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Meeting purpose

« Share and provide feedback on technology gaps and research plans
for computing in highly-automated vehicles

 Identify useful metrics for energy-efficient computing and sensing
» Discussion topics

» Sensing technologies

« Low power, edge computing

« Artificial intelligence and machine learning

 Simulation and data



National imperative

EXECUTIVE OFFICE OF THE PRESIDENT
WASHINGTON, D.C.

July 31, 2018
M-18-22
MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES
FROM: MICK MULVANEY

DIRECTOR. OFFICE OF MANAGEMENT AND BUDGEL

MICHAEL KRATSIOS ,.~-;-{‘ka\3_‘
DEPUTY ASSISTANT 10O THE PRESIDEN |
OFFICE OF SCIENCE AND TECHNOLOGY POLICY

SUBJECL:  FY 2020 Administration Rescarch and Development Budget Prioritics

“Agencies should prioritize investment in research and
infrastructure to maintain U.S. leadership in strategic
computing, from edge devices to high-performance
computing, that accelerates delivery of low power, high
performance devices; supports a national high-
performance computing ecosystem; and explores novel
pathways to advance computing in a post-Moore's Law era”.

A Blueprint for Sustained
U.S. Leadership in
Semiconductor Technology

April 2019

SEMICONDUCTOR

“Today, semiconductors underpin the most exciting ‘must-win’
technologies of the future, including artificial intelligence to
power self-driving cars and other autonomous systems...

To secure America’s leadership in these future technologies for
the next 50 years, the United States must continue to lead the
world in semiconductor research, design, and manufacturing”



National Strategic Computing Initiative

fi : 1. Pioneer new frontiers of digital and non-

7{‘,,1 1&'.2} ;

digital computation to address the scientific
and technological challenges and
NATIONAL STRATEGIC COMPUTING

INITIATIVE UPDATE: PIONEERING opportunities of the 21st century.
THE FUTURE OF COMPUTING .
2. Develop, broaden, and advance the Nation’s
A Report by the

RS Wilase. i . SN computational infrastructure and ecosystem.

NETWORKING & INFORMATION TECHNOLOGY
RESEARCH & DEVELOPMENT SUBCOMMITTEE

COMMITTEE ON SCIENCE & TECHNOLOGY ENTERPRISE 3. Forge and eXpand partnerShipS for the future
NATIONAL SCIENCE & TECHYOLOGY COUNCIL of computing to ensure American leadership
in science, technology, and innovation.

NOVEMBER 2019




DOE exploring low-energy electronics and advanced computing

Microelectronics Priority research directions:

1. Flip the current paradigm:
define innovative material, device, and
architecture requirements driven by
applications, algorithms, and software

2. Revolutionize memory and data storage

3. Reimagine information flow unconstrained
by interconnects

4. Redefine computing by leveraging
unexploited physical phenomena

Discovery science to revolutionize microelectronics
beyond today’s roadmaps




DOE exploring low-energy electronics and advanced computing

Will highly automated vehicles be viable
with conventional computing approaches,
or will they require a step-change in
computing?

WORKSHOP ON ADVANCED COMPUTING FOR
CONNECTED & AUTOMATED VEHICLES

Date: May 7, 2019

What are the energy requirements to
support on-board sensing and computing
for highly automated vehicles?

The U.S. Department of Energy’s (DOE) Vehicle Technologies Office (VTO)
invites you to a onA C ing for Ca &

icles (CAVs) at L L yin
This one-day summit will explore advanced microelectronics and 7

SESEERITEL .
e What advanced computing approaches
T St = could reduce the energy requirements for

AT T ARSI highly automated vehicles while meeting
= — their computational requirements?

';\“Qi U.S. DEPARTHMENT OF
*2/ENERGY



Projected computing performance and power
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P
A computlng must 4 petaflops

~ meet size, weight, _
g and power 100 W (system)

corstraints  ~100 TOPS/watt (SoC)
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o >100x Full level 5 automated driving

>10x power TOPS == Trillion (tera) Operations

compute performance
[

>10x less
power

Significant innovation will be required in
microelectronic materials and devices,
| @i ~100 teraflops sensing and computing architectures, and

| ~1000 W (system) .
-1 TOPS/watt (SoC) computer algorithms.

https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/ 8

Early prototype self-driving




Why now for the computing industry?

