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Meeting purpose

• Share and provide feedback on technology gaps and research plans
for computing in highly-automated vehicles

• Identify useful metrics for energy-efficient computing and sensing

• Discussion topics

• Sensing technologies

• Low power, edge computing

• Artificial intelligence and machine learning

• Simulation and data
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National imperative

EXECUTIVE OFFICE OF THE PRESIDENT
WASHING ION. U.C.

July 31, 201X

M-111-22

MEMORANDUM FOR *DIE I WADS OF P,..XECI.

FROM: MICK MULVANEY

DYE DEPARTMENTS ANI) MAI\ CIES

**.
DIREC FOR. OFFICE OF MANAGEMENT AND BUDGET

MICI [AU KILVISIOS
DEPUTY ASSISTANT '10 THE PRP-SIM-NI
OFFICE OF SCIENCE AND TECHNOLOGY POLICY

SUBJECT: FY 2020 Administration Research and Development Budgct Priorities

"Agencies should prioritize investment in research and
infrastructure to maintain U.S. leadership in strategic
computing, from edge devices to high-performance
computing, that accelerates delivery of low power, high
performance devices; supports a national high-
performance computing ecosystem; and explores novel
pathways to advance computing in a post-Moore's Law era".

A Blueprint for Sustained
U.S. Leadership in
Semiconductor Technology

A{iii12Ul9

S I A
,S.Z,CsZTIOCTOIT

ASSOCIATION

"Today, semiconductors underpin the most exciting 'must-win'
technologies of the future, including artificial intelligence to
power self-driving cars and other autonomous systems...

To secure America's leadership in these future technologies for
the next 5o years, the United States must continue to lead the
world in semiconductor research, design, and manufacturing"
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National Strategic Computing Initiative

NATIONAL STRATEGIC COMPUTING

INITIATIVE UPDATE: PIONEERING

THE FUTURE OF COMPUTING

A Report by the

FAST-TRACK ACTION COMMI TTEE ON STRATEGIC COMPUTING

NETWORKING & INFORMATION TECHNOLOGY
RESEARCH & DEVELOPMENT SUBCOMMITTEE

COMMITTEE ON SCIENCE & TECHNOLOGY ENTERPRISE

of the

NATIONAL SCIENCE & TECHNOLOGY COUNCIL

NOVEMBER 2019

1. Pioneer new frontiers of digital and non-
digital computation to address the scientific
and technological challenges and
opportunities of the 21st century.

2. Develop, broaden, and advance the Nation's
computational infrastructure and ecosystem.

3. Forge and expand partnerships for the future
of computing to ensure American leadership
in science, technology, and innovation.
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DOE exploring low-energy electronics and advanced computing

Basic Research Needs for

Microelectronics

Discovery science to revolutionize microelectronics
beyond today's roodmops

Priority research directions:

1. Flip the current paradigm:
define innovative material, device, and
architecture requirements driven by
applications, algorithms, and software

2. Revolutionize memory and data storage

3. Reimagine information flow unconstrained
by interconnects

4. Redefine computing by leveraging
unexploited physical phenomena
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DOE exploring low-energy electronics and advanced computing

WORKSHOP ON ADVANCED COMPUTING FOR

CONNECTED & AUTOMATED VEHICLES

Date: May 7, 2019

The U.S. Department of Energys (DOE) Vehicle Technologies Office (VTO)
invites you to a Workshop on Advanced Computing for Connected &

Autornated Vehicles (CAVs) at Lawrence Berkeley National Laboratory in

Berkeley, California.

This one-day summit will explore advanced microelectronics and

computing approaches that can help meet future energy, cost, and

computational requirements for CAVs. The workshop will bnng together
experts from the microelectronics industry, autonomous vehicle

innovators, national laboratones, and academia in a precompeutere

forum to discuss crmcal questions, including

• What system sensing and computing archrtectures will fully ainomated

vehicles require, and how much energy will those technologies consume?

• Which advanced computing approaches could reduce the energy
requirements for fully automated vehicles while meeting their

computational requirements?

RSVP TODAY TO JOIN THE DISCUSSION

http://www.cvent.com/d/16q0h3 

MAY 2019

7
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Will highly automated vehicles be viable
with conventional computing approaches,
or will they require a step-change in
computing?

What are the energy requirements to
support on-board sensing and computing
for highly automated vehicles?

