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ATDM @ Sandia

ATDM Stockpile Applications

& A § \ J

Component Performance Embedded
Software Abstractions Analysis

Future Computing Platforms (ATS 3+)



.| Agile Component Strategy

* Sandia has decades of software
development experience using
component strategy

e Start from current Agile Components
(Trilinos)

* Design new components/APls
based on ATDM requirements

* Explore new technologies P,
* Deep integration of ATDM technologies Code Suite

* Deep integration of ATDM application =2 iINOS
and component teams 1

EMPIRE

AR I 4L
3 A Bie
) 5
ITS SCEPTRE NuGET EIGER EMPHASIS Xyce Charon
CHEETAH Gemma EMPIRE

Electromagnetics, Radiation, and
Electrical Code Suite

Agile Components

ATDM applications benefit as well as setting a broad
foundation for other applications - “Write once, use many”
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s | Credible and Accurate Predictions and Assessments: (3-5-year goals)

Re-entry Environments Plasma Simulation
SPARC 23

EMPIRE .

g Ry u g
ITS SCIPTRE NaGIT DIGER EMPHASS Nyce Choron
CMEETAN Germvma FMPTRE

Unsteady,
turbulent
flow

OAaNWLHLND~ D

Flowfield
radiation

Surface ablation & in-depth
decomposiion

Gas-phase thermochemical
non-equilibrium

Atmospheric
vanations

Laminarftransitional/turbulent

boundary layer Gas-surface  random vibrational loading Gemma CHEETAH
hemist
e Electromagnetic Radiation (EMR) Radiation Effects

Productionize ATDM codes (transition to Integrated Codes)

Develop key combined environments simulation capabilities (new physics + coupling)
Follow-through on production code preparation for Next-Generation Platforms
Leverage Strategic Partnership Programs (SPP) where possible



Advancing Plasma Physics Modeling

* EMPIRE leverages the opportunity from ATDM to advance plasma
simulation capability on two fronts:

 Component-based software design for portability across next-generation
hardware architectures

* New fluid and hybrid kinetic/fluid algorithms for validity and performance across
a wider range of plasma density regimes

 EMPIRE is built upon Trilinos components:
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* Panzer: FEM discretization infrastructure ‘ .
 Tempus: General time integration package EMPIRE-Fluid |
e Uses the modern Tpetra-based linear solver stack
» Kokkos: Portable threading library SOIN EMRIREEH

 EMPIRE will enable: Trilinos
e Higher fidelity modeling of critical plasma applications
* Towards exascale simulation Kokkos



The Two-stream Instability Problem

* This test is looking forward to exercising
the fluid and hybrid capabilities.

* The two-stream instability is one of the
few phenomena that are present at
number densities applicable to PIC,
fluid, and hybrid and that has an
analytic solution.

e Analytic theory (using an
approximation) predicts the growth
rate of the fastest growing mode until

the instability becomes saturated to be

= Wpe ~ 631MHz.

v, (m/s)

1.4e+8,
1.2e+81
1e+8

8e+7/-

EMPIRE-PIC at 2e-08 s

- v, species 2
«v, species 1

0.1

0.3

0.4



Simulation of diode experiments on Z

* Diodes are driven by the

45

40 |

photoelectric effect from X-rays

created from Z machine shots

* Assume 4 current sensors fro
experiment are independent
measurements

e Over estimation of the error

because the environment might

not be the same

e Simulation error is the confid
interval assuming first order i

» dx="height/8, ~height/16, and
~height/32

M an

Current per Yield (A/kJ)

ence
n dx,

35 t
30
25 t
20 t
15

10 |
dt (CFL=6), and number or particles 5 |

Average

Exp Upper Bound

Exp Lower Bound
Simulation

Simulation Upper Bound
Simulation Lower Bound

Time (ns)

Late time current is larger in experiment, could be because of outgassing o




SPARC Basics

* State-of-the-art reentry simulation on next-gen
platforms

*  Continuum compressible CFD (Navier-Stokes), hypersonic gas dynamics

* Hybrid structured-unstructured finite volume methods. R&D: high order unstructured disc. collocation element methods
* Perfect and thermo-chemical non-equilibrium gas models

* RANS and hybrid RANS-LES turbulence models; R&D: Direct Numerical Simulation

* Enabling technologies/components

* Embedded geometry & meshing
e  Embedded UQ and model calibration

= Credibility Pl

flow

O=NWLHUBIO N ®WO

Validation against wind
tunnel and flight test data

=  Visibility and peer review by
external hypersonics _ i
community Fomted ———y

= Software quality

= Rigorous regression

Surface ablation & in-depth
decomposition

Gas-phase thermochemical
non-equilibrium

Atmospheric
L] V&V variations
& Performance testing Maneuvering RVs: Laminar/transitional/turbulent Random vibrational loading