Technology:
» End of Dennard power scaling; power becomes the key constraint
« Slow-down in Moore’s Law, evidenced by flattening of transistor cost takedown

Architectural:
- Limitation and inefficiencies in exploiting instructional-level parallelism and
the prevailing von-Neumann architecture

Applications:
 Shift from desktop to mobile and IoT
« Ultra-scale cloud computing and artificial intelligence/machine learning workloads

Industry collaborations:

* End of International Technology Roadmap for Semiconductors (ITRS) roadmap
* Decline in SRC participation and the end of SEMATECH (absorbed in SUNY)



Performance targets require breakthrough technology

1pJiop = 1 TOPS/W

1fJ/op = 1000 TOPS/W

Energy/”multiply and accumulate” (J)
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Automated systems

SENSE THINK ACT
- Signal
A Sensing sysfem(s) Machine intelligence

Physics Ne[gle] Blejfe! Information Intelligence




Sandia’s focused research areas for highly automated vehicles

Sensors and
Sensor Processing

Scene Perception
and Algorithms

Navigation
Hardware Accelerators

Create disruptive optical
sensing technology to
reduce energy consumption
by 100X

Develop chip-scale LiDAR to
reduce cost by 100X

Explore sparse coding and
reduced-precision to reduce
computation load by 1000X

Develop biologically inspired
machine learning algorithms
to reduce the number of
training samples by 100X

Develop unsupervised and
self-supervised learning
algorithms

« Develop and demonstrate
hardware capable of real-time
processing of tera- to petabit
inputs, with energies at <10 fJ
per operation (>100 TOPS/W)

« Develop algorithms for robust
and reliable recognition tasks
needed for perception.

« Demonstrate the value of
algorithm and hardware
co-design such that combined
elements have greater energy
and/or SWaP improvement

12



Leverage broad Sandia capabilities

MESAMICROFAB
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Sandia Cooler

wakefield-vette Thermal Solutions from Smart to Finish contactus | (603)635-2800 | Y & &%

The U.S. Department of Energy has granted
federal funds to Sandia National Labs in

partnership with Wakefield-Vette to
commercialize a breakthrough cooling

technology

 Sandia Cooler technology has advanced through a DOE Technology Commercialization Fund
project with industry partner Wakefield-Vette; now at TRL 8 with partner Heico
« Technology demonstrated in solid-state lighting for commercial warehouse applications
« LED are located on rotating frame, ~1000 W power inductively coupled
« Approximately 500 W of heat rejection
» Idea for CAV computing cooling — embed computing devices on rotating frame (similarto
lighting) and communicate with adjacent vehicle data streams through 5G wireless link



Meeting purpose

« Share and provide feedback on technology gaps and research plans
for computing in highly-automated vehicles

 Identify useful metrics for energy-efficient computing and sensing
» Discussion topics

» Sensing technologies

« Artificial intelligence and machine learning

« Low power, edge computing
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Sensor modalities
for
highly automated driving

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell International Inc.
for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.



Sensor design, integration, and data interpretation expertise

. g . X and Ku Dual
Sandia has decades of navigational expertise Band Radar REIC

— Radio Frequency/Acoustic (GPS, radar, sonar) o (el
— Inertial Navigation (accelerometers) '
— Guidance Systems (telemetry, tracking algorithms)
» Designed, fabricated, and deployed navigation
components
— Radar systems/RF Microwave Components
— Gyroscopes (laser ring) and 6 axis accelerometers
— Imagers (X-ray, optical, radar)
» Pioneered radar image processing
and precision GPS-denied navigation
— Unique Algorithm development

— High consequence computationally
intense image processing and real-
time object recognition and tracking

Mini Synthetic Aperture Radar |

SAC305 Die Attach Solder



Imaging radar

 Excellent complement to other sensors (electro-optical and
LiDAR) for automated driving