What advanced computing approaches
could reduce the energy requirements for
highly automated vehicles while meeting
their computational requirements?
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Projected computing performance and power

computing must -1 petaflops
meet size, weight,

and power _100 W (system)

constraints 100 TOPS/watt (SoC)

A' •
>10x less
power

Early prototype self-driving
https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/

• >100x

>10x power
compute performance

-100 teraflops
-1000 W (system)
-1 TOPS/watt (SoC)

►
Full level 5 automated driving

TOPS == Trillion (tera) Operations

Significant innovation will be required in
microelectronic materials and devices,
sensing and computing architectures, and
computer algorithms.
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Why now for the computing industry?

Technology:
• End of Dennard power scaling; power becomes the key constraint
• Slow-down in Moore's Law, evidenced by flattening of transistor cost takedown

Architectural:
• Limitation and inefficiencies in exploiting instructional-level parallelism and

the prevailing von-Neumann architecture

Applications:
• Shift from desktop to mobile and IoT
• Ultra-scale cloud computing and artificial intelligence/machine learning workloads

Industry collaborations:
• End of International Technology Roadmap for Semiconductors (ITRS) roadmap
• Decline in SRC participation and the end of SEMATECH (absorbed in SUNY)
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Performance targets require breakthrough technology

1pJ/op = 1 TOPS/W

lfJ/op = 1000 TOPS/W
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Automated systems



Sandia's focused research areas for highly automated vehicles

41Sensors and
Sensor Processin

• Create disruptive optical
sensing technology to
reduce energy consumption
by iooX

• Develop chip-scale LiDAR to
reduce cost by iooX

Scene Perception
and Algorithms

• Explore sparse coding and
reduced-precision to reduce
computation load by icsooX

• Develop biologically inspired
machine learning algorithms
to reduce the number of
training samples by iooX

• Develop unsupervised and
self-supervised learning
algorithms

Navigation
Hardware Accelerators

Develop and demonstrate
hardware capable of real-time
processing of tera- to petabit
inputs, with energies at <io fJ
per operation (> mo TOPS/W)

• Develop algorithms for robust
and reliable recognition tasks
needed for perception.

• Demonstrate the value of
algorithm and hardware
co-design such that combined
elements have greater energy
and/or SWaP improvement
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Leverage broad Sandia capabilities
't;7"-'"1"111•1111r;

COMBUSTION RESEARCH FACILITY

COMPUTING & INFORMATION
SCIENCE

MESA MICROFAB

CENTER FOR INTEGRATED
NANO TECHNOLOGIES
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Sandia Cooler

wakef laid-vette Thermal Solutions from Smart to Finish contact as l (603)630'2800 I ea
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The U.S. Department of Energy has granted
federal funds to Sandia National Labs in
partnership with Wakefield-Vette to

commercialize a breakthrough cooling
technology

116

READ MORE ir

ea.

-

• Sandia Cooler technology has advanced through a DOE Technology Commercialization Fund
project with industry partner Wakefield-Vette; now at TRL 8 with partner Heico

• Technology demonstrated in solid-state lighting for commercial warehouse applications
• LED are located on rotating frame, ~moo W power inductively coupled
• Approximately 5013 W of heat rejection

• Idea for CAV computing cooling — embed computing devices on rotating frame (similar to
lighting) and communicate with adjacent vehicle data streams through 5G wireless link
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Meeting purpose

• Share and provide feedback on technology gaps and research plans
for computing in highly-automated vehicles

• Identify useful metrics for energy-efficient computing and sensing

• Discussion topics

• Sensing technologies

• Artificial intelligence and machine learning

• Low power, edge computing
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Sandia
National
Laboratories

Sensor modalities
for

highly automated driving

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell International Inc.
for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-NA0003525.



Sensor design, integration, and data interpretation expertise

• Sandia has decades of navigational expertise
— Radio Frequency/Acoustic (GPS, radar, sonar)

— Inertial Navigation (accelerometers)

— Guidance Systems (telemetry, tracking algorithms)

• Designed, fabricated, and deployed navigation
components
— Radar systems/RF Microwave Components

— Gyroscopes (laser ring) and 6 axis accelerometers

— Imagers (X-ray, optical, radar)

• Pioneered radar image processing
and precision GPS-denied navigation
— Unique Algorithm development

— High consequence computationally
intense image processing and real-
time object recognition and tracking

Mini Synthetic Aperture Radar

X and Ku Dual
Band Radar RFIC

RX TX Module
--......, *ter •

1

Accelerometer in CMOS7
1•116- ...IIMMIIMIL. -41111•1•116.- -Al

Cap

Die

Interposer

SAC305 Die Attach S



Imaging radar

• Excellent complement to other sensors (electro-optical and
LiDAR) for automated driving
— Operates through all weather (fog, rain, snow)

— Self illuminating (day, night)

— Electrical scanning doesn't require moving parts

• High resolution, optical-like
— Existing bands (76-81 GHz) provide centimeter class resolution

— High frequency sensors result in small antennas/components

— Resolution is not dependent on range to target

• Favorable computation complexity
— Moving object detection (position/velocity vector) is a native
product of radar, low computational complexity

— Full radar image formation is computationally expensive but not
needed in automotive applications

— Image processing has significantly less computational cost than
other imaging modalities

— Important because sensor data processing foruseful
information dominates complexity!