Shock/shock & boundary layer Gas-surface
shock/boundary chemistry 10
layer interaction
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Approach: Veri
& Validation / L

Workflow

Surface Heat Flux [W/m~2]
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CompSim V&V/UQ Elements

£ 150] =

oo As-Modeled As-Designed
C How are geometric feature
simplifications influencing simulation
Geometric results?
Fidelity
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How are uncertainties assessed and
reflected in simulation predictions?

Model Uncertainty
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Experimental Variability/
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What is the discrepancy between

simulation and experiments? Are important physics models

adequate? Key gaps mitigated?
Code
Verification/
Code SQA
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How do numerical solution or human errors
affect simulation results?
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What is the evidence for code credibility?
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) Approach: Verification & Validation / UQ

Workflow

Experimental conditions
and uncertainty

Sensitivity

Code Verification
= CVER

Solution Verification =
SVER

Analysis

Uncertainty
Quantification

v
Validation

Metrics

Validation
Assessment

Experimental
measurements and
uncertainty




SPARC Code Verification Study

2D Inviscid Flow using a Trigonometric Manufactured Solution

p(x,y) = po [1 — esin (3mz) (sin(my) + cos(my))] ,
u(z,y) = ug [1+ esin (;7z) (sin(my) + cos(my))]
v(z,y) = —€upsin (imz) sin(7y),

T(z,y) = To [1 + esin (37z) (sin(ry) + cos(my))]

-1

= o} | — o)

=) — O(h?)

3 3t p, original BCs
S u, original BCs
g 4k v, original BCs
—= » T, original BCs
EO 5} | —+ p, corrected BCs
8(06 —r— u, corrected BCs
:% —6 | —* v, corrected BCs
= —>— T, corrected BCs

1.2 1.4 1.6 1.8 2.0 2.2 24 2.6 2.8
logyo v/n

Corrected boundary conditions lead to design convergence rates
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.| Case #1: HIFIRE-1turbulent flow simulayions

Relevance: RANS turbulence models in 3D flows
Tasks and Deliverables (ASC V&V):

* Q2: Completed SVER, UQ, and validation assessment.

e Aim: Validate the Spalart-Allmaras (SA) and Shear
Stress Transport (SST) turbulence models in SPARC

* Low enthalpy flow (H, ~ 2.6MJ/kg), perfect gas
* Transition to turbulence @ x =0.45m

* Measurements: surface pressure and heat flux

Extend last year’s HIFiRE-1 work to 3D:
* Generate regularly refined sequence of 3D meshes;
* Element counts: 2M/16M/128M/1B/8B
e Full UQ, SVER for run 34, 2 deg. AoA (following slides)

» 2D/3D comparisons for axisymmetric runs

67.78 [1721.7) ————

e 44,02 [1118] ———

816.11 [409.2]

66.16 [1680.4]
- 63.70 [1618] ~©14.00 [355.6]

Mach number contours at nominal:
22 AoA, Re 10E6 m-1, Ma 7.1




| H
validation

Four input parameters (run 34)

* AOA, density, temperature, velocity pr— mks_hifirel_run34_odeg_g.dat +
» Specify uniform random variables for each (+/-10%) 3500000 4 . 2;; .
-=-- median
Propagation of uncertainty & 0000001 77 o
* PCE surrogate using sparse grid quadrature (level 2 = £ 25000001
evals) %‘ 2000000 -
* Sampling of surrogate for statistics (10K samples) % 1500000 -
Validation with uncertainty § 1000000 - o
e Compute probability levels (5/10/90/95%) at exp 500000 { & i:“:"-‘—iu\\
locations 0 tﬁ_*

e Compare SA/SST models

Conclusions

SiRE-1uncertainty quantification /

Heat Flux - Uncertainty Propagation (shown at interpolated pts)

T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Axial Length [m]

1.6

Heat flux for fully 3D study flow using

SPARC’s SA turbulence model. Quantile curves

B 0 O

* As expected, RANS models not reliable predictors of
transition or separation, but surface heat flux and
pressure are otherwise well predicted.

represent uncertainty. Propagation. Experiment
error bars +/- 5%, as provided. Flow at 22 AoA,
Re~10E6 m-1, Ma~7.1