— Operates through all weather (fog, rain, snow)
— Self illuminating (day, night)
— Electrical scanning doesn’t require moving parts

« High resolution, optical-like
— Existing bands (76-81 GHz) provide centimeter class resolution
— High frequency sensors result in small antennas/components
— Resolution is not dependent on range to target

« Favorable computation complexity

— Moving object detection (position/velocity vector) is a native
product of radar, low computational complexity

— Full radar image formation is computationally expensive but not
needed in automotive applications

— Image processing has significantly less computational cost than
other imaging modalities

— Important because sensor data processing foruseful
information dominates complexity!

SpotDwell image of a building at
Jacksonville Naval Air Station.



SNL imaging radar heritage

35 years of experience building real-time, high-
resolution, low SWaP radar imaging platforms

Pioneered many new image processing and
exploitation techniques — and continue to
innovate with new algorithms and methods

Experts in harsh environment high
performance electrical systems

Expertise in low power mm Wave RFIC
component design




Sensor data fusion

 Sensor fusion is the combination and exploitation

of raw data at the sensor level rather than the
derived data level M
» Requires tight sensor integration ":"-R
« Recent advancements at Sandia have been made e Tommlg
in multi-sensor processing, but few multi-sensor
platforms exploit true sensor fusion '5-5

« An example in the automotive arena would be the
association of motion from moving vehicles in a Velocity from Camera (Optical Flow)
radar return with object detected in video? i

« The information resulting from sensor fusion will
be higher confidence than the sum of information
from sensors in isolation |

 Allows application specific computing, in parallel
to decision computing
— Refined vehicle track

« Sandia is a leader in adopting sub-threshold ASIC I ——

design (100x reduction in power) (vehicle type, color, etc.)
20

Velocity from Radar

Velocity
Velocity

Time

O

\

[1] Naething, Richard M., and Richard C. Ormesher. "Doppler-assisted sensor fusion." U.S. Patent No. 10,267,895. 23 Apr.2019.
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Chip-scale beam scanners

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell International Inc.
for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.



LIDAR for the masses

> Motivation:

> autonomous vehicles require sensors that are
robust, precise and easily manufacturable

o current sensors use mechanical mirrors to
steer light > large and expensive to produce

Very Large Array radio telescope —
New Mexico

> Solution

- Phased Arrays - recast established techniques
at a new wavelength

Mobile lidar mapping units
atop a car by Blackmore
Sensors and Analytics

- Interfering waves create a narrow beam of
light

- Apply small electrical signals to adjust optical
phase and steer beam

> Requires precise fabrication at light wave
dimensions and immense scalability

Optical output gratings in silicon 272



Silicon photonics solution

Key components of a future silicon photonic LIDAR sensor

> Advantages

> Low-cost: leverage investment on CMOS
electronics

> Reliable: no mechanical moving parts

o Compact: several chips to provide large coverage

o Mature: many device and system demonstrations Low-loss, high-
density waveguides

Efficientoutput
couplers

> Device challenges
> Thermo-optical-electronic packaging
> High optical power handling

> Fast optical phase error compensation

* Integration of new materials and layers Integrated Ge photodetectors Heterogeneous
laser and amplifiers integrated CMOS
electronics

23



LIDAR engine

e« Gen0Oand1

— DARPA SWEEPER

« proof of principle with beam scanners
and a few emitters

* patented idea for simplified controls
— Blackmore CRADA
+ expanded array size and added
packaging
* designs compatible with short-
distance ranging
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— supported through LDRD program

— fabrication is underway at MESA fab
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beam control

 Gen3

— closer integration of laser,
modulator, amplifiers, scanner,
detector and CMOS controls to
create a highly complex chip

— fab plan developed and patented ~ ,,



Gen-1 results

Image of chip with IR optical input

« 2D scanning with electronic and wavelength controls
— electronic packaging with interposer and chip carrier
— N=256 independent channels, d=3 um
— long passive grating outputs for high fill factor aperture
 Field of view: 24° x 10°; divergence angle: 0.3° x 0.3°
— near diffraction limited operation!