SpotDwell image of a building at
Jacksonville Naval Air Station.
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SNL imaging radar heritage

0 40

• 35 years of experience building real-time, high-
resolution, low SWaP radar imaging platforms

• Pioneered many new image processing and
exploitation techniques — and continue to
innovate with new algorithms and methods

• Experts in harsh environment high
performance electrical systems

• Expertise in low power mm Wave RFIC
component design

WU.

1; 14bb. - l'r_ %

°Bk.411 It: ,

_-__:
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Sensor data fusion

• Sensor fusion is the combination and exploitation
of raw data at the sensor level rather than the
derived data level

• Requires tight sensor integration

• Recent advancements at Sandia have been made
in multi-sensor processing, but few multi-sensor
platforms exploit true sensor fusion

• An example in the automotive arena would be the
association of motion from moving vehicles in a
radar return with object detected in

• The information resulting from sensor fusion will
be higher confidence than the sum of information
from sensors in isolation

• Allows application specific computing, in parallel
to decision computing

• Sandia is a leader in adopting sub-threshold ASIC
design (mox reduction in power)

[1] Naething, Richard M., and Richard C. Ormesher. "Doppler-assisted sensor fusion." U.S. Patent No. 10,267,895. 23 Apr.2019.
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Velocity from Camera (Optical Flow)

Time

Fusion Algorithm
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Velocity from Radar

Time

Refined vehicle track
and fused metadata
(vehicle type, color, etc.)
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Chip-scale beam scanners

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell International Inc.
for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-NA0003525.



LiDAR for the masses

Motivation:

autonomous vehicles require sensors that are
robust, precise and easily manufacturable

. current sensors use mechanical mirrors to
steer light large and expensive to produce

Solution

. Phased Arrays - recast established techniques
at a new wavelength

. Interfering waves create a narrow beam of
light

Apply small electrical signals to adjust optical
phase and steer beam

- Requires precise fabrication at light wave
dimensions and immense scalability

Very Large Array radio telescope —
New Mexico

Optical output gratings in silicon

Mobile lidar mapping units
atop a car by Blackmore
Sensors and Analytics
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Silicon photonics solution www.sandia.gov/mesa/nspc

photonics@sandia.gov 

Advantages

• Low-cost: leverage investment on CMOS
electronics

• Reliable: no mechanical moving parts

• Compact: several chips to provide large coverage

• Mature: many device and system demonstrations

Device challenges

• Thermo-optical-electronic packaging

• High optical power handling

• Fast optical phase error compensation

• Integration of new materials and layers

Key components of a future silicon photonic LIDAR sensor

Low-loss, high-
density waveguides

Integrated
laser and amplifiers

High-radix breakout

Waveguide

smenciskiaaMENEE

Ge photodetectors

Efficient output
couplers

Heterogeneous
integrated CMOS

electronics
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LiDAR engine

1

• Gen 0 and 1
— DARPA SWEEPER

L

Gen 3

1— 4.

Gen
• proof of principle with beam scanners
and a few emitters

• patented idea for simplified controls
— Blackmore CRADA

• expanded array size and added
packaging

• designs compatible with short-
distance ranging

• Gen 2
— improved efficiency, power handling
and functionality

transceivera mp

laser and
modulation

mixer
detector

Gen 2
bA lidar waveform  

— supported through LDRD program
CL) A/D conv. — fabrication is underway at MESA fab
C.)  
o

fai beam control
• Gen 3

— closer integration of laser,
modulator, amplifiers, scanner,
detector and CMOS controls to
create a highly complex chip

— fab plan developed and patented
24



Gen-1 results

Packaged 2D beam scanner Image of chip with IR optical input

• 2D scanning with electronic and wavelength controls
— electronic packaging with interposer and chip carrier

— N=256 independent channels, d=3

— long passive grating outputs for high fill factor aperture

• Field of view: 24° x lo°, divergence angle: 13.3° x 13.3°
— near diffraction limited operation!