SPARC Validation Result

Improved Predictions After Calibration of Experimental Input Flow Conditions to

Measurements
le7 Heat Flux -IForward uQ (all simulation points) . 6I-@e:t Flux - Posterior Prediction Test (shown at interpolated pts)
case4-LENSxx-heatflux.dat cased-LENSxx-heatflux.dat
14 — SPARC 14l — SPARC original conditions
5% ..... 5%

12l 25% 1ol - 25%
;; - - median F - - median
s LofH 75% E joll - 5%
ot ; . -
= = 95%
=) >
T 08} 2
+ " 08¢}
£ g
§ 0.6 g 061
t £
3
n a

04+ 04+

0.2 - 021}

0.0 L 0.0 ! . . . . ! )

0.00 ' 0.00 0.02 0.04 0.06  0.08 010  0.12 0.14 0.16
Axial Length [m] Axial Length [m]
o W, DAKOTA .
Before calibration ——— Jj R After calibration

Challenge: Initial validation result indicated poor agreement with experimental measurements

Hypothesis: Poor agreement is due to mis-specified input (freestream) flow conditions in experiment
Approach: Apply Dakota’s Bayesian capability to calibrate freestream density and velocity to measurements
Result: Significant improvement of computed SPARC heat flux when compared with experiment
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Kokkos
Tools

‘ The Kokkos EcoSystem
2

Science and Engineering Applications

| s

Debugging

Profiling

Tuning

\
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Kokkos EcoSystem
Kokkos Kernels
[ Linear Algebra Kernels ] [ Graph Kernels ]
4 Kokkos Core )
Parallel Parallel Data
Execution Structures
[ Backends: pThreads, qThreads, OpenMP ]
CUDA, HIP, SYCL, etc.
N " 4

p

Kokkos
Support

\\

Documentation

Tutorials

Bootcamps

App support

\_

4

/

A 4

Diverse Computing Architecture

]

Kokkos Core: parallel

patterns and data structures;

supports several execution
and memory spaces

Kokkos Kernels:
performance portable BLAS;
sparse, dense and graph
algorithms

Kokkos Tools: debugging and
profiling support

numerous architectures that are central to DOE HPC enterprise

Kokkos enables performance portability and the complexity of supporting |

B 200 e



. | Kokkos Impact and Growth

National

* Expanding solution for common needs of modern science/engineering codes @ antia
Laboratories

* Itis Open Source - maintained and developed at https://github.com/kokkos

|t has many users at wide range of institutions

« Now funded about 50/50 by ATDM and Office of Science ECP ° LosAIamos

» Kokkos ECP project extended and refocused to include developers at Argonne, Oak Ridge,
and Lawrence Berkeley - staffing is in place

* HIP backend for AMD: main development at ORNL ArgonnE@

e SYCL for Intel: main development at ANL

* OpenMP target for AMD, Intel and NVIDIA: lead at Sandia %OAK RIDGE
National Laboratory

* The Kokkos Team is a primary HPC contributor to the C++ standard
* About half of all HPC representatives at C++ committee are associated with Kokkos

. . . 22 BERKELEY LAB
* Goal: make Kokkos a sliding window of advanced capabilities for HPC Performance

Portability

¢ . . . s &
* Develop and prove new techniques, concepts and abstractions then introduce into the @@ CSCS
C++ standard

Kokkos Ecosystem will be supported on all of the
DOE leadership class platforms up through EIl Capitan




‘ A Word on Performance and Portability

Relative node performance (measured against CTS systems)

Broadwell POWER9 V100 GPU ThunderX2

LUNPACK 8 | 1.09 TF/s -0.86 TF/s  ~2.06 TF/s -1 TF/s -21.91 TF/s  ~0.71 TF/s
FLOP Rates
(per Node) g 0.79X 1.89X 0.91X 20.01X 0.65X
Memory 5| -136GB/s | -120GB/s 0 CBST o a70gess  80CB/SX4 o560 Gays
e -350 GB/s - ~3.4TB/s
(STREAM)
(per Node) @ 0.88X 0.66X 1.99X 25.00X 1.84X
t 135W x 2 = - 190W x2 =  ~300W x4= ~180W x 2 =
Power (TDP, & 270W 380W 1.2kW 360W
per Node)  _
T 1.13X 1.04X 1.58X 5.00X 1.50X




“Next Generation Platforms” and
performance portability |

» Next Generation Platform (NGP): a high-performance computer that has a new generation computing
architecture that requires very different programming model to fully utilize the hardware