 Supporting technologies for new applications: machine
vision, situational awareness, optical communication

Relative Intensity (dB)

Angle (deg.)
Electronic beam steering

M. Gehl, et al., CLEO 2019.

25



Sandia
National
Laboratories

Exceptional service in the national interest

@ ENERGY NISA

a National La boratories is amultimission laboratory
d and operated by National Technology and
Scolutions of Sandia LLC, awholly owned

o neywell International Inc. for the U.S.
nit of Energy’s National Nuclear Security
is tration under contract DE-NA0003525.

Presented by: William M Severa, PhD.
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Why has ML/AI had s;much attention?

Some problems are difficult to solve with a directly-coded algorithm
* Don’t generalize well
« Can be difficult to scale

* Have to write a program by hand for each specific task
Some tasks can be very difficult to encode

» Hand coded algorithms may run much slower

There have been Machine Learning (ML) successes in a variety of areas
» Recognizing patterns
» Anomaly detection
« Learning predictive models from data
» Creating surrogate models
« Automating repetitive computing tasks
» Generating synthetic data that models real data
« Assisting human decision making

These successes have been enabled by

» Large curated (labeled) datasets
« Advancements in computing power



A Computational Motivation

i 10 L e
Dennard scaling o8 » | T B g I e
* As transistors get smaller, their power density s
remains constant : Single-thread
4 . Performance
Unfortunately ended 10-15 years ago - " (SpecT)
103 . Frequency
*  Cannot run CPUs at faster speeds T )
. . 102 - Typical Power
*  Emphasis on multi-core " (Wats)
1 * Number of
10 ~ Cores
Need for new paradigm of computing: 10°

Novel Algorithms — Use Al to Accelerate

Novel Architectures — Accelerate Al
. Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Novel Devices — Accelerate Al Dotted line extrapolations by C. Moore e

1975 1980 1985 1990 1995 2000 2005 2010 2615



Sandia’s Unique Mission Needs

Scale

Consequence




Sandia’s Unique Mission Needs

Diversity

Consequence



Sandia’s Unique Mission Needs

Diversity Data Provenance and
Life-or-Death Quality
Applications
Scale
Explainability
G Uncertainty Quantification
yQ

Low Signal-to-Noise

“One-shot” experiments
and experiences




Sandia’s Unique Mission Needs

High-confidence decisions
« Typically designing to “Five 9’s” of reliability
Need to assure trust in our solutions
* Need to understand uncertainty of decisions

« Algorithms need to be explainable

. . B classified as rifle

B classified as other

Synthesizing Robust
Adversarial Examples,
Athalye, et.al., 2018

Praerin
g

Infrastructure Resilience

E ] 1 \\ | *“A._ |
Homeland Secrity A }@ Y/}

;-314&' i

Rsearch



Many Sandia efforts are premised on idea that brain-inspired Al solutions will be
instrumental in delivering these requirements

Sandia has a goal of creating a bridge
between the broader world of Al and our
missions

Consequence Extending and developing Al algorithms

Evaluating novel hardware and accelerators

Explore brain-inspired sensor technology

Diversity Identifying opportunities for novel Al impact

Developing tools and analyses suitable for
widespread adoption of emerging Al
technologies




Sandia Al Capabilities Overview | J

Resourced
ConstrainedAl

Capabilities

Trusted Al Hardware/Al.gorlthm
Co-Design

Chauenges



Sandia Al Capabilities Overview

Resousced,
Constrained Al

Capabilities

Hardware/Algorithm

Trusted Al e




Neuroscience Theory

~ IARPA MICrONS

Neural Computing Capabilities

‘ Neural Inspired I

| Formal Neural Computing I

UQ/ SA of Neural
Algorithms and Neural

Neural Computing at Sandia Labs Leverages a Large Research Foundation

Mission Impacts

Enabling Advanced
Simulation an mputin
* Neural-inspired
communication paradigms
 Adaptive memory
management
* Numerical computing with

neurons /\‘
AsC j

Depl le National
Security Applications
* Cyber Defenses
* Embedded Pattern
Recognition Systems
» Smart Sensor Technologies

¥4 U.S. DEPARTMENT OF

(@) ENERGY
S




ASC Advanced Machine Learning Program

Al/ML to Advance HPC Mission at Sandia "

Output

Machine learning will provide new capabilities for scientific and
engineering applications .
o Reduced order surrogate models for scientific/engineering problems .