• Supporting technologies for new applications: machine
vision, situational awareness, optical communication
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M. Gehl, et al., CLEO 2019.
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Exceptional service in the national interest

Artificial Intelligence and Neural-Inspired Computing

Presented by: William M Severa, PhD.

Sandia Nati mat La boratories is a multimission laboratory
rronagod and operated by National Technology and

Engineering Stolutions of Sandia LLC, a wholly owned

subsidiary of Ho neywelt International Inc. for the U.S.
Departmentt of Energys National Nuclear Security

Adrnints tration under contract DE-NA0003525.
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Why has ML/AI had so much attention?

Some problems are difficult to solve with a directly-coded algorithm
• Don't generalize well
• Can be difficult to scale
• Have to write a program by hand for each specific task
• Some tasks can be very difficult to encode

• Hand coded algorithms may run much slower

There have been Machine Learning (ML) successes in a variety of areas
• Recognizing patterns
• Anomaly detection
• Learning predictive models from data
• Creating surrogate models
• Automating repetitive computing tasks
• Generating synthetic data that models real data
• Assisting human decision making

These successes have been enabled by
• Large curated (labeled) datasets
• Advancements in computing power



A Computational Motivation

Dennard scaling
• As transistors get smaller, their power density

remains constant

Unfortunately ended 10-15 years ago

Cannot run CPUs at faster speeds

• Emphasis on multi-core

10
7
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6

10
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4

10
3
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2

10

Need for new paradigm of computing:
10
0

Novel Algorithms — Use AI to Accelerate

Novel Architectures — Accelerate AI

Novel Devices — Accelerate AI

•

Transistors

Single-thread
Performance
(SpecINT)

Frequency
(MHz)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore



Sandia's Unique Mission Needs
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Sandia's Unique Mission Needs

DiversiO

S7k

Consequence



Sandia's Unique Mission Needs

DiversiO

S cale

Life-or-Death
Applications

•

Uncertainty Quantificatiob

Low Signal-to-Noise

Data Provenance and
Quality

Explainability

"One-shot" experiments
and experiences



Sandia's Unique Mission Needs

High-confidence decisions

• Typically designing to "Five 9's" of reliability

• Need to assure trust in our solutions

• Need to understand uncertainty of decisions

• Algorithms need to be explainable

el classified as rifle
1. classified as other

Synthesizing Robust
Adversarial Examples,
Athalye, et.al., 2018 Homeland Security

Non roliferation



Many Sandia efforts are premised on idea that brain-inspired Al solutions will be
instrumental in delivering these requirements

Consequence

Scale Diversity

Sandia has a goal of creating a bridge
between the broader world of Al and our

missions

Extending and developing Al algorithms

Evaluating novel hardware and accelerato

Explore brain-inspired sensor technology

Identifying opportunities for novel Al impact

Developing tools and analyses suitable fo
widespread adoption of emerging Al

technologies



Sandia Al Capabilities Overview

Capabilities

Challenges

Trusted Al

Consequence

Resourced
Constrained Al

Diversity

Hardware/Algorithm
Co-Design

Scale



Sandia Al Capabilities Overview

Capabilities

Resouvc5A
Constrained Al

Trusted Al

Challenges Consequence Diversity

Hardware/Algorithm
Co-Design

Scale



Neural Computing at Sandia Labs Leverages a Large Research Foundation

Neuroscience Theory

IARPA MICrONS
Government Team for
Test & Evaluation of
Neural Models and
Machine Learning

Neuro-
informatics

Neural Data
Analytics

Neural Computing Capabilities

HAANA Grand
Chillenge— Flagship
LDRD across

camputing, materials,
arid cyber security

centers

Neural-enabling Hardware

MESA Fabrication
Tr- Facility provides

A materials and design
research capabilities
for next generation
neural systems

Modeling and
Simulation

Computational
Neuroscience

Formal Neural Computing
Theory

Neural Inspired
Architectures Learning Algorithms

Neural Machine

UQ / SA of Neural
Algorithms and Neural

Archit

Memory
technology

jNon-von Neumann
architectures

Neuromorphic
Computing Lab

Mission lmpacts

Enabling Advanced 
Simulation and Computinq

• Neural-inspired
communication paradigms

• Adaptive memory
management

• Numerical computing with
neurons

FISE

Deployable National 
Security Applications 

• Cyber Defenses
• Embedded Pattern
Recognition Systems

• Smart Sensor Technologies
U S DEPARTMENT OF

ENERGY



ASC Advanced Machine Learning Program

Al/ML to Advance HPC Mission at Sandia

Machine learning will provide new capabilities for scientifi c and
engineering applications

o Reduced order surrogate models for scientific/engineering problems
- Could help us learn what is wrong/missing in physics models and aid in e xperimental

design

o Ability to identify anomalies and regions of interest in inspection,
surveillance, and large scale computational data

o Correlating and certifying simulation and experimental results
o Improving agility of application workflows (automating processes)

