time (ns)

Our failed attempt to make
non-resistive igniter in-house



Decreasing voltage reduces the # of breakdown pulses

(/) = O. 52, N = 5,6 = 300 its

Pulse 2 Pulse 3 Pulse 4



Slower flame speeds at lean conditions can be overcome
in part by increased flame front turbulence

--* unburned
gas
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A caveat is that 51 is also influenced

by flame front curvature (K)

SL = SE (1 — KL)

L(Le, Markstein length

Le: thermal-to-mass diffusivity ratio

(Lec14: 0.91, Lec3H8: 1.63, Lec8
H18

2.55)

•-e f° unstretched laminar flame•
thickness

Where 'I'Le & 'NO lead to

Increased EGR increases -ey while decreased
increases both -e° and Le, which sets a limit for

turbulence flame front enhancement

CRE



Plasma-to-Kernel-to-flame transition depends on kernel
radius, flame speed, and Markstein length

Kernel-to-flame transition

• Formed kernels are initially

laminar

• Minimum size needed to sustain

kernel (i.e., 2r > £)

• Increased EGR dilution or

increases required initial r

Lean limit

(1) = O. 52

Average ignition

kernel diameter 2.7 mm 3.0 mm

K = 11r

Sf SL(1 — LK)

A P2P 3.4 mm
O P2P 6.2 mm
o Inductive spark

sf > 0

•
o

❑

(I)

•

❑

1.0

Small gap sizes for conventional spark

ignition limit EGR dilution rates and 4)

CRE



BDI1 & BDI2 can extend the lean limit:
Effect of plasma chemistry?

Ignition
kernel

= 0.48

Average ignition

kernel diameter 
2.7 mm

For BDI1 = 0.45 and for all BDI2 cases
ignition started from the electrode side
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ignition kernel
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Presence of intermediate products from BDI1 discharges
enhances flame speed
Ignition gas chromatography

• BDI1 discharge in Propane/air

mixture below lean

flammability limit (LFL)

• Sampled discharge generated

intermediates, fuel

fragments, etc.

• Computationally add propane

to make the mixture

stoichiometric

Composition of BDI1 discharge products

versus original propane/air mixture
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Lean limit remains unchanged and dilution limit drops
slightly w/ smaller gap size; but the operating range shrinks
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Ignition kernel shape and propagation is very different for
TPI versus breakdown/arc ignition

Breakdown at ignition No breakdown at ignition

0 & 



Preliminary investigation of TPI at high-pressure always
resulted in breakdown

klr ,

Experimental conditions
• Gap size 1.9 mm

• Propane/air = 1.0

• Pressure 2.3 bar

• Voltage 13 kV

• Number of pulses 5

• Dwell time 300 1us

Future steps
• Different pulsing strategy

• Dwell time adjustment

• Better igniter



Summary
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4•
• For pin-to-pin, plasma-to-Kernel-to-

flame transition depends on kernel
radius, flame speed, and Markstein
length

• For barrier discharge igniters
produce radicals and intermediate
species and can extend the lean
limit further
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Current traces can help detect

200 LTP to breakdown transition

Pulsing strategy # 1

Feedback loop

Active V/I monitor to
detect arcing/breakdown

• Decrease # of pulses
• Increase dwell

N = 2 Time (ns)

Pulsing strategy # 2

Pulse to pulse
voltage variation

Use less voltage in
subsequent pulses
and adjust dwell

N = 2 Time (ns)



N ext steps

New BDI igniter by IJ research Inc.
o BDI without exposed anode
o Embedded insulator prongs

o Active/passive pre-chamber with TPI
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Thank You!