—Céoul_d help us learn what is wrong/missing in physics models and aid in e Xperimental S T . B L
eS|gn Input

Analytically estimated computational

o Ability to identify anomalies and regions of interest in inspection, costs of decoders _—
surveillance, and large scale computational data A | B domier o )

o Correlating and certifying simulation and experimental results Ny

o Improving agility of application workflows (automating proce:sses) ¥
Machine learning will provide new capabilities for HPC sy stem
administrators, facilities, dev-ops, and system software

o Help model complex behaviors (e.g., failures, degradation, €nergy) " Lt

o Automate/adapt usage to comply with more complex policy ooilluenle * Ny o
(e.g., energy consumption) ar S 2

o Adaptable resource management (e.g., network, memory,
storage, energy)

o “Smart” data-movement for Exascale runtimes

g {64,32,16.8.1}
. {32,16,8.4.1}
/ {168.4,2,1}




Center for co-design of ARtificial Intelligence focused Architectures and Algorithms
(ARIAA)

ARIAA is a co-design research center that includes Pacific Northwest
National Lab (PNNL), SNL, and Georgia Tech., supported by NVIDIA

and Qualcomm

» Siva Rajamanickam, SNL Pl (PNNL is lead lab)

ARIAA’s objectives: ,
- Programming
* Co-design novel Al/ML architectures, algorithms, and programming " Runtime

abstractions to enable traditional and ML-based DOE applications

* Understand how Al-focused dataflow/spatial architectures can
impact future leadership class systems

* Understand how Al/ML accelerators can work with sparse, irregular,
and/or streaming data

Codesign of AI/ML accelerators with algorithms and _ -y
applications will enable the development of this key :?ff/ @ ﬁg{}gﬁal Ge%;%ﬁ [\ﬂ
technology to suit DOE HPC and AI/ML needs Northwest Laboratories W
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Neuromorphic Hardware @ Neural Exploration & Research Lal

Enables researchers to explore the
boundaries of neural computation

Consists of a variety of neuromorphic
hardware & neural algorithms providing a
testbed facility for comparative benchmarking
and new architecture exploration

Intel Loihi SpiNNaker 48 IBM TrueNorth* IBM TrueNorth Intel Neural Google Coral Google Inilabs DAVIS Georgia Tech
Node Board NS16e* Compute Stick EdgeTPU 240C DVS

T

Intel Loihi SNL STPU on Xilinx PYNQ Nengo FPGA
FPGA FPGA

Nvidia Jetson
Nano

Cognimem KnuPath
CM1K Hermosa

*Remote access



Impacting Broad Areas of Computation

Scientific Computing
Linear Algebra Particle Method

Density Method
Pattern Matching e Circuit per walker Circuit per position
&/ /. &
: = /. -
< ) t; S
v le]] [
Optimizations
- T
x; — Wu}n)lM—) 51 P— k-winner layer
i H ~ t{mjnx; e layer
x — WiB(’?_tﬂ'ﬂ*) s ‘n (_14)) Smin s @ "9 .4 3 ? I’ @
i :, ‘winner Xin Wi ny i ny
| wpe twex™| / Stakesdil y i, ® : classification
Xp WPL;%- sp Winnet=sakesd Neural i W;n % n., Py - 5 3 '
0 TsWp |2 Pp(t) ng
OAl gorithms o |8

Machine Learning

NN

Intelligent Storage

[
il
I

L 4 1 q 4

Context Modulated Deep Léarning Adaptive Deep Learning



FORGE: Resource-Aware, Gradient-Assisted Neural

Architecture Search

Multi-level, Multi-objective Gradient-
Assisted Optimization
Automated Deep Learning Neural

Network Design

Highly Parallel Distributed Design
Tailors Algorithm to Both Task and Target

Sample Network Schematic

Expected model size (bytes)

Validation set Top-1 accuracy

©
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Sandia Al Capabilities Overview

Resourced
ConstrainedAl

Capabilities

Trusted Al Hardware/Al.gorithm
Co-Design
Challenges Diversity




Synthetic Aperture Radar returns suffer signal variability
due to coherence, specularity, and speckle

low dimensional
representation

= N
» Zx\/:+‘ ‘ Decoder »

!