Machine learning will provide new capabilities for HPC system
administrators, facilities, dev-ops, and system software

o Help model complex behaviors (e.g., failures, degradation, energy)

o Automate/adapt usage to comply with more complex policy
(e.g., energy consumption)

o Adaptable resource management (e.g., network, memory,
storage, energy)

o "Smart" data-movement for Exascale runtimes

-4
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ARIAA

Center for co-design of ARtificial Intelligence focused Architectures and Algorithms
(ARIAA)

ARIAA is a co-design research center that includes Pacific Northwest

National Lab (PNNL), SNL, and Georgia Tech., supported by NVIDIA

and Qualcomm

• Siva Rajamanickam, SNL PI (PNNL is lead lab)

ARIAA's objectives:

• Co-design novel AI /ML architectures, algorithms, and programming

abstractions to enable traditional and ML-based DOE applications

• Understand how AI-focused dataflow/spatial architectures can

impact future leadership class systems

• Understand how AI /ML accelerators can work with sparse, irregular,

and/or streaming data

_ Codesign of AI/ML accelerators with algorithms and
applications will enable the development of this key

technology to suit DOE HPC and AI/ML needs

Applications
Algorithms

Programming
Runtime

Pacific
Northwest
NATIONAL LABORATORY

Architectures

Sandia Georgia
National Tech
Laboratories



Neuromorphic Hardware @ Neural Exploration & Research Lab (NE

❑Enables researchers to explore the
boundaries of neural computation

❑Consists of a variety of neuromorphic
hardware & neural algorithms providing a
testbed facility for comparative benchmarking
and new architecture exploration

Intel Loihi SpiNNaker 48 IBM TrueNorth* IBM TrueNorth Intel Neural
Node Board NS16e* Compute Stick

Intel Loihi SNL STPU on Xilinx PYNQ
FPGA FPGA

Google Coral

Nengo FPGA Nvidia Jetson Nvidia Jetson
TX1 Nano

*Remote access

Google
EdgeTPU

GPU
Workstations

Inilabs DAVIS Georgia Tech
240C DVS FPAA

Cognimem
CM1K

KnuPath
Hermosa
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Impacting Broad Areas of Computati

Linear Algebra

Pattern Matching

Optimizations
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FORGE: Resource-Aware, Gradient-Assisted Neural
Architecture Search

•

•

Multi-level, Multi-objective Gradient-

Assisted Optimization

Automated Deep Learning Neural
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Sandia Al Capabilities Overview
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Resourced
Constrained Al

Trusted Al

Consequence Diversity
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On-board Object Recognition with Low Signal-to-Noise Sen

t
4t _
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• 'I 44.
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Synthetic Aperture Radar returns suffer signal variability
due to coherence, specularity, and speckle

unit Gaussian
distribution

low dimensional
representation

•
3,7e'NEk

Assurance via Statistical
Tests on Low-Dim.
Representation
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The Remote Computation Challenge

Challenges in classic remote sensing

• Growth of sensor technologies outpacing

communication bandwidth

• High Consequence Decisions

• Limited algorithm capabilities

• Limited onboard processing capability

• Rad hard design

PredictIon

LoN Vnjetal.

IMO ire.

11 cut.,

Scene
Understanding

• Scene
Segmentation
(i.e. clouds,
land, water,
etc.)

• Track scene
movement
across time

Traditional em
Architectures
• Sophisticated & Cornms
Serial CPUs Bottleneck

• Binary Processing

• 'Always on'

Event Detection

• Time and
space
localization of
events of
interest

• Time
segmentation
of event
duration

Signal
Reconstruction

• Extract
underlying
signal from
noise

• Overcome
pixel
saturation

• Generate
human-
understandable
signatures

Traditional Processing
• Requires Link to Ground

• High Bandwidth

• Slow

• Determine if
signal is of
interest or is a
confuser

• Reduce
communication
bandwidth by
rejecting false
alarms

Communicate
Results



The Remote Computation Challenge

Compute at the sensor

• Improve bandwidth utilization (send only what

)(ou need)

• bistributed computation avoiding single-point

of failure

• May reduce preprocessing required (e.g.