21

LR Ly, - ATS-1 (Trinity): ~30 Pflops aggregate, Far relerenee;
e, | 3 T(|0p 68-core Xeon Phi processors, Top DoD HPC (Onyx): ~6 Pflops
# Top500: #6 on HPL, #4 on HPCG Top500: #48 on HPL
production in 2017

BN DN $30

1 Vanguard-1 (Astra): ~2 Pflops aggregate,
\é ~1 Tflop 56-core Thunder X2 ARM processors,
-w== Top500: #204 on HPL, #36 on HPCG

, = production in late 2019

ATS-2 (Sierra): ~125 Pflops aggregate,
4x ~8 Tflop Volta100 GPUs,

Top500: #2 on HPL, #2 on HPCG

§ production in mid 2019

We estimate it takes 10 years to develop, validate
and productionize a mod/sim code for weapons
qualification

&= ATS-3 (Crossroads): ~500 Pflop aggregate,
¢ ??? Architecture, delivery in late 2021

i
We’rg Iooki.ng at 5 different architectures‘that may . | X3 , ATS-4 (EL Capitan): 1 Eflop aggregate,
require 5 different programming models in an 8 222 Architecture, delivery in late 2023

year span

Kokkos is a foundational element of SPARC in achieving performance portability
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HIFIRE-1 Performance Analysis and
Optimizatior

» Use-case: compute the steady-state, RANS aero solution for the HIFiRE-1 geometry

H|FIRE-] / Run 30 HIFiRE-1, Run 30, Tripped Turbulent
I . run 30 data
SPARC, SA, 3L grid °
SPARC, SA, 2L grid .
B SPARC, SA, 1L grid dn
3E+06 SPARC, SST, 3L grid
s SPARC, SST, 2L grid
~ SPARC, SST, 1L grid
E
= |
>=< 2E+06 M
T -
5
I =
1E+06 j
T 8.0e+00 356‘4'03 50?00 10qUEU lSD‘DE‘O 200000 250‘500276"*05 0 0I - (1)25J Ll \0-5l = (\)751) = 1 (== }1251 1| l1.5l Ll ‘II75
Axial Distance [m]
Using the following systems: )
o ATS-1’s (Trinity) Xeon (Haswell) nodes Note: this is the same case being considered
o ATS-1’s (Trinity) Xeon Phi (Knight’s Landing) nodes by Ehes validiatiem Teai

o ATS-2’s (Sierra) V100 GPU nodes



‘ HIFIRE-1 Strong Scaling

log2 scale & lower is faster

Total Problem Solve

1 I
CTS-1/BDW, 1 thread
ATS-1/HSW, 1 thread
ATS-1/KNL, 4 threads
ATS-2/PWRY9, 1 thread
ATS-2/V100 (FY19 start)
ATS-2/V100
Astra/TX2, 1 thread

111

GPU improvement,
FY19 start to now: ~4x

*
%

113

KNL sl1ghtly faster than HSW,
owing to high bandwidth memory
used by linear solves, doesn’t scale as well

log, Time per Time Step [s]
L
T

_3| 1/8 sec f f : SN N
17856¢ ["per GPU performance: ; ; " | ATS-2/PWR9 and Astra/TX2:
: current: as much as 3.8x over HSW | : \\ ~1.3-1.5x over HSW
=4 1/16sec---~~---~§ ------------------ R ------------ \ ------------------ ------------------ oo 1
'\, 4" Y % o A >
4M Number of Compute Nodes or GPUs
64 k
cells/[node | GPU] cells/[node | GPU]
2Or= -or-

128k cells/MPI rank
@ 32 ranks/node

2k cells/MPI rank @
32 ranks/node

I DN $0 T



Strong scaling performance of EMPIRE

o [

Time per time step (s)
|

. |mm Astra/Tx2
: : . |® @ ATS-1/KNL
; : ; e 5 . |& A ATS-1HSW
Y : 5 PN : . |w v ATS-2/V100
DN ; : e : i
\ z 5 S &
\ : : o :
% : : s ;
\ f : D g E
\ 5 -\ : Vg,
b . : N
IR S P '\\ .......... o o st i B i e i s e e i
A N !
: Yo
\ S W=

Node count

Comparison EMPIRE
performance on Astra
(ARM), Trinity/KNL,
Trinity/HSW, and Sierra
for a problem with 166
million elements, 195
million DOFs in the linear
solve, and 8.2 billion
particles. Linear solve
struggles to scale on GPU
architecture.