€

=

A

unit Gaussian
distribution

Assurance via Statistical
Tests on Low-Dim.
Representation



The Remote Computation Challenge

Challenges in classic remote sensing
» Growth of sensor technologies outpacing

communication bandwidth
» High Consequence Decisions
* Limited algorithm capabilities

 Limited onboard processing capability

* Rad hard design

Pixel Data
7 «Scene
Segmentation
iction (i.e. clouds,
T > land, water,
' T | . eiding etc.)
= Low v
4 by A « Track scene
| ok |l
o - cutter movement
& ST el across time
S et
e 0 tas - P,
N e i P
] = wpd
- .. - »
il .
4 o

N Event Detection .
« Time and

Architectures

* Sophisticated & 1 me m
Bottleneck

Traditional N
Pt

Serial CPUs

* Binary Processing

« ‘Always on’

space
localization of
events of
interest

«Time
segmentation
of event
duration

———

¢,
%,

7

Signal
Reconstruction

« Extract
underlying
signal from
noise

« Overcome
pixel
saturation

« Generate
human-
understandable
signatures

———

Traditional Processing

* Requires Link to Ground
* High Bandwidth
* Slow

Signal . Communicate

Classification Results

« Determine if
signal is of
interestorisa
confuser

«Reduce
communication
bandwidth by
rejecting false
alarms

——



The Remote Computation Challenge

Compute at the sensor

* Improve bandwidth utilization (send only what
You need)

« Distributed computation avoiding single-point
of failure

« May reduce preprocessing required (e.g.
Whitening)

69 km/h

Neuromorphic
Architectures

« Highly Parallel

» Co-localized Memory

« Event-Driven

« 'On when you need it'

* Low Energy

Traditional &Y -

Architectures

* Sophisticated & Com;nsv RA
Serial CPUs Bottleneck

« Binary Processing
« ‘Always on’

g osed

oo
cese®
4444

Event-Based Spiking Processing
» Added Computation at the Source
» Sparse Communication
* Low Energy/Low Latency

Traditional Processing

* Requires Link to Ground
* High Bandwidth
* Slow

| DAVIS 240C
®  Event-Driven
~ Camera

-]



Whetstone for Low-Power Spiking Deep Learning

J Automatically converts deep learning networks from
continuous valued neurons to binary activations, making
them compatible with neuromorphic hardware

i

WHETSTONE T

Migm ol org/ X1 D IALI736- 000

nawre, L
machine intelligence

D Opeﬂ sourced Training deep neural networks for binary
communication with the Whetstone method

WilliamSevera®*, CraigM. Vineyard ®, Ryan Dellana ®, Stephen ). Verzi> and James B. Aimone ©*
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Whetstone and Vehicle Perception

Al power draw is a key limiting factor
especially for electric powered vehicles: 3kW
now; HPC-level for fully self-driving

Prototype vehicles use a trunk full of GPUs
Forecasting current tech ~1TeraOp/Watt
Neuromorphic Hardware:

+ Enables event-driven computation SpiNNaker, Univ. of Manchester Example Image
« Opportunity for extremely low power ko Berkeley BeepCive
consumption _ - @ Spiking Neuron Representation
Intelligent B —
Systems NA—
Pre-synapti
“g.." % Neurz:z ‘
& <
9 Q
$4 This %,
'@ y // Input spikes
> Project ) A
A\\2 <4
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ML for Reduced Order Models