Whitening)

Neuromorphic
Architectures P'ocesso,

Memory
• Highly Parallel

• Co-localized Memory 00.00

• Event-Driven *0000
• 'On when you need it' 00.0.
• Low Energy 

•••••

Traditional az \
Architectures yr&
• Sophisticated & Comms 023
Serial CPUs Bottleneck

• Binary Processing 

4111, 

•
• Always on'

asaisAl........•.•.•••• Traditional Processingea II II

Event-Based Spiking Processing
• Added Computation at the Source
• Sparse Communication

• Low Energy/Low Latency

• Requires Link to Ground
• High Bandwidth
• Slow

DAVIS 240C
Event-Driven
Camera



Whetstone for Low-Power Spiking

Define Model

—.,1

Standard

lira?"

• • •

' IL4S*

WHETSTONE

Deep Learning

DAutomatically converts deep learning networks from
continuous valued neurons to binary activations, making
them compatible with neuromorphic hardware

U Open sourced

U Published in February

UBeginning to port onto
neuromorphic platforms
❑ SpiNNaker Results look great

ARTICLES 11.11:
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Training deep neural networks for binary
communication with the Whetstone method
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Whetstone and Vehicle Perception

• Al power draw is a key limiting factor
especially for electric powered vehicles: 3kW
now; HPC-level for fully self-driving

• Prototype vehicles use a trunk full of GPUs

• Forecasting current tech -1 TeraOp/Watt

• Neuromorphic Hardware:

• Enables event-driven computation

• Opportunity for extremely low power
consumption

Intelligent
Systems

Ultra-Low Energy
Hardware Solution

<c)0
This 

,„
/).

Project

Amazing Algorithms
Software Solution

SpiNNaker, Univ. of Manchester

Intel Loihi
Photo: intel.com

Example Image
From Berkeley DeepDrive

Spiking Neuron Representation

Pre-synaptic

Neurons

Input spikes

1 11
Post-synaptic

Neuron



Sandia Al Capabilities Overview

Capabilities

Challenges

Resourced
Constrained Al

Trusted Al

Consequence Diversity

Hardware/Algorithm
Co-Design

Scale



ML for Reduced Order Models

Problem
High-fidelity computational physics simulations on HPC systems can
take hours or days to execute

Lengthy execution time limits the design space explored
during conceptual design

Need a faster, more efficient means of simulating complex physics
problems

Technical Approach
Create Reduced Order Model (ROM) from high-fidelity simulation
data that
Executes faster via dimensionality reduction using autoencoders without significant

reduction in accuracy
Preserves important physical properties (e.g., conservation laws)
Uses Machine Learning Error Models (MLEM) to quantify uncertainty

Results/Accomplishments
Reduced order surrogate models and theory have been developed for
turbulent flow simulations

Runtimes are 100-1000 times faster and are only 1% less accurate than
the high-fidelity simulations

MLEM can predict errors with validated statistical properties

Turbulent flow vorticity
field



Accelerating Calculations of Fluid Flow via Physics-Informed
Machine Learning Models 

Problerr
High-fidelity simulations on HPC
systems are too expensive

Train a neural network to predict
the steady-state flow field

Guide the prediction with
physical constraints
(conservation laws) and
aerodynamic forces (drag, lift,
torque)

Results/Accomplishments
Demonstrated >100x speed
increase in 2D with < 6%
average error

Predict > 1000x speed increase
in 3D

Hydro-code Simulation

Relative error map of
ML prediction

2D force Avg Error

1.87%

5.63%

2.29%

ML model successfully
predicts flow field and
aerodynamic coefficients

ML Prediction

ML prediction of
pressure field around
complex 3D object



Surrogate Reduced Order Modeling of Diesel
Combustion and Ignition in GDI engines using ML/AI

• Surrogate reduced-order modeling with
principal component transport of compositions
to reduce the chemical dimensions needed to
describe low- and high temperature ignition,
flame propagation and soot under diesel and
cold-start GDI conditions

• Use petascale DNS data and experiments to
provide 'truth' data to adaptively train
reduced-order surrogates incorporating physics
constraints (e.g. using governing equations)

• Anomaly detection ML for detecting pre-ignition
and knock

• Reduced order modeling for engine design and
optimization

.10

T

merging flame4--

main jet Ham
3,

.10

plane

plane 5

DNS of n-dodecane multi-injection diesel combustion showing
instantaneous volume rendering of mixture fraction (left image) and
temperature slice (right image). Multi-dimensional flamelets at 3
axial planes shown by blue lines (Rieth, Chen, Xu, Han, Hasse)