Problem
High-fidelity computational physics simulations on HPC systems can
take hours or days to execute
Lengthy execution time limits the design space explored
during conceptual design
Need a faster, more efficient means of simulating complex physics
problems

Technical Approach
Create Reduced Order Model (ROM) from high-fidelity simulation
data that
Executes faster via dimensionality reduction using autoencoders without significant
reduction in accuracy
Preserves important physical properties (e.g., conservation laws)
Uses Machine Learning Error Models (MLEM) to quantify uncertainty
Results/Accomplishments
Reduced order surrogate models and theory have been developed for
turbulent flow simulations
Runtimes are 100-1000 times faster and are only 1% less accurate than
the high-fidelity simulations

MLEM can predict errors with validated statistical properties

ROM error

Turbulent flow vorticity
field

R2 = 0.990




Accelerating Calculations of Fluid Flow via Physics-Informed @
Machine Learning Models :

Problem Hydro-code Simulation ML Prediction

High-fidelity simulations on HPC
systems are too expensive

Technical

Train a neural network to predict
the steady-state flow field

Guide the prediction with
physical constraints
(conservation laws) and
aerodynamic forces (drag, lift,
torque)

Results/Accomplishments
Demonstrated >100x speed
increase in 2D with <6%

average error
Predict > 1000x speed increase
in 3D

Pressure

Drag KR
5.63%
2.29%

ML model successfully

Relative error map of ~ Predicts flow field and ML prediction of
ML prediction aerodynamic coefficients pressure field around
complex 3D object




Surrogate Reduced Order Modeling of Diesel

Combustion and Ignition in GDI engines using ML/AI

Surrogate reduced-order modeling with
principal component transport of compositions
to reduce the chemical dimensions needed to
describe low- and high temperature ignition,
flame propagation and soot under diesel and
cold-start GDI conditions

Use petascale DNS data and experiments to
provide ‘truth’ data to adaptively train
reduced-order surrogates incorporating physics
constraints (e.g. using governing equations)

Anomaly detection ML for detecting pre-ignition
and knock

Reduced order modeling for engine design and
optimization

plane 6
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pilot fiime o
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mergin

main je
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DNS of n-dodecane multi-injection diesel combustion showing
instantaneous volume rendering of mixture fraction (left image) and
temperature slice (right image). Multi-dimensional flamelets at 3
axial planes shown by blue lines (Rieth, Chen, Xu, Han, Hasse)
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Machine Learning Enables Automatic Mesh Generatiof

Problem

* Geometry preparation and meshing for computational simulation is bottleneck
(consuming 70%+ of analyst time)

* Analyst/engineer must have extensive domain-specific expertise to manage
many individual complex problems and tasks

» Must produce verifiably accurate physics appropriate mesh ready for
simulation

Technical Approach

 Identify tasks currently done by analysts to train machine learning models

« Capture and label operations performed by expert using existing software

» Build a feature library of geometric characteristics commonly encountered in
CAD models and identify solutions for effectively modifying CAD for best
resulting mesh

« Explore machine learning models that provide best solutions for CAD features
with associated solution labels

Results/Accomplishments

» Developed ML techniques to rank geometry-modification operations by their
likelihood of yielding a meshable model

* Provides insight on which geometric features are most useful for machine
leaning, and would be relatively easy to integrate into the analyst workflow if
successful

Example Original
design CAD
model

Modified model
for meshing

Meshed model
ready for analysis

i




Sparse Data Shale Gas Multi-Level Modeling

Problem
> Given sparse data at various scales (nm, m, km) about

rocks and wells, and a given depth, can a machine
learning algorithm predict how much shale gas can be

extracted?

Technical Approach
> Develop multiscale, physics informed deep learning
algorithm to generate, parse, and predict data to solve
the above problem
> Develop physics informed costs and constraints driven

algorithms

Results/Impact
> Improve current state of art predictions and resource

estimates

> Develop physics informed machine learning algorithms
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Sandia
National
Laboratories

Exceptional service inthe national interest

Advanced Computing for
Connected & Automated Vehicle (CAV)




AUTOMATED SYSTEMS

THINK
A Sensing system(s) Machine intelligence

Physics Ne[gle] Data Information Intelligence




FOCUSED RESEARCH AREAS FOR HIGHLY AUTOMATED VEHICLES

Sensors and
Sensor Processing

Scene Perception
and Algorithms

Navigation
Hardware Accelerators

Create disruptive optical
sensing technology to
reduce energy consumption
by 100X

Develop chip-scale LiDAR to
reduce cost by 100X

Explore sparse coding and
reduced-precision to reduce
computation load by 1000X

Develop biologically inspired
machine learning algorithms
to reduce the number of
training samples by 100X

Develop unsupervised and
self-supervised learning
algorithms

« Develop and demonstrate

hardware capable of real-time
processing of tera- to petabit
inputs, with energies at <10 fJ
per operation (>100
TOPS/W)

Enable algorithms for robust
and reliable recognition tasks
needed for perception.

Demonstrate the value of
algorithm and hardware
co-design such that combined
elements have greater energy
and/or SWaP improvement




ENERGY EFFICIENCY—COMPUTING AND THE NEED OF CAV
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LEARNING FROM BRAIN FOR ULTIMATE POWER EFFICIENT COMPUTE

Human Brain

Receptors Bipolar cells Retinal “EOSPNGY Layer 1
| cells "4 * . layer2

> D—\ | gt
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Visual B <7
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Synapse
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Al Chip
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© Input Layer ~ Hidden Layer © Output Layer Memristors
Neural network abstraction Physical implementation

Artificial synapse (RRAM, PCM...)

l l «— Crossbar
| |
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Artificial neuron

Forming Process
: 1 . 7

Highly parallel neuron net
Spiking - Event based computing
Low voltage - 100mV

Synapse - plasticity

In memory computing with NVM
(synapse)

Matrix operation

Tang, et al, Adv. Mat. 2019, 1902761
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BREAKING VON NEUMANN BOTTLENECK
— UNLEASH 1000X POWER PERFORMANCE with NVM CROSSBAR

Von Neumann Digital

. In-memory ParallelAnalog
Separate logic and memory structures

Use non-volatile memory

Mathematical Electrical

SRAM to store the weights Arithmetic logic unit A
for multiplication
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Conductance of each
element can be changedina

Uses established CMOS technology Simultaneous logic and memory predictable manner
Data bus results in latency and power 3 orders of magnitude less power

Emerging on-chip non-volatile memory (NVM) improves energy-
M. Marinella, IEEE Circuits and Systems, 8,86-101,2018 efficiency by performing analog multiply-accumulate inside memory
Zidan, Strachan, & Lu, Nat.Elec. 1,22, 2018 and eliminate data movement



NEAR-TERM TECHNOLOGY - 10TOPS/W for DNN accelerator

top oxide

silicon nitride or oxynitride
tunnel oxide

N* source

N* drain

| +

p-type silicon

(a)

v

(b)

Silicon-Oxide-Nitride-Oxide-Silicon(SONQOS)

Component

Energy/Op SRAM (fJ)

Array Latency SRAM (ps)

Outer
Product
Update

Matrix
Vector
Multiply

Vector
Matrix
Multiply

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 5, 52-57,2019.



ANALOG RERAM CROSSBAR - towards T00TOPS/W for DNN accelerator
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ION TUNABLE ELECTRONIC MATERIALS — beyond 100TOPS/W
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MULTISCALE CODESIGN FOR NEUROMORPHIC ACCELERATOR

Target Algorithms
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COMPUTING TECHNOLOGY ROADMAPPING

Compute perf. 1.1 TOPS/W 1-5 TOPS/W 10 TOPS/W 100 TOPS/W
target l
Today 2025 2035
| J
|

Road-mapping

Gov’t: DOE, DOT, etc.
Academic: National Labs, Research institutes

Industry: GM, Tier1, chip suppliers

Identify the technology gaps

Validate the target requirement for CAV
Define the roadmap for the technology
injection points

67



Thank youl!

Q&A
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Contact: Zhiyong Li
zli@sandia.gov