Machine Learning Enables Automatic Mesh Generation

Problem
Geometry preparation and meshing for computational simulation is bottleneck
(consuming 70%+ of analyst time)
Analyst/engineer must have extensive domain-specific expertise to manage
many individual complex problems and tasks
Must produce verifiably accurate physics appropriate mesh ready for
simulation

Technical Approach
• Identify tasks currently done by analysts to train machine learning models

Capture and label operations performed by expert using existing software
Build a feature library of geometric characteristics commonly encountered in
CAD models and identify solutions for effectively modifying CAD for best
resulting mesh
Explore machine learning models that provide best solutions for CAD features
with associated solution labels

Results/AccomplishmentE
• Developed ML techniques to rank geometry-modification operations by their

likelihood of yielding a meshable model
• Provides insight on which geometric features are most useful for machine

leaning, and would be relatively easy to integrate into the analyst workflow if
successful

Example Original
design CAD
model

Modified model
for meshing

Meshed model
ready for analysis

li.



Sparse Data Shale Gas Multi-Level Modeling

Problem

Given sparse data at various scales (nm, m, km) about

rocks and wells, and a given depth, can a machine

learning algorithm predict how much shale gas can be

extracted?

Technical Approach

Develop multiscale, physics informed deep learning

algorithm to generate, parse, and predict data to solve

the above problem

Develop physics informed costs and constraints driven

algorithms

Resultsiimpact

Improve current state of art predictions and resource

estimates

Develop physics informed machine learning algorithms

Graph network
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Sandia Al Capabilities Overview

Capabilities

Physics
Constrained ML

Resourced
Constrained AI

Trusted Al

L AI ROM

Al Meshing

ARI A

Hard wcaorieD/eAsliggonr ithm

,

lk
Whetstone

Whetstone
CAV

Robust Object
Recognition

I FORGE

NERL

Software

ri Facility
Li Applications



Thanks! Questions?

Sandia
National
Laboratories



Sandia
National
Laboratories

Exceptional service in the national interest

1117111L/' f /\401 11‘
_ 14. ).\k \\1/ 
:eLAiliii411=MWAIIMa=srur-

- 1110M111-1111
Mik

4110•11•0%ii 

Advanced Computing for
Connected & Automated Vehicle (CAV)

Sandia National Laboratories Is a muklmission
laboratory managed and operated by National

Technology and Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Hone, International Inc.
for the U.S. Department of Energy, National Nuclear

Security Administration mder contract DE.

W10003525.



AUTOMATED SYSTEMS



FOCUSED RESEARCH AREAS FOR HIGHLY AUTOMATED VEHICLES

Sensors and
Sensor Processin

• Create disruptive optical
sensing technology to
reduce energy consumption
by looX

• Develop chip-scale LiDAR to
reduce cost bv iooX

Scene Perception
and Algorithms

• Explore sparse coding and
reduced-precision to reduce
computation load by icsooX

• Develop biologically inspired
machine learning algorithms
to reduce the number of
training samples by iooX

• Develop unsupervised and
self-supervised learning
algorithms

W--
Navigation

Hardware Accelerators

• Develop and demonstrate
hardware capable of real-time
processing of tera- to petabit
inputs, with energies at <io fJ
per operation (> mo
TOPS/W)

• Enable algorithms for robust
and reliable recognition tasks
needed for perception.

• Demonstrate the value of
algorithm and hardware
co-design such that combined
elements have greater energy
and/or SWaP improvement



ENERGY EFFICIENCY COMPUTING AND THE NEED OF CAV
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LEARNING FROM BRAIN FOR ULTIMATE POWER EFFICIENT COMPUTE

Visual
naltaark

Human Brain

/

Receplore &Ow cells Raw,*
canto., cells

*1 ,.;„. ---q-'''--- ---  -
`not_ , -.0.._ ,

:::37 * -40-
." -_,•-•3—'),
  ,--.0.- •

-40.--C-:k _

lb. 1 --(
`-'7

Homeritsi cells /maw cells

Lam 2

• Layer 3 
0• A •

• Laye, 4 
0

•t, 2 • Layer 5

. •
Layer 8 r input Layer Hdrtlen Layer Output Layer

Neural network abstraction

• Na'

• K•

• Ca'
• Neurotransmitter

Crossbar

wires

Al Chip

mapping ANN

• —0"

Memristors
Physical implementation

Artificial synapse (RRAM. PCM )

I 1
Artikcial neuron

•

Forming Process

lon movement associated switching

• Highly parallel neuron net

• Spiking - Event based computing

• Low voltage - 100mV

• Synapse - plasticity

• In memory computing with NVM
(synapse)

• Matrix operation

Tang, et al, Adv. Mat. 2019,1902761



BREAKING VON NEUMANN BOTTLENECK
- UNLEASH 1000X POWER PERFORMANCE with NVM CROSSBAR

Von Neumann Digital
Separate logic and memory structures

SRAM to store the weights Arithmetic logic unit
for multiplication

1• 

Data Bus •

4111

Uses established CMOS technology

x 1
v31

In-memory ParallelAnalog
Use non-volatile memory

Mathematical

VTW=l

W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

W3,1 W3,2 W3,3

i3.zvowoi

Electrical

w

I 11=z jA1 12=z 1 2G1,2 13=I V13G1 3

Simultaneous logic and memory
Data bus results in latency and power 3 orders of magnitude less power

M. Marinel la, IEEE Circuits and Systems, 8, 86- I 0 I , 2018
Zidan, Strachan, & Lu, Nat. Elec. I , 22, 20 I 8

Conductance of each
element can be changed in a

predictable manner

Emerging on-chip non-volatile memory (NVM) improves energy-
efficiency by performing analog multiply-accumulate inside memory
and eliminate data movement



NEAR-TERM TECHNOLOGY - 10TOPS/W for DNN accelerator
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top oxide
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(a) 1r (b)

Silicon-Oxide-Nitride-Oxide-Silicon(SONOS)

Component Vector Matrix Outer
Matrix Vector Product
Multiply Multiply Update

Energy/Op SONOS (fJ) r rri millir 
Energy/Op SRAM (fJ) 2718

Array Latency SONOS (ps) 0.40
Array Latency SRAM (ps) 4

4630

0.40

32
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20

1 8

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 5, 52-57, 2019.



ANALOG RERAM PnSS BAR - towards 100TOPS/W for DNN accelerator

Memristor
Re RAM

VTE

TiN

Ta (15nm)

Ta0,,(5-10nm)

TiN

4 0

E 3.5

2 3.0

g 2.5

o2anions
exchange

500 1000 1500 2000

Pulse number
switching
channel

(+)charged
vacancies

I I I

430 — 6,900X
105  ,

101

10°

Energy
over

Analog Digital
(a) ReRAM ReRAM

Marinella, Agarwal, et al, IEEE JETCAS, 2018

SRAM

Component Vector Matrix Outer
Matrix Vector Product
Multi • 1 Multi U• date

Energy/Op ReRAM (fJ) 12.2 12.2 211MIP
Energy/Op SRAM (fJ) 2718 4630 4102
Array Latency ReRAM 0.38 0.38 0.51
(ps) JENNE

Array Latency SRAM
(ps)

4 32 8

Laten cy
35 — 800X over SRAM

10"

103
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w 101

1: 100

101
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(b)
Analog Digital
ReRAM ReRAM

SRAM

Area
11 — 20X over SRAM

106 

3105

104
Analog Digital SRAM

(C) ReRAM ReRAM

8 bit in/out 4 bit in/out 2 bit in/out
8 bit weights 8 bit weights 8 bit weights

Agarwal, et al, IEEE E3S Symp, 2017



ION TUNABLE ELECTRONIC MATERIALS - beyond 100TOPS/W
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MULTISCALE CODESIGN FOR NEUROMORPHIC ACCELERATOR
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Energy/Performance Model
Model performance and
energy requirements

CROSS SIM

1 0 Sandia Cross-Sim:
08 Translates device
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Architecture

Circuits
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In situ Characterization

Target Algorithms
• Deep Learning
• Sparse Coding
• Liquid State Machines

Architecture
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—

1111

MaNd..r.

Penner Mee. W, — try + /I, ay,

Who Walborn* WM*

Drift-diffusion model of transport

Ta Ta0 Pt

awenexollador
anexlakpia

Ab Initio Modeling

70-9



m
COMPUTING TECHNOLOGY ROADMAPPING

Compute perf. 0.1-1 TOPS/W
target

Today

1-5 TOPS/W

1

10 TOPS/W 100 TOPS/W

2025 2035

Road-mapping

Gov't: DOE, DOT, etc.
Academic: National Labs, Research institutes
Industry: GM, Tierl , chip suppliers

Identify the technology gaps
Validate the target requirement for CAV
Define the roadmap for the technology
injection points



Thank you!

Q&A

Contact: Zhiyong Li
zli@sandia.gov


